

MAMMOTH LAKES EAGLE LODGE TRAFFIC IMPACT ANALYSIS

Prepared for the

Town of Mammoth Lakes P.O. Box 1609 Mammoth Lakes, CA 93546 (760) 934-8989

Prepared by

LSC Transportation Consultants, Inc. 2690 Lake Forest Road, Suite 2C P.O. Box 5875 Tahoe City, CA 96145 (530) 583-4053

August 31, 2006

LSC # 057630

EXECUTIVE SUMMARY

PURPOSE

The Eagle Lodge project proposes to construct a permanent base lodge facility at 3256 Meridian Boulevard on the north side of Meridian Boulevard between its eastern and western intersections with Majestic Pines Drive. The project would include visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa, and locker club. Access to the commercial uses would be provided at two locations on Meridian Boulevard, while access to the lodging and service uses would be provided along Majestic Pines Drive (one entrance-only drive to the west and one exitonly drive to the east). The purpose of this report is to analyze potential traffic, parking, and transit impacts associated with the development.

CONCLUSIONS

The findings of the Traffic Impact Analysis are as follows:

- 1. Upon project build out during a typical winter Saturday, the project would generate a total of 914 PM peak-hour vehicle-trips (320 entering and 594 exiting). The project's net impact on the site's winter trip generation is 509 PM peak-hour trips (219 entering and 290 exiting).
- 2. The project is expected to generate 556 PM peak-hour vehicle-trips on a summer Saturday (259 entering, 297 exiting), which is roughly 39 percent less than the levels generated in the winter.
- 3. The project is expected to generate 1,438 PM peak-hour VMT and 8,035 daily VMT on a typical winter Saturday.
- 4. The Meridian Boulevard/Minaret Road intersection will operate at LOS E in 2024 with the project.
- 5. The Majestic Pine Drive East/Meridian Boulevard (east) intersection will operate with a worst approach LOS of LOS F with or without the project in 2024.
- 6. Without mitigation, the project will result in a parking shortfall of 311 parking spaces.

RECOMMENDATIONS

The following recommendations are proposed to mitigate traffic impacts:

 The Minaret Road/Meridian Boulevard intersection is forecast to operate at LOS E exceeding LOS thresholds with or without the project under 2024 plus project conditions. However, construction of a separate eastbound right-turn lane at this location would mitigate LOS to an acceptable LOS D.

- 2. The Majestic Pines Drive/Meridian Boulevard (east) intersection is forecast to operate at worst approach and total intersection LOS F with the project under 2024 plus project conditions. However, a single-lane roundabout with a 100-foot inscribed diameter would operate at worst approach LOS B and total intersection LOS A.
- 3. The following improvements should be provided in order to improve internal site circulation:
 - a. The distance between sawtooth bus bays should be increased to 15 feet in order to provide adequate maneuvering space for buses exiting the bays.
 - b. A sign with an arrow posted along the north side of Meridian Boulevard to direct skiers to the "Skier Drop-Off" zone is recommended. In addition, "Bus Only" signage should be posted at the entrance to the bus drop zone to discourage autos from entering the bus drop zone. "No Parking" signs should be posted along Meridian Boulevard adjacent to the auto drop zone, and "Do Not Enter" signs are needed at the west end of the auto and bus drop zones.
 - c. A "No Left Turn" sign is recommended to be placed at the hotel exit. In addition, it is recommended that a "Do Not Enter," "No Left Turn," and "No Right Turn" signs be posted at the appropriate hotel access approaches.
 - d. In order to decrease the potential for vehicular conflict in the ski school drop zone, the circulating area should be striped for one lane of traffic circulation and one-way operation.
 - e. It is recommended that the curbs at the west end of the auto drop zone be modified to move the intersection of the drop zone and the main parking garage access further north.
- 4. The project has an overall parking shortfall of 311 parking spaces. The following are potential mitigation measures to this parking shortfall.
 - a. Mitigation Option A: Transit service to the site could be expanded such that an additional 950 skiers per day would use transit to access the site on a typical winter Saturday. In addition, the project would be required to provide parking monitoring and enforcement.
 - b. Mitigation Option B: To mitigate potential parking impacts, the project could also provide off-site employee parking for all employees, increased transit service to provide transit for 750 additional skiers, and provide parking monitoring and enforcement.
 - c. Mitigation Option C: The project could request a zone code amendment from the Town to develop an in lieu of parking fee program. This would allow the project to pay a fee that would go towards the construction of off-site parking lots. The fee owed by the project would be calculated based upon the additional number of spaces that are required.
 - If the parking structures are not provided within a reasonable 1,000-foot walking distance, a parking shuttle to provide access between the project site and the parking lots would need to be provided.

TABLE OF CONTENTS

SECTION		PAGE
1	Introduction	1
	Scope of Study	
2	Existing Conditions	2
	Existing Setting	
	Existing Traffic Volumes	4
	2009 No Project Traffic Volumes	(
	2024 No Project Traffic Volumes	<i>6</i>
	Existing Transit Service	9
	Existing Parking Conditions	
3	Proposed Conditions	12
	Project Description	
	Project Access	
	Trip Generation and Distribution	
	Trip Distribution and Assignment	
	Vehicle Miles of Travel	
4	Level of Service Analysis	20
	Level of Service Description	
	Level of Service Standards	
	Analysis Methodology	22
	Level of Service and Roadway Capacity Analysis	
5	Parking Analysis	32
	Parking Demand	32
6	Transportation Impacts	38
	Impacts on Study Intersections	
	Internal Site Circulation	
	Corner Sight Distance	42
	Potential to Narrow Meridian Boulevard	42
	Left-Turn Lane Warrants	43
	Parking Facilities	
	Transit Services	
	Pedestrian and Bicycle Facilities	
	Emergency Access	

Appendix A - Trip Generation, Parking Counts, LOS Interpretation

Appendix B – LOS Calculations

Appendix C – LOS Descriptions

Appendix D – Truck Circulation

Appendix E – Modify Curb Improvement

LIST OF TABLES

TABLE		PAGE
1	External Auto Trip Generation Winter	13
2	External Auto Trip Generation Summer	
3	Trip Distribution	
4	Project-Generated Vehicle Miles of Travel (VMT)	
5	Level of Service Criteria for Unsignalized and Signalized Intersections	
6	Roadway Capacity Summary	
7	2005 Typical Winter Saturday Intersection LOS	25
8	2005 Roadway Capacity Summary	
9	2009 Typical Winter Saturday Intersection LOS	
10	2009 Roadway Capacity Summary	28
11	2024 Typical Winter Saturday Intersection LOS	29
12	2024 Roadway Capacity Summary	31
13	Base Parking Demand	34
14	Cumulative Parking Demand	
15	Left-Turn Lane Warrant Analysis	

LIST OF FIGURES

FIGURE		PAGE
1	Existing Lane Configuration and Traffic Control	3
2	2005 Typical Winter Saturday PM Peak-Hour Traffic Volumes	7
3	2009 No Project Typical Winter Saturday PM Peak-Hour Traffic Volumes	8
4	2024 No Project Typical Winter Saturday PM Peak-Hour Traffic Volumes	10
5	Projects Net Impact on Typical Winter Saturday PM Peak-Hour Traffic Volumes	
6	2009 Plus Project Typical Winter Saturday PM Peak-Hour Traffic Volumes	18
7	2024 Plus Project Typical Winter Saturday PM Peak-Hour Traffic Volumes	19

Section 1

INTRODUCTION

This engineering report documents the findings and conclusions of a Traffic Impact Analysis (TIA) for the Eagle Lodge project proposed to be located in Mammoth Lakes, California. The Eagle Lodge project proposes to construct a permanent base lodge facility at 3256 Meridian Boulevard on the north side of Meridian Boulevard between its eastern and western intersections with Majestic Pines Drive. The project would include visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa, and locker club. Access to the commercial uses would be provided at two locations on Meridian Boulevard, while access to the lodging and service uses would be provided along Majestic Pines Drive (one entrance-only drive to the west and one exitonly drive to the east).

The study examines the site-generated traffic volumes for build out of the project only. This study also provides the technical basis for the Eagle Lodge EIR Traffic Section.

SCOPE OF STUDY

This traffic engineering study analyzes traffic data, intersection capacity and level of service, and traffic impacts of the proposed project in accordance with the requirements of the Town of Mammoth Lakes and Caltrans standards. Based upon input provided by the Town of Mammoth Lakes, the following intersections were identified for analysis:

- Old Mammoth Road/Main Street
- Old Mammoth Road/Meridian Boulevard
- Minaret Road/Meridian Boulevard
- Minaret Road/Main Street
- · Lake Mary Road/Kelly Road
- Meridian Boulevard/Majestic Pines Drive (East)
- Meridian Boulevard/Majestic Pines Drive (West)
- Meridian Boulevard/Drop Off Area
- Maiestic Pines Drive/Hotel Exit
- Majestic Pines Drive/Hotel Entrance

In order to accommodate two phases of development, this analysis considers the following five scenarios:

- Existing (2005) no project
- Future (2009) no project
- Future (2009) plus proposed project
- Future (2024) no project
- Future (2024) plus proposed project

The results of this traffic study are used to develop recommendations to mitigate project traffic impacts.

Mammoth Lakes Eagle Lodge

Section 2 EXISTING CONDITIONS

This section documents the existing setting and operational traffic conditions in the vicinity of the site, providing a foundation for comparison to future conditions. Existing roadway conditions were studied to identify if the roadways are currently operating in a safe and efficient manner. The study area and the intersections evaluated are shown in Figure 1.

EXISTING SETTING

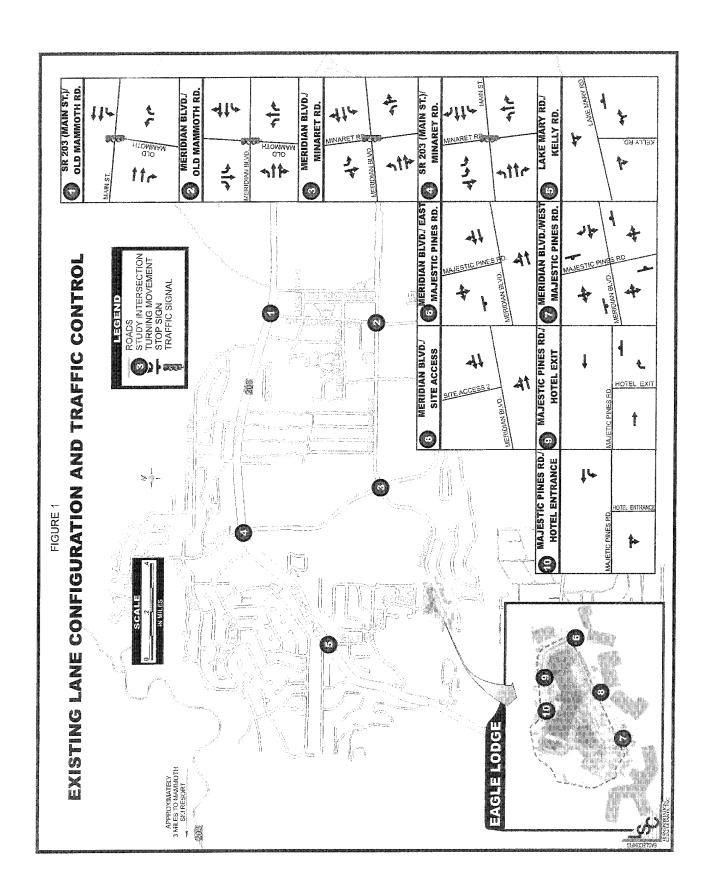
Existing Roadways

The roadways within the study area are described below.

SR 203 (Main Street)

The major access into the Town of Mammoth Lakes is provided by State Route 203, which intersects with US Highway 395 just to the east of the Town limits. SR 203 (also named Main Street through the center of Town) is a four-lane road from US 395 through the majority of the developed portion of the Town. SR 203 returns to two lanes north of the intersection of Main Street and Minaret Road. The highway continues from the developed area of the Town to the Mammoth Mountain Ski Area Main Lodge, and terminates at the Mono-Madera county line. Portions of SR 203 are augmented by frontage roads. According to Caltrans' classification system, State Route 203 is a minor arterial for the first 8.5 miles from US 395 eastward through the Town, and a minor collector for the westernmost 0.7 miles. Mammoth Scenic Loop, a two-lane road off of SR 203, provides secondary access from the Town to US 395 to the north.

Meridian Boulevard


Meridian Boulevard is an arterial with an east-west alignment. The roadway contains a four-lane cross section west of Sierra Park Road and a two-lane cross section east of Sierra Park Road. This roadway provides access to the Cerro Coso College, commercial uses near Old Mammoth Road, residential uses, and lodging uses.

Minaret Road

Minaret Road is a two-lane arterial with a north-south alignment. It provides access to the Village area, as well as residential areas to the south. Its intersections with both Main Street and Meridian Boulevard are signalized.

Old Mammoth Road

Old Mammoth Road serves as a north-south arterial in the eastern portion of Mammoth Lakes, as well as an east-west arterial in the southern portion of Mammoth Lakes. East of Minaret Road, Old Mammoth Road is an arterial roadway that provides access to commercial, residential, and

lodging facilities. Within the study area, the roadway is a three-lane roadway with two travel lanes and a center two-way left-turn lane.

Lake Mary Road

Lake Mary Road is a collector roadway which connects Main Street (SR 203) with the western portion of town, including the Tamarack Lodge and Twin Lakes. Within the past five years, a traffic signal was installed at its intersection with realigned Canyon Boulevard, which provides access to residential uses and a skier portal.

Majestic Pines Drive

Majestic Pines Drive is a two-lane collector roadway which connects residential uses with Meridian Boulevard. Along with Kelly Road, it provides an alternate north-south through route between Meridian Boulevard and Lake Mary Road.

Kelly Road

Kelly Road is a two-lane collector roadway connecting residential uses to Lake Mary Road. Along with Majestic Pines Drive, it provides an alternate north-south through route between Meridian Boulevard and Lake Mary Road.

Major Intersections

The major existing or proposed intersections in the study area requiring analysis are:

- Old Mammoth Road/Main Street
- Old Mammoth Road/Meridian Boulevard
- Minaret Road/Meridian Boulevard
- Minaret Road/Main Street
- Lake Mary Road/Kelly Road
- Meridian Boulevard/Majestic Pines Drive (East)
- Meridian Boulevard/Majestic Pines Drive (West)
- Meridian Boulevard/Drop Off Area
- Majestic Pines Drive/Hotel Exit
- Majestic Pines Drive/Hotel Entrance

The lane configuration of the study intersections are depicted in Figure 1.

EXISTING TRAFFIC VOLUMES

The traffic volumes throughout the Town of Mammoth Lakes vary greatly by time of day, day of week and, more importantly, by season. Particularly in areas with these high variations in traffic levels, it is important to decide what hourly traffic volumes should be used as the basis of design. To avoid the development of facilities that are only needed a relatively few days per year, the traffic engineering profession has adopted a standard procedure of basing roadway design on volumes slightly below the absolute peak volumes.

For this reason the Town of Mammoth Lakes, for example, has focused its design policies on a typical winter Saturday peak hour, rather than the highest winter peak hour. A Policy on Geometric Design of Highways and Streets (American Association of State Highway and Transportation Officials, 2001) indicates "the design hourly volume for rural highways should generally be the 30th highest volume of the future year chosen for design." (page 61). It is true that during winter peak periods, traffic volumes occasionally exceed the resulting intersection and roadway capacity. However, to avoid the development of facilities that are only needed during peak periods on a relatively few days per year, the typical winter Saturday peak hour was analyzed, which is consistent with standard engineering design practice.

The 2005 existing winter weekday PM peak-hour traffic volumes were estimated as follows:

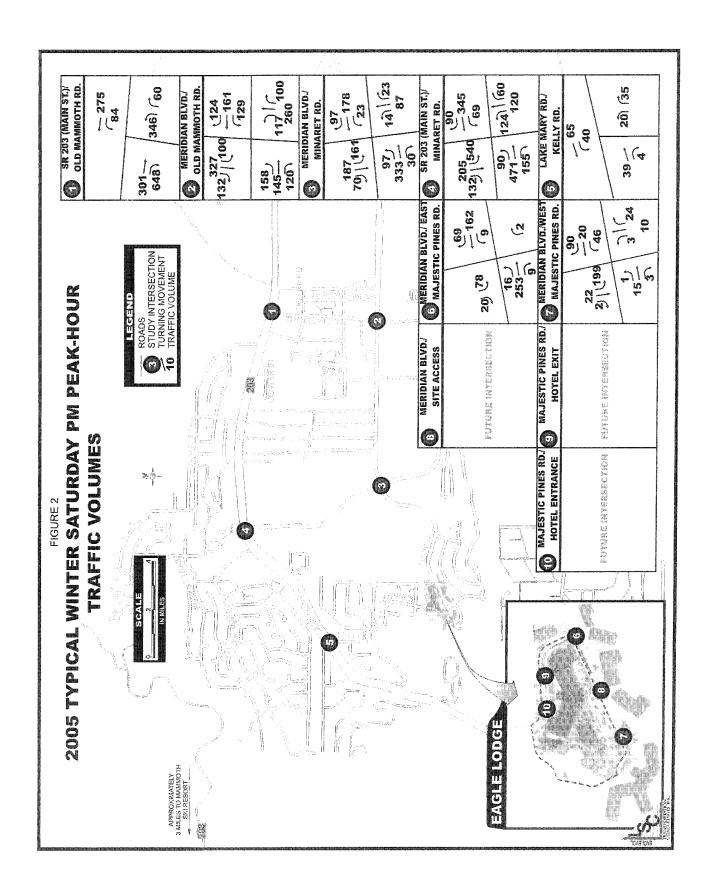
- 1. Traffic turning-movement counts were conducted at the following intersections on the following dates:
 - Old Mammoth Road/SR 203 (Main Street) (December 17, 2005)
 - Old Mammoth Road/Meridian Boulevard (December 17, 2005 and January 14, 2006)
 - Old Minaret Road/Meridian Boulevard (December 17, 2005)
 - Minaret Road/SR 203 (Main Street) (December 17, 2005 and January 14, 2006)
 - Kelly Road/Lake Mary Road (December 17, 2005)
 - Majestic Pines Drive (East)/Meridian Boulevard (December 17, 2005)
 - Majestic Pines Drive (West)/Meridian Boulevard (December 17, 2005 and January 14, 2006)
- 2. Next, the estimated number of skiers visiting Mammoth Mountain Ski Area (MMSA) at the Eagle Lodge portal and all other portals throughout December 2005 and January 2006 was provided by MMSA. The number of skiers accessing the mountain during the January 14, 2006 counts was slightly lower than the number that visit the mountain on a typical Saturday, and during the December 17, 2006 traffic counts, skier numbers were relatively low. Therefore, the design volumes were estimated by starting with the January 14, 2006 counts, while the December counts were used to fill in the gaps in data.
- 3. Typical Saturday PM peak-hour traffic volumes were estimated based upon the January 14, 2006 traffic counts by applying an adjustment to account for the additional skiers that would be on the roadway on a typical Saturday versus on January 17, 2006.
- 4. Next, a comparison of roadway link data for the adjusted January counts to the unadjusted December counts was made at the intersections for which count data for both days was available. A December count to typical Saturday count adjustment factor for each roadway link was then calculated in order to estimate typical Saturday traffic volumes at the remaining intersections.
- 5. The resulting traffic volumes were checked to make sure they reasonably balance along roadway links.

6. The traffic volumes were also compared to traffic volume counts collected as a part of the Mammoth Lakes General Plan Update, to verify that they reasonably represent typical Saturday PM peak-hour traffic volumes.

The resulting 2005 no project traffic volumes are shown in Figure 2.

2009 NO PROJECT TRAFFIC VOLUMES

The 2009 no project traffic volumes were forecasted as follows:


- 1. A list of projects assumed to be built by 2009 was provided by the Town of Mammoth Lakes, as described in Chapter 4 (Cumulative Effects) of the EIR.
- 2. These projects were added to the existing land uses defined in the Mammoth Lakes Transportation Demand Model.
- 3. The growth at the external nodes was estimated by straight line interpolation between the volumes at each node in the 2004 and 2024 traffic models.
- 4. The Mammoth Lakes Transportation Demand Model was run to estimate a set of 2009 traffic volumes, assuming development on the Eagle Lodge site.
- 5. The traffic volumes generated by the Eagle Lodge Transportation Analysis Zone (TAZ) in the model were then subtracted from the model-generated traffic volumes.
- 6. The traffic currently generated by the site (from the 2005 counts) was then added to the traffic volumes, as the no project condition assumes no change in traffic from today's current condition.

The resulting 2009 no project traffic volumes are shown in Figure 3.

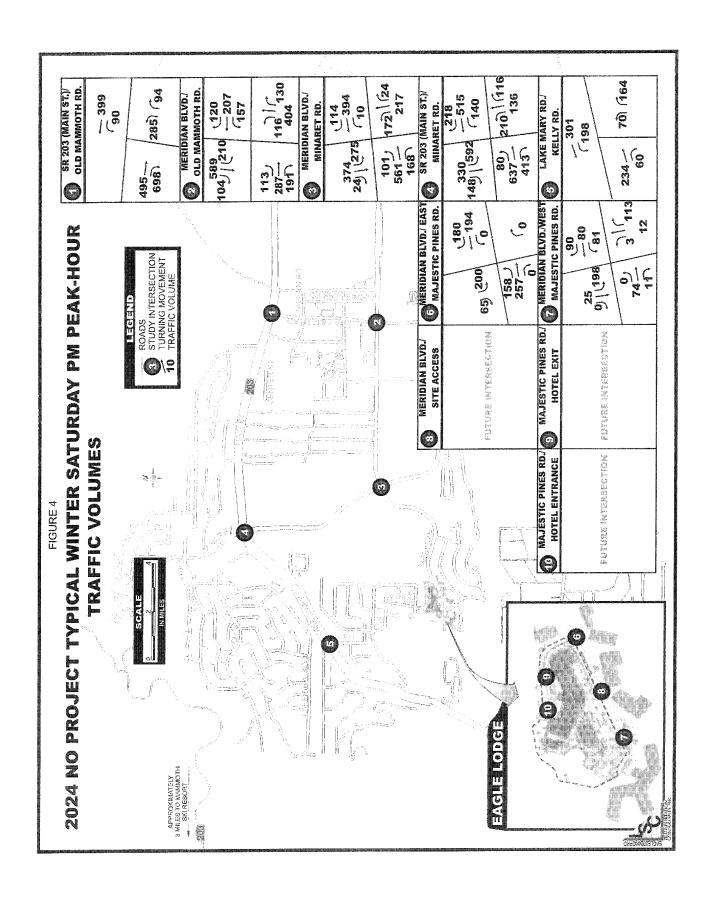
2024 NO PROJECT TRAFFIC VOLUMES

The 2024 no project traffic volumes were forecasted as follows:

- 1. The land uses contained in the 2024 Existing General Plan Mammoth Lakes Transportation Demand Model were updated to better represent the current development proposals for the Cerro Coso College site. The need for this update was generated based upon comments received as a part of the General Plan Update process.
- 2. The 2024 Mammoth Lakes Transportation Demand Model was then re-run to develop a set of 2024 traffic volumes that assume development on the Eagle Lodge site consistent with the model assumptions.
- 3. The traffic volumes generated by the Eagle Lodge TAZ were then subtracted from the model traffic volumes.

4. The traffic currently generated by the site was then added to the traffic volumes.

The resulting 2024 no project traffic volumes are shown in Figure 4.


EXISTING TRANSIT SERVICE

Mammoth Area Shuttle (MAS) offers several free shuttles available to anyone in the Town of Mammoth Lakes during the winter season. The following five routes operate during daytime hours:

- The Main Lodge/Snow Creek Line (Red Line) provides service to and from the Main Lodge and Snowcreek Athletic Club, traveling along Minaret Road, Main Street, Old Mammoth Road, and Chateau Road. At Gondola Village riders can transfer to all other lines. The Red Line service begins daily at 7:00 AM at the Snowcreek Athletic Club and ends at 5:30 PM, with 15-minute headways.
- The Canyon Lodge Line (Blue Line) provides service to and from Gondola Village and Canyon Lodge, traveling along Lakeview Boulevard, Canyon Boulevard, and Forest Trail. Riders can transfer to all other lines at Gondola Village. Service begins daily at Gondola Village at 7:00 AM and ends at 5:30 PM, with half-hour headways.
- The Juniper Springs Line (Green Line) provides service to and from Eagle Lodge and Old Mammoth Road, traveling along Azimuth, Meridian, and Sierra Nevada Boulevards. Riders can transfer to all other lines at stop #32 (the intersection of Sierra Nevada Boulevard and Old Mammoth Road). The Green Line operates daily beginning at 7:30 AM and ends at 5:30 PM, providing half-hour headways.
- The Canyon Lodge/Juniper Springs Line (Yellow Line) provides service to and from Canyon Lodge and Chair 15 Outpost (Juniper Springs), traveling along Canyon Boulevard, Lake Mary Road, Kelly Road, and Majestic Pines Drive. Riders can transfer to all other lines at Gondola Village. Providing up to half-hour headways, the Yellow Line operates daily from 7:30 AM to 5:30 PM.
- The Tamarack Lodge/Gondola Village Line (Orange Line) provides service to and from Tamarack Lodge and Gondola Village, traveling along Lake Mary Road. Riders can transfer to all other lines at Gondola Village. The bus departs from Tamarack Lodge three times a day (9:00 AM, noon, and 4 PM).

There are also three "Nightline" routes which provide service during evening hours. Riders can transfer between the following four Nightlines at Gondola Village:

• The Gondola Village/Snowcreek Nightline (Red Line) provides service to and from Gondola Village and Snowcreek Athletic Club. The Red Line services Main Street, Old Mammoth Road, Chateau Road, and Minaret Road. Beginning at Gondola Village, the bus departs every half-hour from 5:00 PM to Midnight.

- The Canyon Lodge Nightline (Blue Line) provides service to and from Gondola Village and Canyon Lodge. The Green Line night service operates on Friday and Saturday nights only, every half hour from 5:00 PM to Midnight.
- The Juniper Springs Line (Green Line) provides night service to and from Eagle Lodge and Old Mammoth Road, traveling along Azimuth, Meridian, and Sierra Nevada Boulevards. The Green Line night service operates on Friday and Saturday nights only, every half hour from 5:00 PM to Midnight.
- The Canyon Lodge/Juniper Springs Line (Yellow Line) provides service to and from Canyon Lodge and Chair 15 Outpost (Juniper Springs), traveling along Canyon Boulevard, Lake Mary Road, Kelly Road, and Majestic Pines Drive. The Yellow Line night service operates on Friday and Saturday nights only, every half hour from 5:00 PM to Midnight.

In addition, the Town of Mammoth Lakes, through Inyo-Mono Transit, operates "The Lift" bus service during the non-winter seasons as well as a summer-only rubber-tired Trolley program. These services do not serve the Eagle Lodge site. The entire town (including the Eagle Lodge site) is served by a Dial-A-Ride program.

EXISTING PARKING CONDITIONS

Due to snow storage and parking efficiency variations from day-to-day, the Eagle Lodge site currently contains roughly 220 to 240 parking spaces, 26 of which are designated for Juniper Springs. In addition, skiers park vehicles in parallel parking spaces along Meridian Boulevard. Parking is allowed along Meridian Boulevard from the west Majestic Pines Drive/Meridian Boulevard intersection eastward to Sierra Star Parkway. However, on most ski weekends, vehicles are parked along Meridian Boulevard from the west Majestic Pines Drive/Meridian Boulevard intersection all the way to Minaret Road. In fact, on very busy days vehicles sometimes are parked in the area that begins to widen to provide an eastbound left-turn lane at the Meridian Boulevard/Minaret Road intersection.

Section 3 PROPOSED CONDITIONS

The project location, the size of the project, and the time of the project completion are all important elements that need to be considered to determine the safety and capacity impacts of the development. It is also important to examine how the project will operate with the existing transportation system, estimate how much new traffic it will generate, and identify how traffic generated by the site will be distributed.

PROJECT DESCRIPTION

The Eagle Lodge project proposes to construct a permanent base lodge facility at 3256 Meridian Boulevard on the north side of Meridian Boulevard between its eastern and western intersection with Majestic Pines Drive. The project would include visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa, and locker club. Access to the commercial and skier uses would be provided at two locations on Meridian Boulevard, while access to the lodging and service uses would be provided along Majestic Pines Drive.

A peak maintain design capacity of 5,000-5,960 skiers per day has been estimated for the site. The traffic analysis contained in this report is based upon a maximum of 6,000 skiers per day in order to analyze the worst case scenario.

PROJECT ACCESS

Properly located access points are essential to allow for the safe and orderly movement of traffic in and out of a site. Access to the commercial and skier uses would be provided at two locations on Meridian Boulevard, while access to the lodging and service uses would be provided along Majestic Pines Drive.

TRIP GENERATION AND DISTRIBUTION

Because of the unique transportation factors impacting ski area access and the need to consider the interaction between the various uses proposed for the site, as well as the interaction with other nearby land uses, the evaluation of trip generation for the Eagle Lodge project is a relatively complicated process.

Winter Trip Generation

The vehicle trip generation associated with the project is summarized in Table 1. Details regarding the trip generation assumptions are summarized in Appendix A. As the table indicates, upon project build out during a typical winter Saturday, the project would generate a total of 914 PM peak-hour trips (320 entering and 594 exiting). However, note that this does not account for the fact that the project site already generates traffic. The project's net impact on traffic is 509 PM peak-hour trips (219 entering and 290 exiting).

		l Peak-l ternal T		Reductions for External Walking		Peak-l ternal A Trips		Percent	Ne	Peak- w Exte	rnal
Use	In	Out	Total	Trips	In	Out	Total	Pass-By	ln	Out	Total
Skiers 1	213	415	628		213	415	628	0%	213	415	628
Base Lodge	0	43	43	0%	0	43	43	0%	0	43	43
Ice Rink	3	3	6	5%	3	3	6	0%	3	3	6
Commercial	175	172	347	42%	102	100	202	25%	77	75	152
Lodging	20	51	71	0%	20	51	71	0%	20	51	71
Buses	2	2	4	0%	2	2	4	0%	2	2	4
Trucks	5	5	10	0%	5	5	10	0%	5	5	10
Total	418	691	1,109		345	619	964		320	594	914
Existing Traffic Gener	ated by Site								101	304	405
Project's Net Impact o	n Trip Generatio	n							219	290	509

Summer Trip Generation

While the traffic analysis focuses on typical winter Saturday conditions to represent the worst case, a summer trip generation analysis is also provided in this report. A portion of the summer trip generation will consist of mountain bikers. According to Dave Geirman (MMSA), approximately 25,000 bikers per year visit the mountain, a number which has been growing at a rate of 5 to 8 percent per year. The mountain bike park hopes to increase this number to 40,000 bikers per year in the next five years, which represents an annual growth rate of 9.9 percent per year. Currently, approximately 600 bikers per day visit the mountain on a typical summer weekend day. Approximately half of these bikers are downhill bikers, while the other half are cross-country bikers.

According to the existing Town of Mammoth Lakes General Plan, the number of people at one time the Town can accommodate is expected to grow at a rate of 2.6 percent a year over the next 20 years. Applying this growth rate indicates that by 2024 approximately 977 bikers per day will visit the mountain. Assuming that the number of downhill bikers will grow at twice the rate as the cross-country bikers, a total of 426 cross-country bikers and 551 downhill bikers per day will be on the mountain by 2024. As Eagle Lodge provides primary access to cross-country bikers, approximately 426 bikers will access the Eagle Lodge lift on a summer weekend day by 2024. It is also assumed that 50 percent of the bikers will bike to the site, while the remaining 50 percent will drive.

The summer trip rates for the Day Care, Mountain Biking Employees, Day Spa, Convenience Market, Sit-Down Restaurant, and Hotel land uses were assumed to equal the winter trip rates. In the off season, the community room/conference room can be rented out and used by people not residing at the lodge. The trip generation of this facility is estimated assuming a 200 person-at-

one-time capacity, a maximum of two events occurring on one day, an average vehicle occupancy of 2.5 persons per vehicle, and as a worst-case one event ending and one event starting during the PM peak hour.

Without reductions for internal and walking trips and as shown in Table 2, the project is expected to generate 757 PM peak-hour trips on a summer Saturday (360 entering, 397 exiting). With reductions for internal and walking trips, the site is expected to generate 556 PM peak-hour trips on a summer Saturday (259 entering, 297 exiting), which is roughly 39 percent less than the levels generated in the winter. The project's net impact on summer PM peak-hour traffic is 523 trips, which is 3 percent higher than the winter net impact. However, as traffic volumes are greater during the winter and because the site generates 40 percent less traffic during the summer than the winter, the winter condition is analyzed in this document as the worst case.

Existing Traffic Generated b	y Site								0	33	33
Total	360	397	757		278	316	594		259	297	556
Trucks	5	5	10	0%	5	5	10	0%	5	5	10
Buses	2	2	4	0%	2	2	4	0%	2	2	4
Lodging	70	71	141	0%	70	71	141	0%	70	71	141
Conference Facilities	80	80	160	0%	80	80	160	0%	80	80	160
Sit-Down Restaurant	38	28	66	10%	34	25	59	0%	34	25	59
Convenience Market	154	154	308	50%	77	77	154	25%	58	58	116
Day Spa	11	10	21	10%	10	9	19	0%	10	9	19
Mountain Biking Employees	0	9	9	0%	0	9	9	0%	0	9	9
Mountain Bikers	0	38	38		0	38	38	0%	0	38	38
Use	In	Out	Total	_ ~	ln	Out		Pass-By	In	Out	Tota
		ernal T		Walking			Trips	Percent		Trips	
	I PM	Peak-	Hour	External	РМ	. Peak-	Hour			Externa	
	1			Reductions for		•	ı		P.M	Peak-	Hour

TRIP DISTRIBUTION AND ASSIGNMENT

The distribution of the site-generated traffic was estimated as follows:

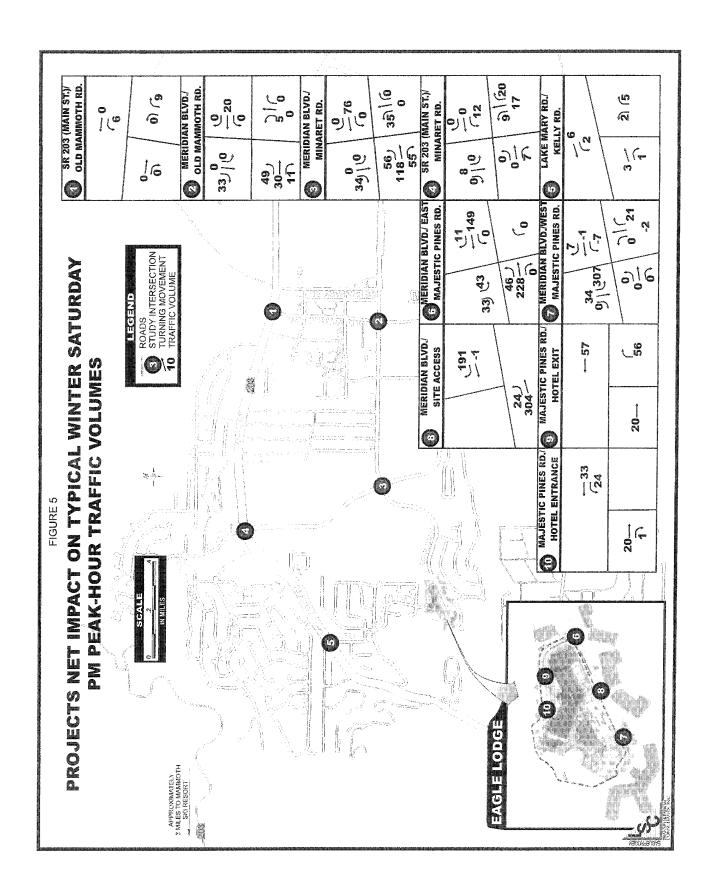
- 1. The distribution of commercial trips was estimated based upon the location of nearby residential areas, considering the "market area" of competing convenience retail in the downtown and Village areas.
- 2. The distribution of lodging trips was estimated based upon the location of commercial areas and recreational areas throughout the town, as well as to regional access (SR 203 to the east).

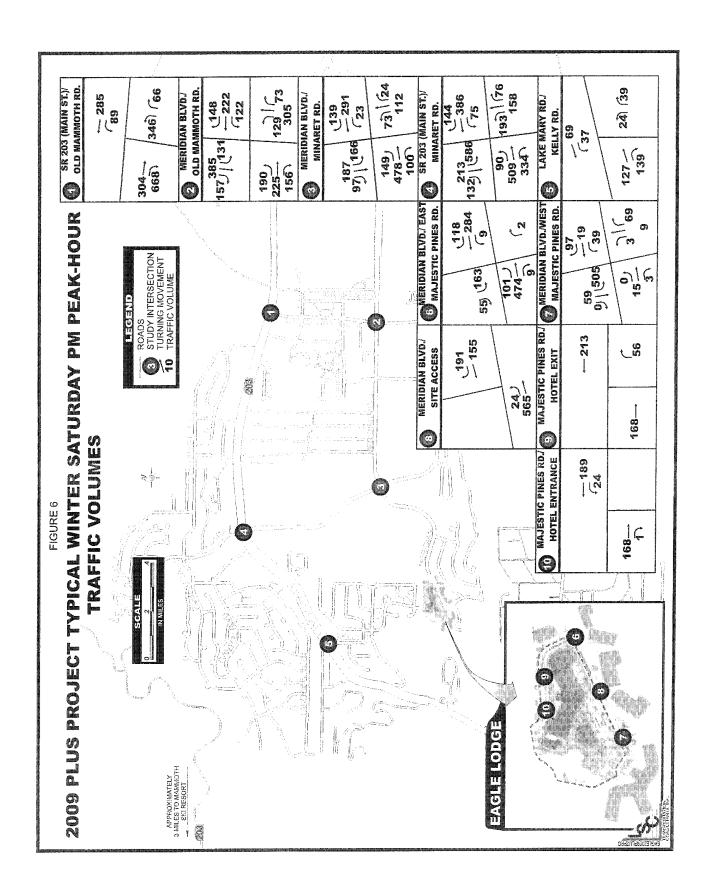
- 3. The distribution of skier trips was estimated based upon the location of residential/lodging areas and the assumptions identified in Appendix A regarding percentage of people in nearby residential/lodging areas that walk or travel to other ski portals.
- 4. The distribution of truck traffic was based upon the location of regional access (SR 203) as well as other commercial areas in Mammoth Lakes that may also be serviced by larger delivery trucks as part of combined routes.

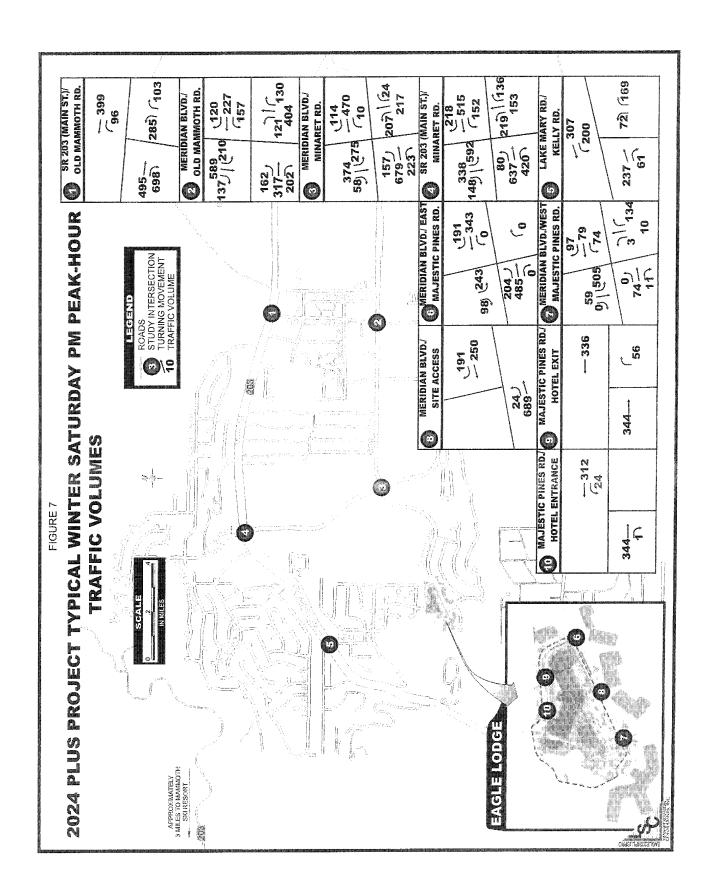
The project-generated traffic distribution is shown in Table 3.

Area	Commercial	Lodging	Skiers	Trucks
Main to the East of Old Mammoth	1%	3%	5%	0%
Meridian to the East of Old Mammoth	4%	14%	12%	25%
Old Mammoth South of Meridian	1%	10%	2%	0%
Old Mammoth Between Main and Meridian	3%	15%	17%	25%
Main Between Minaret and Old Mammoth Meridian Between Minaret and Old	3%	17%	6%	25%
Mammoth	8%	3%	12%	0%
Minaret Between Main and Meridian	5%	3%	4%	0%
Minaret South of Meridian	7%	2%	21%	0%
Minaret North of Main	2%	22%	2%	10%
Canyon Boulevard North of Lake Mary	1%	1%	1%	15%
_akeview Northwest of Lake Mary	5%	5%	1%	0%
_ake Mary West of Kelly Road Meridian Between Majestic Pines and	2%	5%	2%	0%
Minaret	15%	0%	2%	0%
Majestic Pines North Neighborhood	23%	0%	5%	0%
Majestic Pines to the South	20%	0%	8%	0%

Using the trip generation estimates and traffic distribution pattern, traffic assignments are estimated for the winter PM peak hour of traffic activity. The impact of the project on winter traffic volumes is shown in Figure 5, while the 2009 and 2024 plus project turning-movement volumes are shown in Figures 6 and 7, respectively.


VEHICLE MILES OF TRAVEL


The PM peak-hour Vehicle Miles of Travel (VMT) generated by the project was calculated based upon the PM peak-hour trip generation, daily trip generation, and estimated trip length to distribution area. As Table 4 indicates, the project is expected to generate 1,438 PM peak-hour VMT and 8,035 daily VMT on a typical winter Saturday.


TABLE 4:	Project-Genera	ted Vehicle Mi	iles of Travel (V	MT)
Use	PM Peak-Hour New External Auto Trips	Average Trip Length (miles)	PM Peak-Hour VMT	Daily VMT
Skiers ¹	223	4.56	1,017	3,606
Base Lodge	43	1.63	70	355
Ice Rink	6	1.67	10	154
Commercial	152	1.28	195	2,064
Lodging	71	1.73	123	1,626
Buses	4	1.75	7	70
Trucks	10	1.6	16	160
Total	509		1,438	8,035

Note 1: Excludes existing skier trips to the site.

Note 2: Based upon trip distribution and distance of distribution point to site.

Section 4 LEVEL OF SERVICE ANALYSIS

LEVEL OF SERVICE DESCRIPTION

The concept of level of service is defined as a qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers. A level of service definition generally describes these conditions in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety. Six levels of service are defined for each type of roadway facility. They are given letter designations, from A to F, with Level of Service A representing the best operating conditions and Level of Service F the worst.

In general, the various levels of service are defined as follows for roadways (away from intersections):

Level of Service A represents free flow. Individual drivers are virtually unaffected by the presence of others in the traffic stream. Freedom to select desired speeds and to maneuver within the traffic stream is extremely high. The general level of comfort and convenience provided to the motorist, passenger, or pedestrian is excellent.

Level of Service B is in the range of stable flow, but the presence of other users in the traffic stream begins to be noticeable. Freedom to select desired speeds is relatively unaffected, but there is a slight decline in the freedom to maneuver within the traffic stream from LOS A. The level of comfort and convenience provided is somewhat less than at LOS A, because the presence of others in the traffic stream begins to affect individual behavior.

Level of Service C is in the range of stable flow, but marks the beginning of the range of flow in which the operation of individual drivers becomes significantly affected by interactions with others in the traffic stream. The selection of speed is now affected by the presence of others, and maneuvering within the traffic stream requires substantial vigilance on the part of the user. The general level of comfort and convenience declines noticeably at this level.

Level of Service D represents high density, but stable flow. Speed and freedom to maneuver are severely restricted, and the driver experiences a generally poor level of comfort and convenience. Small increases in traffic flow will generally cause operational problems at this level.

Level of Service E represents operating conditions at or near the capacity level. All speeds are reduced to a low, but relatively uniform value. Freedom to maneuver within the traffic stream is extremely difficult, and it is generally accomplished by forcing a vehicle or pedestrian to "give way" to accommodate such maneuvers. Comfort and convenience levels are extremely poor, and driver or pedestrian frustration is generally high. Operations at this level are usually unstable, because small increases in flow or minor perturbations within the traffic stream will cause breakdowns.

Level of Service F is used to define forced or breakdown flow. This condition exists wherever the amount of traffic approaching a point exceeds the amount which can traverse the point. Queues form behind such locations. Operations within the queue are characterized by stop-andgo waves, and they are extremely unstable. Vehicles may progress at reasonable speeds for several hundred feet or more, and then be required to stop in a cyclic fashion. Level of Service F is used to describe the operating conditions within the queue, as well as the point of the breakdown. It should be noted, however, that in many cases operating conditions of vehicles or pedestrians discharged from the queue may be quite good. Nevertheless, it is the point at which arrival flow exceeds discharge flow which causes the queue to form, and Level of Service F is an appropriate designation for such points.

Level of Service at signalized and unsignalized intersections in terms of delay is summarized in Table 5.

Signal	ized Intersections	
LOS	Unsignalized Intersection Average Delay per Vehicle (sec)	Signalized Intersection Average Delay per Vehicle (sec)
Α	≤ 10	<u>≤</u> 10
В	>10 and <u><</u> 15	>10 and <u><</u> 20
С	>15 and <u><</u> 25	>20 and <u><</u> 35
D	>25 and ≤ 35	>35 and <u><</u> 55
Ε	>35 and ≤ 50	>55 and <u><</u> 80
F	> 50	> 80

LEVEL OF SERVICE STANDARDS

The Town of Mammoth Lakes General Plan Transportation Element, adopted in 2001, currently contains the following Policy:

Policy 1.7: Establish and maintain a Level of Service D or better on a typical winter Saturday peak hour for signalized intersections and for primary through movements for unsignalized intersections along arterial and collector roads. This standard is expressly not applied to absolute peak conditions, as it would result in construction of roadway improvements that are warranted only a limited number of days per year and that would unduly impact pedestrian and visual conditions.

Therefore, the following LOS thresholds were applied in the General Plan traffic analysis (as described in the memo contained in Appendix A):

- For Signalized Intersections: Total intersection LOS D or better must be maintained. Therefore, if a signalized intersection is found to operate at a total intersection LOS E or F, mitigation is required. It is assumed that this same threshold applies to roundabouts.
- For Unsignalized Intersections: In order to avoid the identification of a LOS failure for intersections that result in only a few vehicles experiencing a delay greater than 50 seconds (such as at a driveway serving a few homes that accesses onto a busy street), a LOS deficiency is not identified for all intersections with approach LOS E or F. Instead, a LOS deficiency is assumed to occur at an unsignalized intersection only if an individual minor street movement operates at LOS E or F and total minor approach delay exceeds four vehicle hours for a single lane approach and five vehicle hours for a multi-lane approach. In other words, a deficiency is found to occur if the average number of vehicles queued over the peak-hour exceeds four at a single-lane approach, or exceeds five at a multi-lane approach. Traffic operations at the study intersections were assessed in terms of Level of Service (LOS) and delay. LOS is a concept that was developed by transportation engineers to quantify the level of operation of intersections and roadways (*Highway Capacity Manual*, TRB, 2000). LOS measures are classified in grades "A" through "F," indicating the range of operation. LOS "A" signifies the best level of operation, while "F" represents the worst.

For signalized intersections, LOS is primarily measured in terms of average delay per vehicle entering the intersection. LOS at unsignalized intersections is quantified in terms of delay per vehicle for each approach/movement. The unsignalized intersection LOS is based upon the theory of gap acceptance for side-street stop sign-controlled approaches, while signalized intersection LOS is based upon the assessment of volume-to-capacity ratios and control delay.

ANALYSIS METHODOLOGY

Level of Service

Signalized and two-way stop-controlled intersection LOS was evaluated using Traffix software (Version 7.7, Trafficware 2004) based on the 2000 Highway Capacity Manual methodologies at all study intersections. LOS at roundabouts was analyzed using the aaSIDRA software.

Roadway Capacity

The capacity of the roadways within Mammoth Lakes were estimated as follows:

1. A base saturation flow rate of 1,600 vehicles per hour per directions was assumed. This figure is slightly lower than is typically observed in urban areas, representing the reduction in effective capacity that results from both visitor drivers that are unfamiliar with the area, as well as the impacts of winter driving conditions. It is consistent with observed capacity in the Tahoe Region, which is similarly affected by visitor drivers.

- 2. According to Chapter 10 (Urban Street Concepts) of the *Highway Capacity Manual*, the default directional lane split for roadways with two lanes per direction is 52.5 percent in one lane and 47.5 percent in the other. Therefore, as no recent count data was available to determine the actual lane split, for roadways with two lanes in each direction, it was assumed that one lane would carry 52.5 percent of the directional traffic, while the second lane would carry 47.5 percent.
- 3. Reductions to roadway capacity were made, as required on individual segments, to account for the presence of pedestrian crossings, on-street parking maneuvers, vehicles searching for parking spaces, and conflicting driveway turning movements.
- 4. The resulting roadway capacities are shown in Table 6. Please note, however, that the roadway capacities applied in this study are for planning purposes only and are only based upon estimated effects of pedestrians, parking maneuvers, and driveway turning-movement conflicts.

Table 6: Roadway Capacity Summary	
	Capacity
Roadway Segment	(Vehicles per Hour per Peak Direction)
Main Street East of Old Mammoth Road	2,600
Main Street West of Old Mammoth Road	2,600
Main Street East of Minaret Road	2,600
Lake Mary Road West of Minaret Road	1,600
Lake Mary Road West of Kelly Road	1,600
Old Mammoth Road South of Main Street	1,600
Old Mammoth Road North of Meridian Boulevard	1,600
Old Mammoth Road South of Meridian Boulevard	1,600
Meridian Boulevard East of Old Mammoth Road	1,600
Meridian Boulevard West of Old Mammoth Road	2,600
Meridian Boulevard East of Minaret Boulevard	2,600
Meridian Boulevard West of Minaret Road	2,600
Meridian Boulevard East of Majestic Pines Road North	2,600
Meridian Boulevard West of Majestic Pines Road North	2,600
Minaret Road Main Street to Forest Trail	1,300
Minaret Road South of Main	1,600
Majestic Pines Drive North of Meridian	1,600
Majestic Pines Drive South of Meridian Boulevard	800
Kelly Road South of Lake Mary Road	800
Note: Roadway capacity for 2005 and 2024 assumed to be the same.	

LEVEL OF SERVICE AND ROADWAY CAPACITY ANALYSIS

2005 No Project Conditions

2005 Intersection LOS

Study intersections were evaluated to determine existing operational conditions during the typical Saturday winter PM peak hour. Using the traffic volumes presented as part of this study, it is possible to evaluate the LOS provided during peak periods at the intersections serving the study area. Appendix B presents the actual output from each of the LOS calculations for the study intersections, and Table 7 summarizes the results for existing (2005) no project conditions. As the table indicates, the LOS at all the study intersections are within the Town of Mammoth Lakes Level of Service standards without project implementation.

2005 Roadway Capacity Analysis

As Table 8 indicates, under 2005 no project conditions, the study roadways are operating below capacity.

2009 No Project and Plus Project Conditions

2009 Intersection LOS

The study intersections were evaluated to determine existing operational conditions during the 2009 typical Saturday winter PM peak hour both with and without the project. As Table 9 indicates, intersection LOS standards are not exceeded at any of the study intersections in 2009 even after project implementation. However, it should be noted that the proposed project worsens LOS on the southbound approach to the Majestic Pine Drive East/Meridian Boulevard intersection from a LOS C to a LOS F.

2009 Roadway Capacity Analysis

As Table 10 indicates, under 2009 no project and plus project conditions, the study roadways are operating below capacity, and therefore at acceptable levels of service.

2024 No Project and Plus Project Conditions

2024 Intersection LOS

The study intersections were evaluated to determine existing operational conditions during the 2024 typical Saturday winter PM peak hour both with and without the project. As Table 11 indicates, intersection LOS standards are not exceeded at any of the study intersections in 2024, with the following exceptions:

• The Meridian Boulevard/Minaret Road intersection would operate at LOS E with the project. However, the provision of an eastbound right-turn lane at this location would mitigate LOS to an acceptable LOS D condition.

Table 7: 2005 Typical Winter Saturday Intersection LOS	Intersection LOS			
		-	Delay (seconds	((-
	Unmitigated Traffic Control	Approach	per venicle)	LOS
Old Mammoth Road/Main Street	Traffic Signal	Total	22.9	ပ
Old Mammoth Road/Meridian Boulevard	Traffic Signal	Total	21.4	O
		Intersection		
Minaret Road/Meridian Boulevard	Traffic Signal	Total	20.5	ပ
		Intersection		
Minaret Road/Main Street	Traffic Signal	Total	20.8	O
		Intersection		
Lake Mary Road/Kelly Road (North)	Two-Way Stop Controlled	Worst	3.5	∢
		Approach		
		Total	1.5	⋖
		Intersection		
Meridian Boulevard/Majestic Pines Drive (East)	Two-Way Stop Controlled	Worst	8.3	۷
		Approach		
		Total	1.6	∢
		Intersection		
Meridian Boulevard/Majestic Pines Drive (West)	All-Way Stop Controlled	Worst	2.6	∢
		Approach		
		Total	8.9	∢
		Intersection		

Table 8: 2005 Roadway Capacity Summary				
	Capacity	No Proje	No Project Condition	_
	(Vehicles per	Maximum Vehicles		
	Hour per Peak	per Direction per	Volume/	Capacity
Roadway Segment	Direction)	Hour	Capacity	Exceeded?
Main Street East of Old Mammoth Road	2,600	361	0.14	ON ON
Main Street West of Old Mammoth Road	2,600	949	0.37	9
Main Street East of Minaret Road	2,600	1,071	0.41	ON ON
Lake Mary Road West of Minaret Road	1,600	716	0.45	Q.
Lake Mary Road West of Kelly Road	1,600	85	0.05	ON.
Old Mammoth Road South of Main Street	1,600	732	0.46	<u>Q</u>
Old Mammoth Road North of Meridian Boulevard	1,600	559	0.35	9
Old Mammoth Road South of Meridian Boulevard	1,600	576	0.36	9
Meridian Boulevard East of Old Mammoth Road	1,600	414	0.26	2
Meridian Boulevard West of Old Mammoth Road	2,600	423	0.16	9
Meridian Boulevard East of Minaret Boulevard	2,600	517	0.20	S
Meridian Boulevard West of Minaret Road	2,600	460	0.18	<u>8</u>
Meridian Boulevard East of Majestic Pines Road North	2,600	333	0.13	Q.
Meridian Boulevard West of Majestic Pines Road North	2,600	278	0.11	S
Minaret Road Main Street to Forest Trail	1,300	877	0.67	9
Minaret Road South of Main	1,600	429	0.27	ON.
Majestic Pines Drive North of Meridian	1,600	98	90.0	<u>Q</u>
Majestic Pines Drive South of Meridian Boulevard	800	71	0.09	Q
Kelly Road South of Lake Mary Road	800	55	0.07	2

Table 9: 2009 Typical Winter Saturday Intersection LOS	tersection LOS		No Project	**	a.	Plus Project	
Intersection	Unmitigated Traffic Control	Approach	Delay (seconds per vehicle)	SO7	Delay (seconds per vehicle)	SOI	Approach Vehicle Hours of Delay ¹
Old Mammoth Road/Main Street	Traffic Signal	Total	20.8	ပ	21.1	ပ	·
Old Mammoth Road/Meridian Boulevard	Traffic Signal	Total	23.8	ပ	25.6	O	1
Minaret Road/Meridian Boulevard	Traffic Signal	Total	21.3	υ	27.4	O	1
Minaret Road/Main Street	Traffic Signal	Total Intersection	26.8	ပ	28.5	ပ	
Lake Mary Road/Kelly Road (North)	Two-Way Stop Controlled	Worst	10.2	В	10.3	В	1
		Approach Total Intersection	2.0	∢	2.2	∢	ı
Meridian Boulevard/Majestic Pines Drive (East)	Two-Way Stop Controlled	Worst Approach	15.1	ပ	52.0	ட	3.3
		Total Intersection	83. 80.	∢	10.1	ω	:
Meridian Boulevard/Majestic Pines Drive (West)	All-Way Stop Controlled	Worst	9.5	4	21.6	ပ	ı
		Approach Total Intersection	8.7	∢	17.7	O	I
Meridian Boulevard/Drop Off Area	Two-Way Stop Controlled	Worst	1		9.0	∢	-
		Approach Total Intersection	ł	ŀ	0.5	∢	;
Majestic Pines Drive/Hotel Exit	Two-Way Stop Controlled	Worst		1	9.4	4	-
		Approach Total Intersection	ı	ı	1.2	∢	I
Majestic Pines Drive/Hotel Entrance	Two-Way Stop Controlled	Worst	1		12.0	В	1
		Approach Total Intersection	-	ı	0.5	∢	I

Note 1: Worst approach vehicles hours of delay reported only if approach LOS exceeds threshold.

No Project Condition ehicles on per Volume/ Capacity 0.14 0.44 0.58 0.46 0.40 0.40 0.40 0.41 0.41 0.41 0.41 0.41	Volume/ Capacity 0.14 0.37 0.44 0.58 0.16 0.47	tity sed 2-5	Plus Project ehicles on per V	dition lef Capacity lify Exceeded? NO NO NO NO NO NO NO NO NO N	Percent Increase in Peak-Hour Traffic Generated by Project 2% 0% 1%
Capacity (Vehicles per Hourings Per Hourings Per Houring Per Peak Houring Per Junetion per Peak Houring Per Junetion	Volume/ Capacity 0.14 0.37 0.44 0.58 0.16 0.47				Percent Increase in Peak-Hour Traffic Generated by Project 2% 0% 2%
2,600 368 0.14 2,600 972 0.37 2,600 1,151 0.44 1,600 926 0.58 1,600 262 0.16 1,600 640 0.40 ulevard 1,600 640 0.40 Nead 1,600 652 0.41 Road 2,600 481 0.19 S Road North 2,600 368 0.14 s Road North 2,600 368 0.14 s Road North 2,600 310 0.12					2% 0% 2% 1% 1%
2,600 972 0.37 2,600 1,151 0.44 1,600 926 0.58 1,600 262 0.16 1,600 751 0.47 ulevard 1,600 640 0.40 Nead 1,600 652 0.41 Road 1,600 472 0.30 Nadd 2,600 481 0.19 vard 2,600 488 0.19 2,600 498 0.14 2,600 368 0.14 s Road North 2,600 310 0.12 1,300 923 0.71 1,500 655 0.37					2%
2,600 1,151 0.44 1,600 926 0.58 1,600 262 0.16 1,600 751 0.47 ulevard 1,600 640 0.40 ulevard 1,600 472 0.30 N Road 1,600 481 0.19 vard 2,600 481 0.19 vard 2,600 488 0.14 S Road North 2,600 310 0.14 s Road North 2,600 310 0.12 1,300 923 0.71 1,500 655 0.21					2%
1,600 926 0.58 1,600 262 0.16 1,600 262 0.16 ulevard 1,600 640 0.40 ulevard 1,600 652 0.41 Road 1,600 472 0.30 Nard 2,600 481 0.19 vard 2,600 550 0.21 SRoad North 2,600 310 0.12 s Road North 2,600 310 0.12 1,300 923 0.71 1,500 665 0.27					1%
1,600 262 0.16 1,600 1,600 751 0.47 0.47 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.60 0.41 0.60 0.41 0.19 0.19 0.40 0.19 0.19 0.19 0.19 0.19 0.10					
ulevard 1,600 751 0.47 ulevard 1,600 640 0.40 ulevard 1,600 652 0.41 Road 1,600 472 0.30 n Road 2,600 481 0.19 vard 2,600 550 0.21 vard 2,600 498 0.19 s Road North 2,600 310 0.12 s Road North 2,600 923 0.71 t Ann 1,300 923 0.71					2%
1,600 640 0.40 1,600 652 0.41 1,600 472 0.30 2,600 481 0.19 2,600 550 0.21 2,600 498 0.19 2,600 368 0.14 2,600 310 0.12 1,300 923 0.71 1,600 565 0.77				ON .	1%
1,600 652 0.41 1,600 472 0.30 2,600 481 0.19 2,600 550 0.21 2,600 498 0.19 2,600 368 0.14 1,300 923 0.71 1,600 565 0.77			673 0.42	ON	2%
1,600 472 0.30 2,600 481 0.19 2,600 550 0.21 2,600 498 0.19 2,600 368 0.14 1,300 923 0.71 1,600 565 0.27			663 0.41	ON O	2%
2,600 481 0.19 2,600 550 0.21 2,600 498 0.19 2,600 368 0.14 2,600 310 0.12 1,300 923 0.71 1,600 505 0.27			492 0.31	ON	4%
2,600 550 0.21 2,600 498 0.19 2,600 368 0.14 2,600 310 0.12 1,300 923 0.71 1,600 603 0.71			571 0.22	ON	19%
2,600 498 0.19 2,600 368 0.14 2,600 310 0.12 1,300 923 0.71			668 0.26	ON	21%
2,600 368 0.14 2,600 310 0.12 1,300 923 0.71			727 0.28	ON	46%
rth 2,600 310 0.12 1,300 923 0.71 1,500 605 607			639 0.25	ON	74%
1,300 923 0,71			584 0.22	ON	88%
1600 695 097			931 0.72	ON	1%
/s.0 cec coo;	595 0.37	9 ON	622 0.39	ON	2%
Majestic Pines Drive North of Meridian 1,600 162 0.10 NO			219 0.14	ON 1	35%
Majestic Pines Drive South of Meridian Boulevard 800 74 0.09 NO			101 0.13	NO	36%
Kelly Road South of Lake Mary Road 800 173 0.22 NO			176 0.22	ON O	2%

Boin text maicales LOS (meshoid is exceeded.			1	No Project		Δ.	Plus Project	
			Delay (seconds		Approach Vehicle Hours of	Delay (seconds		Approach Vehicle Hours of
Intersection	Unmitigated Traffic Control	Approach	per vehicle)	SOT	Delay 1	per vehicle)	SOI	Delay
Old Mammoth Road/Main Street	Traffic Signal	Total	17.4	В	:	7.71	8	1
Old Mammoth Road/Meridian Boulevard	Traffic Signal	Total	37.8	C		7 36		
		Intersection	0.)	l		2	I
Minaret Road/Meridian Boulevard	Traffic Signal	Total Intersection	45.7	۵	1	9.69	ш	:
Minaret Road/Main Street	Traffic Signal	Total	49.5	۵	1	53.1	٥	,
Lake Mary Road/Kelly Road (North)	Two May Stop Controlled	Intersection		(, 50	,	
במיכ יויכול ויספסויכול ויספם (ויסומו)	wo-way stop collitoried	VVCISI	6.27	د	:	43.4	د	ł
		Approach Total	6.7	∢	ŀ	7.0	∢	ı
Morialist Control of the Control of	i i	Intersection						
יייניייי בייינייי ביייניייייייייייייייי	Delication dots tay town	Approach		П	o.,	0.4	L	2. 4.
		Total	12.1	മ	1	87.3	u.	!
Meridian Bouleward/Majortia Dinas Dais (Mast)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	וווכופברווטו	1 6					
Mendian boulevard/Majestic Pines Urive (west)	All-Way Stop Controlled	Worst	10.7	മ	ı	34.6	۵	i
		Total	9.7	∢	ı	23.6	Ų	ı
		Intersection						
Meridian Boulevard/Drop Off Area	Two-Way Stop Controlled	Worst	1	ı	-	0.6	4	1
		Apploach					•	
		Intersection	l	1	ŀ	7.0	<	I
Majestic Pines Drive/Hotel Exit	Two-Way Stop Controlled	Worst	1	;		10.7	m	:
		Approach						
		Total	:	ı	;	0.8	∢	:
		Intersection						
Majestic Pines Drive/Hotel Entrance	Two-Way Stop Controlled	Worst		1	:	8.0	∢	1
		Approach				ć	•	
		Intersection	l	ŀ	I	5.5	ζ	ŀ

• The Majestic Pine Drive East/Meridian Boulevard intersection would operate with a worst approach LOS E without the project and LOS F with the project. However, under plus project conditions, the approach delay exceeds 4 vehicle-hours, thereby warranting an improvement such as a roundabout or traffic signal. Provision of additional turn lanes while maintaining the existing Stop sign control would not mitigate this impact. However, provided with a single-lane roundabout, this intersection would operate at worst approach LOS B and total intersection LOS A.

2024 Roadway Capacity Analysis

As Table 12 indicates, under 2024 no project and plus project conditions, the study roadways are operating below capacity and thus providing adequate LOS.

Table 12: 2024 Roadway Capacity Summary								
		No Proje	No Project Condition		Plus Proj	Plus Project Condition	<u>د</u>	
Roadway Segment	Capacity (Vehicles per Hour per Peak Direction)	Maximum Vehicles per Direction per Hour	Volume/ Capacity	Capacity Exceeded?	Maximum Vehicles per Direction per Hour	Volume/ Capacity	Capacity Exceeded?	Percent Increase in Peak-Hour Traffic Generated by Project
Main Street East of Old Mammoth Road	2,600	589	0.23	ON	598	0.23	ON	2%
Main Street West of Old Mammoth Road	2,600	1,193	0.46	ON	1,193	0.46	S	%0
Main Street East of Minaret Road	2,600	1,345	0.52	NO	1,365	0.53	ON	1%
Lake Mary Road West of Minaret Road	1,600	1,130	0.71	ON	1,137	0.71	ON	1%
Lake Mary Road West of Kelly Road	1,600	371	0.23	ON	379	0.24	ON	2%
Old Mammoth Road South of Main Street	1,600	788	0.49	NO	794	0.50	NO	1%
Old Mammoth Road North of Meridian Boulevard	1,600	903	0.56	NO	936	0.59	NO	4%
Old Mammoth Road South of Meridian Boulevard	1,600	937	0.59	ON	948	0.59	NO	1%
Meridian Boulevard East of Old Mammoth Road	1,600	627	0.39	ON	657	0.41	ON	2%
Meridian Boulevard West of Old Mammoth Road ¹	2,600	591	0.23	ON	681	0.26	ON	15%
Meridian Boulevard East of Minaret Boulevard	2,600	860	0.33	ON	978	0.38	ON	14%
Meridian Boulevard West of Minaret Road	2,600	830	0.32	ON	1,059	0.41	NO	28%
Meridian Boulevard East of Majestic Pines Road North	2,600	457	0.18	NO	728	0.28	ON	29%
Meridian Boulevard West of Majestic Pines Road North	2,600	415	0.16	NO	689	0.27	NO	%99
Minaret Road Main Street to Forest Trail	1,300	1,070	0.82	NO	1,078	0.83	ON	1%
Minaret Road South of Main	1,600	883	0.55	NO	910	0.57	ON	3%
Majestic Pines Drive North of Meridian	1,600	338	0.21	ON	395	0.25	ON	17%
Majestic Pines Drive South of Meridian Boulevard	800	128	0.16	NO	147	0.18	ON	15%
Kelly Road South of Lake Mary Road	800	258	0.32	NO	261	0.33	ON	1%
Note 1: As a three-lane roadway, the capacity of Meridian would be reduce	ed to 1,600 vehicles	be reduced to 1,600 vehicles per hour per direction.						

Section 5 PARKING ANALYSIS

PARKING DEMAND

The purpose of the parking analysis is to evaluate the demand for parking generated by the various elements of the project, assess the potential to reduce parking supply through the shared use of parking, and provide information useful in the development of parking supply strategies. With careful consideration of the individual uses to be accommodated on the site and variation in the need for parking over the day, it is possible to meet all of the parking needs while also minimizing the total amount of parking spaces that must be provided. Existing parking count data is provided in Appendix A.

The following are the primary assumptions that were used to estimate parking demand.

- In general, the Town of Mammoth Lakes parking requirements were applied in this analysis unless the parking requirement rates were found to not be applicable (as discussed below).
- As most of the uses contained in the Base Lodge are skier amenities, no customer parking is required aside from the skier parking. In other words, no additional customers would be generated by these amenities other than persons accessing the ski lifts. However, parking would be required for employees, the ice rink, and day care/ski school drop offs.
- The parking demand for Day Care drop-off was estimated based upon the Day Care AM peak-hour trip generation rate identified in the *ITE Trip Generation Manual*. It was also assumed that 40 percent of the drop off vehicles per hour would enter the site within the peak 15 minutes. Each Day Care parking space was assumed to turn over every 15 minutes. Based upon these assumptions (reflecting the relatively long time needed for the paperwork associated with first-time visitor daycare customers), it is estimated that five day care drop-off spaces are required.
- According to MMSA, the maximum drop-off activity for the ski school would occur at between 9:00 and 10:00 AM, during which time 223 students arrive at the ski school. Assuming half of these students are dropped off, an average student vehicle occupancy of 1.5 (2.5 skiers per vehicle minus the driver), 27 parking spaces would be required for ski school drop off.
- The employee schedule was used to estimate how many employees for the base lodge would park on site at one time. Assuming an average employee vehicle occupancy of 1.2, 0.83 parking spaces would be required per employee of the Base Lodge. This vehicle occupancy is consistent with journey to work vehicle occupancy of 1.14 per the 2001 National Household Travel Survey, factored up slightly to account for the fact that ski area employees are more likely to carpool. In addition, based upon a review of parking permits at the existing employee housing and the Town of Mammoth Lakes Employer/Employee Commute Survey, it was assumed that 25 percent of the employees would take transit to work. Note that this

assumption is reflected in the parking analysis and not the trip generation analysis as it was identified as an appropriate assumption only after the traffic analysis was complete. As this assumption has a negligible impact on trip generation, revision of the traffic analysis was determined to not be necessary.

- As the Town does not have a parking requirement for a day spa, the *ITE Parking Generation Manual* was used to estimate a parking demand rate based upon the Health/Fitness Club land use (5.19 spaces per 1,000 square feet of floor area).
- Similarly, as the Town does not have specific parking demand rates for a convenience market, the ITE Parking Generation rate was used.
- The parking demand for a Hotel Equivalent was based upon the Mammoth parking requirements.

Based upon the base parking demand rates identified above and as shown in Table 13, the total parking demand for the site is 994 parking spaces, without reductions for internal trips, walking trips, transit trips, or shared parking.

Parking Reduction for Internal and Pedestrian/Bicycle Trips

As the Eagle Lodge is a mixed-use development project near other trip generators, there could be internal pedestrian trips that could tend to reduce parking needs as well as pedestrian trips to other nearby land uses. However, the applicable internal reductions for a parking analysis are not the same as a trip generation analysis. If, for example, a person decides to go skiing and then, afterwards, go out to dinner at the ski base, the ski area to dinner trip generates no auto trips. However, the parking demand remains on-site even though the land use generating the parking demand shifts. Therefore, it is only appropriate to make reductions in parking demand for the following two types of trips:

- Trips with one trip end internal to the site and one trip end external to the site that occur via non-auto modes. As skier walking trips between the Base Lodge and residences is already accounted for in the skier parking calculation, this reduction primarily applies to the commercial uses and is consistent with the assumptions identified in the trip generation analysis above.
- Walking trips between the lodging and commercial uses. As 95 percent of the hotel parking
 are assumed to be dedicated for hotel guest use only, an internal reduction is applicable for
 trips between lodging and other uses. A reduction of 4 to 7 percent was applied to the ice
 rink, skier, and commercial uses, based upon the internal trip analysis presented in Appendix
 A.
- Twenty-five percent of the employees are assumed to arrive via transit.

TABLE 13: Base Parking Demand					
Land Use	Quantity	Unit	Parking Demand Rate	Source of Rate	Parking Demand
Skiers	6,000	Skiers per Day	See Table A in Appendix A	Appendix A 1	497
Base Lodge					-
Food and Beverage	8.74	KSF ²	No Incremental Parking Demand	arking Demand	
Bar and Coffee Bar	0.7	KSF	No Incremental Parking Demand	arking Demand	
Rental / Demo / Repair Shop / Basket Check	3.7	KSF	No Incremental Parking Demand	arking Demand	
Retail Shop	1.2	KSF	No Incremental Parking	arking Demand	
Ski School / Day Care (Drop Off Only) ²	4.3	KSF	7.44	SC	32
Ticketing / Lobby	2.6	KSF	No Incremental Parking Demand	arking Demand	
Restrooms	4.5	KSF	No Incremental Parking	arking Demand	
Administrative	1.03	KSF	No Incremental Parking	arking Demand	
Employee Break Room	1.55	KSF	No Incremental Pa	Parking Demand	
Ski Patrol	0.46	KSF	No Incremental Parking	arking Demand	
Maintenance/Loading Dock	1.5	KSF	No Incremental Parking		
Mechanical / Cell Site	0.55	KSF	No Incremental Parking	arking Demand	
Ice Rink	5	KSF	3.60	CSC	18
Maximum Employees at One Time	122	employees	0.83	ST	101
Commercial					
Day Spa	80	KSF	5.19	IE	42
Locker Club	12	KSF	No Incremental Parking Demand	arking Demand	
Convenience Market	4	KSF	3.4	里	14
Sit-Down Restaurant	200	Seats	0.33	Town Code	99
Lodging Hotel Equivalents	213	9	የር	Town Code	224
) -)))	9		•
TOTAL					994
Note 1: Includes reductions for walking, drop-off, an transit trips. Note 2: KSF = 1,000 square feet of floor area.					

Note 3: Demand parking is estimated based on the Day Care AM peak hour trip generation rate identified in the Trip Generation Manual (ITE, 2003). While Ski School parking demand is estimated based on the maximum number of Ski School attendees and skier vehicle occupancy. Each drop-off activity is assumed to take 15 minutes.

Shared Parking Demand Analysis

A "shared parking" analysis considers how two or more individual land uses can be provided with adequate shared parking, considering the variation in the peak accumulation of parked vehicles for different nearby land uses by time of day. This shared parking analysis is based upon the methodology for assessment of shared parking developed by the Urban Land Institute, as documented in *Shared Parking* (2005, Second Edition). This strategy recognizes the fact that some land uses (such as skiing) have peak parking needs that occur at different times than other land uses (such as lodging). Therefore, the parking supply required to accommodate the needs of both land uses is less than the sum of the peak parking needs for the individual land uses.

The basis for this analysis is an hour-by-hour assessment of parking needs for individual land uses, which can then be added to identify the peak parking needs for the total land uses, and when this peak in demand occurs. Accordingly, parking demand for each individual land use in a development block by time of day is estimated. Based on these estimates, the total number of parking spaces required for all the land uses during a particular hour is calculated by adding the parking requirements for all the land uses within the block for that hour.

The shared parking analysis included the following assumptions:

- Only five percent of the parking for lodging is not considered to be dedicated and therefore can be shared with other uses.
- The parking analysis is prepared for weekend conditions as parking demand will be higher on weekends due to high skier visitor numbers.
- The variation by time of day of skier parking spaces is based upon accumulation counts provided by the Northstar-at-Tahoe and Heavenly Valley ski areas.
- The hourly variation in the parking demand generated by the ice rink was assumed to equal that of a shopping center.
- The hourly variation in parking demand for employees was estimated based upon the employee schedule provided by MMSA.
- The hourly variation in the parking demand generated by the Day Spa was assumed to equal that of a health club.
- It was also assumed that the ski school and day care parking spaces would be available to skiers from 11:00 AM on.
- The parking demand of the restaurant was reduced by 50 percent during the noon peak hours to account for the fact that people will be less likely to travel to the site during this time period due to the fact that the area will be relatively crowded with skiers. It can be assumed that more customers would be skiers during this hour.

Table 14 presents the shared parking analysis for weekend conditions. As shown in Table 13, during the weekend a total of 829 shared parking spaces would be required upon build out of the project, assuming only 5 percent of the hotel spaces are not designated and can be shared. Note that this number does not include the 26 spaces (not including 2 charter bus spaces) required to be reserved for the Juniper Springs project, per a previous agreement. Including these spaces, the project's shared parking demand (not including drop-off zones) is 855 spaces. As the project proposes to provide 544 parking spaces, the project will result in a parking shortfall of 311 parking spaces.

Please note, however, that this assumes the development of 213 hotel units. If the project instead constructs 83 multi-family units (Alternative 1 of the NOP), the total site parking shortfall would be reduced to 263. In addition, please note that the following Town standard is applicable to the Eagle Lodge project:

"Ensure that there is adequate parking space(s) available for transients occupying the transient occupancy facility, pursuant to the requirements of this code. If the transient occupancy facility books rooms with persons who utilize tour bus(es), the operator of the facility shall be required to furnish, or make suitable arrangements for furnishing, adequate parking for the tour bus(es) utilizing either onsite or offsite facilities at locations where tour bus parking is permitted."

As the project provides 4 bus bays, it provides adequate parking for two charter buses and 2 MMSA buses.

TABLE 14: Cumulative Parking Demand	ive Parkin	g Demand						,						Par	Parking Demand by Hour for Shared Parking Analysis	emand	1 by Ho	ur for \$	Shared	Parkin	yg Ana	lysis					
Land Use	Quantity	Unit	Parking Demand Rate	Source of Rate	R Parking Demand	Total Reduction for Non-Auto Access 1	Dedicated Parking	Available Spaces for Shared Parking	MA 00:9	MA 00:7	MA 00:8	MA 00:01 MA 00:01	MA 00:11	12:00 PM	M9 00:1	Z:00 PM	3:00 PM	Mq 00:4	M9 00:8	M9 00:8	M9 00:7	MG 00:8	M9 00:01 M9 00:01	M9 00:11	MA 00:St	Max Required Spaces Without Shared Use	Max Required Spaces With Shared Use
Skiers	6,000	skiers per day	See T	See Table A	497	5.0%	٥	472	0	п	80 20	208 328	28 402	2 447	7 472	466	435	356	162	_س				ľ	°	472	472
Base Lodge Ice Rink Employees Ski School / Day Care ²	5 122 4.3	KSF employees KSF	3.6 0.83	LSC LSC ITE	18 101 32	5.0% 25.0% 0.0%	00	17 76 0	0 26 32	1 59 32	3 7 71 7 32 3	7 10 73 76 32 32	0 12 6 76 2 0	16	17 72 0	17 27 0	17 69 0	9 8 0	15 36 0	4 4 0	0 23	100	8 to 0	e o o	000	17 76 32	17 72 0
Commercial Day Spa Convenience Market Sit-Down Restaurant	8 4 7 7 7 7 9 9	KSF 1 KSF Seats	5.19 3.4 0.33	ITE ITE Town Code	42 14 66	16.0% 54.0% 16.0%	000	35 6 55	6 0 4	17 0 9	1 1 2 4 2 2	18 17 2 3 20 25	7 18 3 4 5 25	118 6 28	17 6	17 6 19	17 6 25	26 6 27	35 36 36	35 8 8	55	7 4 4	7 7 3 2 21 17	7 12	000	35 6 55	17 6 24
Lodging Hotel Hotel Parking Available for Shared Use Dedicated Hotel Parking	213 for Shared L g	rdoms Use	1.05	Town Code	224 11 213	%0.0	0	224 11 0	9 213	9 213 3	10 (213 2	9 8 213 213	8 8 13 213	8 3 213	8 213	8 213	8 213	9 213	9 213	9 213 2	9 213 2	9 1	10 10 213 213	0 10 3 213) 10 3 213) 11 3 213	8 213
TOTAL					1,005			968	302	343 '	441 58	582 71	712 758	8 810	0 829	818	790	721	511	351	341 3	318 2	278 263	3 246	6 231	1 906	829
																									1	Juniper Springs Total	s 26
																				Tota	l Park	ing Pro	bosed	to Be	Cons	Total Parking Proposed to Be Constructed On Site Parking Shorfall	e 544 II -311
Note 1: Estimated waking tipe from neaby residences. Note 2: As the Ski School Day Care parking will be provided as drop-off spaces and peak parking demand is assumed to occur during A.N. peak hour of skier traffic, all drop-off parking spaces were assumed to be utilized during A.M. peak hour and not available for shared parking.	from nearby res Care parking wi	idences. Il be provided as dro;	o-off spaces an	ıd peak parking d	emand is assu	med to occur du	ring A.M. peak	hour of skier tra	affic, all c	trop-off p	arking sp	paces we	ire assur	med to be	e ublized	1 during.	A.M. pes	k hour a	ind not a	vailable	or share	d parkin		İ			

Manmoth Lakes Eagle Lodge Traffic Impact Analysts

Section 6 TRANSPORTATION IMPACTS

The following potential areas of transportation impacts are considered in this section:

- Impacts on Intersection LOS
- Internal Site Circulation
- Corner Sight Distance
- Potential to Narrow Meridian Boulevard
- Left-Turn Lane Warrants
- Parking Impacts
- Transit Facilities
- Pedestrian and Bicycle Facilities
- Emergency Access

IMPACTS ON STUDY INTERSECTIONS

As discussed in Section 4, the following two intersections are forecast to exceed LOS thresholds under 2024 plus project conditions:

- Minaret Road/Meridian Boulevard
- Meridian Boulevard/Majestic Pines Drive (East)

LOS Mitigation Measures

Minaret Road/Meridian Boulevard

The Minaret Road/Meridian Boulevard intersection is estimated to operate at LOS E and exceed LOS thresholds with the project under 2024 plus project conditions. However, construction of a separate eastbound right-turn lane at this location would mitigate LOS to an adequate LOS D. The Minaret Road/Meridian Boulevard intersection is estimated to operate at LOS E and exceed LOS thresholds with or without the project under 2024 plus project conditions. However, construction of a separate eastbound right-turn lane at this location would mitigate LOS to an adequate LOS D. (However, as the current Development Impact Fee does not include the cost associated with the addition of an eastbound right-turn lane at this intersection, the project should be required to fund and construct the additional turn lane.)

Meridian Boulevard/Majestic Pines Drive (East)

The Majestic Pines Drive/Meridian Boulevard intersection is estimated to operate at worst approach and total intersection LOS F with the project under 2024 plus project conditions. The traffic analysis that was prepared for the Mammoth Lakes Capital Improvement Program indicates that the provision of a two-way left-turn lane along Meridian Boulevard to provide for two-stage southbound left turns out of Majestic Pines onto Meridian Boulevard would mitigate LOS at this intersection. However, this mitigation does not mitigate LOS to an acceptable level

under 2024 plus project conditions. The provision of a separate left-turn lane at this location would reduce the vehicle hours of delay for the southbound approach to 3.9 vehicle hours, which would no longer exceed Town thresholds. However, if Meridian Boulevard is reduced to a three-lane cross section (one lane per direction plus a center turn lane), the addition of these lanes would not provide adequate LOS.

The current Development Impact Fee includes the construction of a two-way left-turn lane along Meridian Boulevard at this intersection. However, it does not include the cost of a separate southbound left-turn lane at this location. Therefore, the project shall be required to pay its fair share toward the cost of constructing this southbound left-turn lane. If a roundabout is determined to be the best traffic mitigation option for this intersection, the Town may use the additional funds (paid by the project for the southbound left-turn lane) towards the construction of a roundabout.

Therefore, the construction of a single-lane roundabout at this location is recommended, which would also allow for the narrowing of Meridian Boulevard from four lanes to three lanes (one lane in each direction plus a center turn lane). As discussed below, adequate roadway capacity along Meridian Boulevard would still be provided with a three-lane configuration. A single-lane roundabout with a 100-foot inscribed diameter would operate at worst approach LOS B and total intersection LOS A.

INTERNAL SITE CIRCULATION

Auto and Bus Drop Zones

The proposed auto and bus drop zones were reviewed with respect to drop-off space supply and demand, and the proposed layout and circulation in these areas.

Auto Drop-Off Activity

Approximately 800 skiers per day would be dropped off at the project site. Dividing 800 skiers per day by an average vehicle occupancy of 1.5 skiers per car, about 530 vehicles are expected to use the drop-off zone over the course of a peak day. In order to determine the drop zone parking demand, it is necessary to estimate the highest number of vehicles entering the drop zone at once.

Applicable data regarding use patterns of a ski area drop-off zone are available from the Northstar-at-Tahoe Ski Area. According to the *Northstar Village Drop-Off Area Design Review* (LSC Transportation Consultants, Inc., 2003), the highest number of vehicles entering the drop zone within any 5-minute period was 22 vehicles. However, a maximum of 20 vehicles were observed in the drop zone at any one time. The total number of skiers (paid and ski pass) at Northstar-at-Tahoe on the peak day during the 2002/2003 ski season was approximately 9,732. In comparison, the total number of skiers on the peak day at the proposed Eagle Lodge site is expected to be about 6,000. Dividing this figure (6,000) by the total number of skiers at Northstar-at-Tahoe (9,732) yields a factor of approximately 0.62. This factor can be applied to the Northstar drop zone activity, in order to estimate the Eagle Lodge drop zone activity. The resulting maximum number of vehicles expected in the proposed auto drop zone at any one time

is therefore 20 multiplied by 0.62, or about 12 vehicles. In view of the fact that 18 auto drop-off spaces are shown on the site plan (not including ski school drop-off spaces), the proposed auto drop zone parking supply is more than adequate.

According to the MMSA, the maximum drop off activity for the ski school would occur at 10:00 AM, during which time 223 students arrive at the ski school. Assuming half of these students are dropped off and an average student vehicle occupancy of 1.5 (2.5 people per vehicle minus the driver), 27 parking spaces would be required for ski school drop off. As the project proposes to construct 38 short-term parking spaces at the ski school, adequate ski school parking is provided.

Bus Drop-Off Activity

The proposed bus drop zone accommodates two MMSA buses and two charter buses. As a maximum of one MMSA bus in each direction (eastbound and westbound) is expected on-site at any one time, the proposed bus drop zone parking supply is adequate, so long as charter bus activity is managed to avoid more than two charter buses on-site at a time.

Drop-Off Area Layout and Circulation

One-way circulation is proposed throughout the drop zones, and a two-way drive aisle is provided at the western access point. This configuration will allow for safe and efficient operation.

Sawtooth bus bays are proposed for the bus drop zone, which is appropriate in that it reduces the total length of curb required to accommodate the four buses, while allowing buses at all bays to operate without being blocked by buses in adjacent bays. Design standards for off-street bus stations are provided in the *Designing for Transit Manual* (Monterey-Salinas Transit, 1996). The proposed 20-foot wide one-way drive aisle and 48-foot long bus bays are consistent with these standards. However, the standard distance between sawtooth spaces is 15 feet, but the proposed plan only provides 12 feet between spaces. Therefore, it is recommended that the distance between sawtooth bus bays be increased to 15 feet in order to provide adequate maneuvering space for buses exiting the bays.

The proposed auto drop zone provides parallel parking spaces along both sides of a one-way drive aisle. It is recommended that a sign with an arrow be posted along the north side of Meridian Boulevard to direct skiers to the "Skier Drop-Off" zone. In addition, "Bus Only" signage should be posted at the entrance to the bus drop zone to discourage autos from entering the bus drop zone. "No Parking" signs should be posted along Meridian Boulevard adjacent to the auto drop zone, and "Do Not Enter" signs are needed at the west end of the auto and bus drop zones.

It is recommended that the curbs at the west end of the auto drop zone be modified to move the intersection of the drop zone and the main parking garage access further north (see Appendix D). This will increase the stopping sight distance for drivers on the two-way western driveway, increase the corner sight distance for autos exiting the drop zone, and make the right-turn movement easier for drivers going from the auto drop zone to the parking structure. Without this, drivers exiting the auto drop-off zone will not be able to make an adequate left turn to approach

the Meridian Boulevard/Majestic Pines (west) intersection at a right-angle, and instead will often end up at the Stop bar at an angle, potentially blocking the inbound lane to the parking structure.

Ski School Drop Zone

The proposed ski school drop-off area is located inside the parking structure at the street level. Two lanes of circulation are proposed through the ski school drop zone, providing access to 38 drop-off spaces. Due to the sharp corners at the north end of the drop zone and the two structural columns shown on the inside of the circulating lanes, it would be impossible for a driver of larger vehicles (such as SUVs) using the inside lane to stay in that lane while circulating through this area. Therefore, in order to decrease the potential for vehicular conflict in the ski school drop zone, the circulating area should be striped for one lane of traffic and one-way operation.

Hotel Access on Meridian

The hotel is provided primary access via Majestic Pines Drive. Left turns onto Majestic Pines Drive from the hotel will be prohibited. Although a raised median at this location is not recommended (due to the need to use this space for exiting truck movements), the absence of such a raised median will make it difficult to prohibit all left turns. Therefore, a "No Left Turn" sign is recommended to be placed at the hotel exit. In addition, it is recommended that a "Do Not Enter," "No Left Turn," and "No Right Turn" signs be located at the appropriate hotel access approaches.

Skier/Public Parking

A three-level parking structure is proposed to provide skier/public parking, as well as parking for hotel guests and residents. The public entrance to the parking structure is located at the western access point along Meridian Boulevard. Public parking is provided in the two subterranean levels. In addition, a keyed parking entry/exit is provided on the northeast side of the structure, with access via Majestic Pines Drive. This access point is designated for hotel guests and residents only. A review of the site plan indicates that the parking space size and aisle widths are consistent with Town standards.

Truck Access

A service yard is proposed to be located on the north side of the structure, with access provided via Majestic Pines Drive, as shown in Appendix C. The proposed truck turnaround would accommodate a 55-foot long (WB-50) truck.

Emergency Vehicle Access

An indoor ambulance bay is proposed to be located near the service bay on the north side of the structure, with access provided via Majestic Pines Drive. The Fire Department requires that emergency vehicle access be provided within 150 feet of all exterior surfaces on the project site. This requirement is not met along the northwest side of site (near the ice rink and plaza). However, the Fire Department has indicated that this is acceptable, so long as a standpipe system is provided.

Internal Site Circulation Mitigation Measures

In summary, the following improvements should be provided in order to improve internal site circulation:

- The distance between sawtooth bus bays should be increased to 15 feet in order to provide adequate maneuvering space for buses exiting the bays.
- A sign with an arrow be posted along the north side of Meridian Boulevard to direct skiers to the "Skier Drop-Off" zone is recommended. In addition, "Bus Only" signage should be posted at the entrance to the bus drop zone to discourage autos from entering the bus drop zone. "No Parking" signs should be posted along Meridian Boulevard adjacent to the auto drop zone, and "Do Not Enter" signs are needed at the west end of the auto and bus drop zones.
- A "No Left Turn" sign is recommended to be placed at the hotel exit. In addition, it is recommended that "Do Not Enter," "No Left Turn," and "No Right Turn" signs be located at the appropriate hotel access approaches.
- In order to decrease the potential for vehicular conflict in the ski school drop zone, the circulating area should be striped for one lane of traffic and one-way operation.
- It is recommended that the curbs at the west end of the auto drop zone be modified to move the intersection of the drop zone and the main parking garage access further north.

CORNER SIGHT DISTANCE

According to the Caltrans *Highway Design Manual*, at a 30 mile per hour design speed, an intersection should provide at least 330 feet of corner sight distance. Corner sight distance is measured from the minor approach at a point 15 feet back from the end of the travel way at a height of 3.5 feet to an object at a height of 4.25 feet in the center of the nearest lane to the left or to the centerline of the road to the right. LSC staff reviewed the site plan and determined that the corner sight distance from all proposed site access locations is adequate. Note that while the sight distance from the hotel exit along Majestic Pines Drive to the east may not be 330 feet or more, the prohibition of left turns at this location mitigates this as there is not a potential for drivers turning left out of the hotel access to pull out in front of westbound traffic along Majestic Pines Drive.

POTENTIAL TO NARROW MERIDIAN BOULEVARD

For some time, the Town has planned to reduce the existing Meridian Boulevard cross section from four lanes to two lanes and a center turn lane. As shown in Table 11, the volume to capacity ratio along Meridian Boulevard is less than 0.5 under 2024 plus project conditions. Therefore, reducing the capacity of this roadway by one half would not exceed the reduced roadway capacity. Therefore, under 2024 plus project conditions, Meridian Boulevard could operate adequately with a three-lane cross section. In addition, a single-lane roundabout at the Meridian Boulevard/Majestic Pines (east intersection would operate at adequate LOS).

Mammoth Lakes Eagle Lodge

LSC Transportation Consultants, Inc.

LEFT-TURN LANE WARRANTS

A left-turn lane warrant analysis was performed for the project access point along Meridian Boulevard using the "Guidelines for Left-Turn Lanes" presented in the ITE 1990 Compendium of Technical Papers (1990 Compendium of Technical Papers). The analysis is summarized in Table 15 and indicates that a left-turn lane into the auto and bus drop off area on Meridian Boulevard is not warranted and, therefore, need not be provided. However, if Meridian Boulevard is reduced to one lane per direction, a left-turn lane into the site or a center two-way left-turn lane would be warranted.

Location	Future (2024) Plus Project PM Peak Hour
On Meridian Boulevard at Auto/Bu	s Drop Off Entrance
Left-Turn Volume	s Drop On Entrance 24
Volume Opposing	441
Volume Advancing	713
Percent Left Turns	3%
Left-Turn Lane Warrant Met?	NO

PARKING FACILITIES

As stated in Section 5, including the 26 spaces for Juniper Springs, the project's shared parking demand (not including the skier drop off zone) is 855 spaces. As the project proposes to construct a total of 544 non-drop-off parking spaces, implementation of the project will result in a parking shortfall of 311 parking spaces.

Potential Parking Mitigation Measures

The project has an overall parking shortfall of 311 parking spaces. The following are potential mitigation measures to this parking shortfall.

• Mitigation Option A: Based upon the assumptions used in this analysis, an additional 950 skiers per day would be required to use transit on a typical winter Saturday to access the Eagle Lodge base in order to reduce the parking demand of the site to 544. Assuming a bus

standing capacity of 60 passengers, an additional 16 bus trips would be needed to the site during a peak day, and in the afternoon an additional 16 bus trips would be needed from the site. Assuming a half-hour route cycle length and a 2.5-hour-long peak period, 4 additional buses would be needed to provide this capacity. So long as good transit ridership can be maintained on both routes, this would mitigate the parking impact. Therefore, the project applicant should be required to provide for 16 additional bus round trips to the site during each weekend day and holiday from Christmas week to the end of March. The applicant would be responsible for purchasing the additional 4 vehicles, as well as operating the additional vehicles.

In addition, as the project will result in a parking shortfall, it could be expected to increase the occurrence of illegal parking within the project vicinity. Therefore, the project applicant shall be required to provide a monitoring report to the Town of Mammoth Lakes for the first year of operation for the period from the Saturday before Christmas through the end of March. This report will provide monitoring data regarding on-street parking, conducted at a minimum two times per day on all weekends and holidays between 9:00 AM and 3:00 PM. If the report identifies illegal parking is occurring at nearby residential/lodging sites within 1,000 feet of the portal, the project applicant shall be responsible for any incremental cost necessary for enforcement. Beyond the initial monitoring period, if future complaints indicate that a parking problem is occurring generated by Eagle Lodge or ski area activities, the project applicant will be responsible for conducting additional monitoring as identified by the Town of Mammoth Lakes and be responsible for funding the necessary measures to address any identified impact.

• Mitigation Option B: To mitigate potential parking impacts, the project could also provide off-site employee parking, increased transit service, and provide parking monitoring and enforcement. If all Eagle Lodge employees were required to park off site the peak parking demand would be reduced by 76 spaces. The remainder of the parking demand could be reduced by adding more transit such that an additional 750 skiers arrive to the site per day on transit. Assuming a bus standing capacity of 60 passengers, an additional 13 bus trips would be needed to the site during a peak day, and in the afternoon an additional 13 bus trips would be needed from the site. Three additional buses would be needed to provide this capacity. Therefore, the project applicant should be required to provide 13 additional bus round trips to the site during each weekend day and holiday from Christmas week to the end of March. The applicant would be responsible for purchasing the additional three vehicles, as well as operating the additional vehicles.

In addition, the project applicant shall be required to provide a monitoring report to the Town of Mammoth Lakes for the first year of operation for the period from the Saturday before Christmas through the end of March. This report will provide monitoring data regarding onstreet parking, conducted at a minimum two times per day on all weekends and holidays between 9:00 AM and 3:00 PM. If the report identifies illegal parking is occurring at nearby residential/lodging sites within 1,000 feet of the portal, the project applicant shall be responsible for any incremental cost necessary for enforcement. Beyond the initial monitoring period, if future complaints indicate that a parking problem is occurring generated by Eagle Lodge or ski area activities, the project applicant will be responsible for

- conducting additional monitoring as identified by the Town of Mammoth Lakes and be responsible for funding the necessary measures to address any identified impact.
- Mitigation Option C: The project could request a zone code amendment from the Town to develop an in lieu of parking fee program. This would allow the project to pay a fee that would go towards the construction of off-site parking lots. The fee owed by the project would be calculated based upon the additional number of spaces that are required. If the parking structures are not provided within a reasonable 1,000-foot walking distance, a parking shuttle to provide access between the project site and the parking lots would need to be provided.

TRANSIT SERVICES

The proposed project is located on both the existing Yellow and Green bus routes. The project will improve service to the site with the provision of the bus drop-off area, which provides safe pedestrian access to transit. This is considered a beneficial impact to transit. However, as discussed above, the project would be required to fund additional transit service to the site.

PEDESTRIAN AND BICYCLE FACILITIES

A total of 1,580 skiers are anticipated to walk to the Eagle Lodge from nearby residences. The pedestrian plan indicates that adequate pedestrian access will be provided throughout the Eagle Lodge, and to/from other sites within the vicinity of the project site. Pedestrian connections are provided to the Mammoth Loop Trail Majestic Pines to the north, Juniper Springs, and sidewalks along Meridian Boulevard. In addition, the project proposes to construct a sidewalk along Meridian Boulevard, which is consistent with the *Sidewalk Master Plan* (Town of Mammoth Lakes, 2003). This plan calls for sidewalks on both sides of Meridian Boulevard. Therefore, the project has a beneficial impact on pedestrian and bicycle facilities.

EMERGENCY ACCESS

The project is provided access via Majestic Pines Drive and via Meridian Boulevard. Therefore, as access is provided by two streets (one being a collector and the other being an arterial), the project provides adequate emergency access.

LSC Transportation Consultants, Inc.

Appendix A
Trip Generation
Parking Counts
LOS Interpretation

TRANSPORTATION PLANNING & TRAFFIC ENGINEERING CONSULTANTS

2690 Lake Forest Road, Suite C Tahoe City, California 96145 (530) 583-4053 FAX: (530) 583-5966 EMAIL: info@lsctahoe.com www.lsctahoe.com

MEMORANDUM

DATE:

Revised August 30, 2006

TO:

Town of Mammoth Lakes

Mammoth Mountain Ski Area

PCR

FROM:

Rebecca Bucar, PE

SUBJECT:

Eagle Lodge EIR Preliminary Trip Generation Assumptions and Analysis

The purpose of this memorandum is to present LSC's analysis of the traffic and parking generation for use in the Eagle Lodge EIR analysis, including the assumptions and analysis steps. We request that everyone review these materials and indicate whether they are acceptable or provide direction on appropriate changes, as they will be used as the basis for the remainder of the traffic and parking analyses. For ease of reference, assumptions are numbered.

Skier Trip Generation

- 1.Per To wn standards, the traffic analysis focuses on typical winter Saturday conditions. Currently, approximately 3,650 skiers visit the ski area via the Eagle Lodge portal on a typical winter Saturday, based upon skier portal data provided by Mammoth Mountain Ski Area (MMSA). On a peak winter day, 5,280 skiers access the mountain via the Eagle Lodge portal. The peak skier mountain design capacity assumed to access the skier portal on a typical Saturday upon build out of the project is equal to 6,000. (Note this is a conservative assumption as the estimated capacity range is 5,000 to 5,960 skiers per day) A comparison of the trip generation of the existing Eagle Lodge site on a peak day versus a typical Saturday is provided in Table A. The purpose of this table is to "calibrate" our assumptions to actual observed parking counts.
- 2.The number of skiers that are expected to reside within walking distance of the site on a typical winter Saturday is a key question in this analysis and the distance a skier is willing to walk is an important assumption. The standard acceptable walking distance used by the traffic engineering profession is 1,325 feet. In some studies we have conducted in the past, LSC has assumed a 500-foot maximum walk distance in ski area parking facilities. However, this shorter walk distance

was partially used due to the fact the walk from a parking space to a shuttle pick up is only one leg of a longer linked trip (from car to shuttle stop via walk, from shuttle stop to shuttle stop via shuttle, and shuttle stop off to chair lift via walk). It is therefore reasonable to assume that skiers whose entire trip consists of the walk trip would be willing to walk a longer distance. LSC proposes to assume that all skiers residing in units within 1,000 feet of the Eagle Lodge chairlift would potentially walk to the lift. This is a reasonable walk distance, even if done in ski boots, considering the time it takes to load up a vehicle, drive the vehicle, wait in line to park the vehicle, and then walk from the parking structure to the Gondola. This does not infer that no one would walk further, but rather that the typical person would not. This walk distance does not apply to ski in/ski out units.

Applying the 1,000-foot radius for walking distance and not including units proposed by the project or located on the Juniper Springs property, a total of 138 resident single-family units and 487 transient condo units are within walking distance of the site. In addition, there are roughly 22 single-family and 99 condo units with ski in/ski out access to the Eagle Lodge portal.

Per Town direction and based upon data collected as a part of the General Plan Update, it is assumed that there are approximately 2.4 people residing in each resident non-condo unit and 4 people residing in each transient condo unit on a typical winter Saturday. The number of people residing in a resident unit does not change on a peak day versus a typical winter Saturday. However, on a peak day the number of people per transient unit is assumed to equal 4.4, which is based upon a comparison of occupancy data on a typical winter Saturday versus a peak day provided by the Town.

- 3.LSC has used the assumption that approximately 61 percent of the residents ski on a given day, as derived from the Mammoth Lakes General Plan. This assumption is reasonable based on the following available data:
 - A trip generation analysis of the Northstar-At-Tahoe ski area found that roughly 75 percent of the people staying in the condominiums at Northstar-At-Tahoe ski on a given day.
 - A study done by the Jackson Hole Area Chamber of Commerce indicates that roughly 90
 percent of the guests in the community are skiers while only 70 percent ski on any given day.

The lower percentage of skiers that ski on a given day here is appropriate as it takes into account the fact that some of the residents that are within walking distance of the site are full-time residents and less likely to ski during busy weekends.

- 4.Tab le A also includes an assumption regarding the percent of skiers that are within walking distance of the portal, but decide to drive to Eagle Lodge or another portal. It was assumed the 40 percent of the skiers that are within walking distance and are not residing in Juniper Springs or the Eagle Lodge site would drive anyway on a peak day, which was estimated based upon the calibration to actual conditions. However, on a typical Saturday it is assumed that 50 percent of these residents will drive to the site, as parking is more readily available.
- 5.T here area also 174 condo units on the Juniper Springs site in addition to the 213 hotel equivalents proposed by the project (one hotel equivalent was assumed to equal 0.5 condo units). It was assumed the 15 percent of the skiers that are residing in Juniper Springs or the Eagle Lodge site

- would drive anyway on a peak day. However, on a typical Saturday it is assumed that 25 percent of these residents will drive to the site, as parking is more readily available.
- 6.LSC has used the assumption provided by MMSA that 700 skiers arrive at this location via drop off on a peak day. This number is assumed to decrease on a typical winter Saturday, proportional to the total number of skiers arriving on a peak day versus a typical winter Saturday.
- 7.Based upon limited ridership data provided by MMSA, LSC estimated typical winter Saturday and peak day transit ridership. The peak day ridership was estimated based upon the transit ridership on December 29, 2005, a day during which more than 24,000 skiers arrived at the ski mountain. The typical Saturday ridership was based upon the level of ridership recorded on January 7, 2006 factored up based upon the number of skiers on that day versus a typical Saturday. Assumptions regarding the percent of riders that are skiers were estimated based upon the Mammoth Lakes Transit Plan (LSC, 2001). It was also assumed that half of the skiers riding the Yellow and Combo Routes access the Eagle Lodge portal on a peak day while 25 percent access Eagle Lodge on a typical Saturday (as parking is more available at Eagle Lodge on off-peak days). As the Eagle Lodge does not specifically propose to expand transit service, it is note appropriate to assume an increase in transit ridership with the project implementation, especially as most routes currently operate at capacity.
- 8.AI Tremaining vehicles arrive via automobile and require a parking space. Assuming a skier vehicle occupancy of 2.5 skiers per vehicle (typical for a ski area), it is estimated that 476 skier vehicles currently access the ski area on a peak day. On a typical Saturday, however, only 472 skier vehicles access the site.
- 9.As suming that 15 percent of the skier parking spaces turn over during a day (based on typical ski area access patterns), 414 parking spaces area needed on a peak day and 410 parking spaces are needed on a typical Saturday. The estimated parking requirements on a peak day and typical winter Saturday can be compared to parking counts provided by MMSA on a peak day, during which time vehicles park in the Eagle Lodge parking lot and along Meridian Boulevard from the Juniper Springs site eastward to Minaret Road. Comparing the estimated parking demand to the actual peak day and typical Saturday parking counts indicates a difference of only 4 percent or less. This verifies the traffic assumptions are reasonable.
- 10. It is also assumed that 40 percent of the skiers exit the ski area during the p.m. peak hour, which is based upon the counts recently collected at the site, the assumption that 15 percent of the skier parking spaces turn over per day, and a review of data from other similar ski areas.
- 11. In addition, it is assumed that 40 percent (the same proportion as that of traffic exiting the area during p.m. peak hour) of the drop-off skiers are picked up during the p.m. peak hour with a vehicle occupancy of 1.5 skiers per vehicle (2.5 vehicle occupancy minus 1 driver).
- 12. Applying the above assumptions to plus project conditions (third column in Table A) indicates the project will generate 415 entering peak-hour skier trips and 213 exiting peak-hour skier trips. This represents an increase of 123 entering peak-hour skier trips and 85 exiting peak-hour skier trips over no project or existing conditions.

An estimate of the total skier trip generation is provided in Table A.

Base Lodge Trip Generation

- 13. The ITE Trip Generation Manual (ITE, 2003) does not provide a Saturday trip rate for Ice Rinks. Therefore, a Saturday trip rate was estimated by comparing the ITE Ice Rink weekday trip rates to ITE weekday and Saturday trips rates for a Multi-Purpose Recreational Facility. Using these rates, it is estimated that the ice rink will generate 13 p.m. peak-hour trips on a Saturday. Approximately half of these trips are expected to be generated by skiers already on site.
- 14. It is assumed that the following uses located in the Base Lodge area do not generate any external trips, except for employee trips, as they are considered to be used as skier amenities:
 - Cafeteria-Type Dining Area
 - Bar and Coffee Bar
 - Rental/Demo/Repair Shop/Basket Check
 - Retail Shop
 - Ski School / Day Care
 - Ticketing/Lobby

- Restrooms
- Administrative
- Employee Break Room
- Ski Patrol
- Maintenance/Loading Dock
- Mechanical/Cell Site

However, it can be assumed that each employee will generate an average of 2.2 person trips per day (assuming 10 percent leave the site once during the day). Assuming a vehicle occupancy of 1.2 employees per vehicle indicates that each employee will generate 1.83 daily vehicle trips, prior to transit reductions. Furthermore, MMSA provided an employee schedule for the above-identified uses, which was used as a basis for estimating the percent of employees that leave or enter the site during the p.m. peak hour.

The trip generation associated with the Base Lodge uses is summarized in Table C. The Base Lodge is expected to generate 57 p.m. peak-hour trips in addition to the skier trips identified in Table A.

Commercial Area Trip Generation

15. The trip generation of the commercial portion of the site is estimated in Table D, applying standard ITE rates. Note that it is assumed that the locker club is a skier amenity and does not generate any external trips. The commercial portion of the project is expected to generate 395 p.m. peak-hour trips (203 entering and 192 exiting).

Lodging Trip Generation

16. The trip generation associated with the lodging portion of the project is shown in Table E. The trip generation associated with the lodging units is based upon the calibrated Town of Mammoth Lakes traffic model daily trip rates. The percent of traffic entering and exiting the site during the Saturday peak-hour is estimated based upon the proportion of daily traffic that occurs during the peak hour, based upon ITE Hotel trip rates. Note that this analysis assumes the conference facilities will be managed such that, during peak ski conditions, the meeting/conference facilities would not generate external traffic before 7:00 p.m. In the off season (including the summer) or after 7:00 p.m. in the winter, the community room could be rented out and used by people not residing at the lodge. However, during the winter the events that occur after 7:00 p.m. would contribute to

the daily trip generation. The daily trip generation assumes one event per day, and a vehicle occupancy of 2.5.

17. The lodging portion of the project is expected to generate 141 p.m. peak-hour trips (70 entering and 71 exiting) during a typical winter Saturday.

Summer Trip Generation

18. While the traffic analysis focuses on typical winter Saturday conditions, although a summer trip generation analysis is also provided. The majority of the summer trip generation will consist of mountain bikers. According to Dave Geirman (MMSA), approximately 25,000 bikers per year visit the mountain, a number which has been growing at a rate of 5 to 8 percent per year. The mountain bike park hopes to increase this number to 40,000 bikers per year in the next five years, which represents an annual growth rate of 9.9 percent per year. Currently approximately 600 bikers per day visit the mountain on a typical summer weekend day. Approximately half of these bikers are downhill bikers, while the other half are cross-country bikers.

According to the current <u>Town of Mammoth Lakes General Plan</u>, the number of people at one time the Town can accommodate is expected to grow at a rate of 2.6 percent a year over the next 20 years. Applying this growth rate indicates that by 2024 approximately 977 bikers per day will visit the mountain, which accounts for the growth projected by David Geirman, in addition to some growth generated by growth in population. Assuming that the number of downhill bikers will grow at twice the rate as the cross-country bikers, a total of 426 cross-country bikers and 551downhill bikers per day will be on the mountain by 2024. As Eagle Lodge provides primary access to cross-country bikers, approximately 426 bikers will access the Eagle Lodge lift on a summer weekend day by 2024. It is also assumed that 50 percent of the bikers will bike to the site.

- 19. The summer trip rates for the Day Care, Mountain Biking Employees, Day Spa, Convenience Market, Sit-Down Restaurant, and Hotel were assumed to equal the winter trip rates.
- 20. In the off season, the community room / conference room can be rented out and used by people not residing at the lodge. The trip generation of this facility is estimated assuming a 200 person-at-one-time capacity, a maximum of two events occurring on one day, 2.5 vehicle occupancy, and as a worst-case one event ending and one event starting during the p.m. peak hour.

Without reductions for internal and walking trips and as shown in Table F, the project is expected to generate 743 p.m. peak-hour trips on a summer Saturday (353 entering, 390 exiting) and 6,421 daily trips, which is roughly 39 percent less than the levels generated in the winter.

Trips Remaining Internal to the Site

Due to the mix of uses, some person-trips would remain internal to the site. The basic assumptions regarding trip internalization are summarized below and in Figure A.

21. It is assumed that half of the ice rink customers will consist of skiers that are already at the ski area. Therefore, roughly half of the ice rink trips remain internal to the site. These internal trips would be between the ice rink and the Base Lodge or the Lodging and would not result in external trips.

- 22. Based upon the <u>ITE Trip Generation Handbook</u> methodologies, it is assumed that roughly 9 percent of the commercial exiting trips and 5 percent of the commercial entering trips remain internal to the site due to the interaction between the commercial uses and the lodging uses.
- 23. An additional 5 percent of the commercial trips are also expected to occur between the skiers at the base lodge and the commercial and, therefore, remain internal to the site.
- 24. It was assumed that there are two people per hotel equivalent unit, as each hotel equivalent is assumed to equal one half of a transient condo. Assuming 61 percent of the hotel guests ski on a typical winter Saturday indicates that a total of 1.22 skiers per hotel equivalent enter the hotel from the ski area on a typical winter Saturday. Of these, 0.49 per unit enter during the p.m. peak hour, assuming 40 percent exit the ski area during the p.m. peak hour. Assuming that these trips would otherwise occur as vehicle trips with vehicle occupancies of 2.5 people per vehicle, 0.20 internal p.m. peak-hour trips are generated by each hotel unit. As stated above, it is assumed that 15 percent of skiers staying at the Eagle Lodge access the ski area via other portals.

Walking Trips

- 25. All internal trips are assumed to be walking trips, in addition to the skier-generated walking trips between residences and the ski portal. In addition, it was assumed that the majority of the customers to the convenience market would be residents in the residential areas located east of Minaret Road, south of Lake Mary Road, and north of Mammoth Creek, as residents of other areas would likely do most shopping at other commercial centers more convenient to their residences. Of these residences, roughly 65 percent are within walking distance (1,000 feet) of the proposed market. However, to provide a reasonably conservative analysis, it has been assumed that 50 percent of the convenience store customers will walk to the market, and the remaining half drive.
- 26. It is also assumed that approximately 10 percent of the Day Spa and Restaurant trips consist of walking trips to nearby residences.
- 27. Finally, it was assumed that 5 percent of the Ice Rink trips would be made as external walking trips to nearby residences.

The reductions for winter external walking trips are shown in Table G. The reductions for summer external walking trips are shown in Table H.

Pass-By Trips

28. A proportion of the commercial trips would consist of pass-by trips, or trips that are made by drivers that are already on the adjacent roadways prior to the development of the site, which (with the development of the site) can be expected to make intermediate stops at project land uses on the way from an origin to a primary trip destination. Pass-by trips are included in the site driveway movements, but are reflected as reductions in the through volumes passing the site driveway locations.

Data regarding appropriate pass-by percentages for various land uses are available in the *Institute* of *Transportation Engineers Trip Generation Handbook*. Based upon the typical pass-by percentages contained in the ITE Trip Generation Handbook and considering regional access patterns, the percentage of pass-by trips generated by the convenience market is assumed to be

25 percent of the vehicle trips. This percentage is less than half of the average pass-by rate identified in the Institute of Transportation Engineers Trip Generation Handbook because the potential for pass-by trips along the low traffic volume Meridian Boulevard is less. Applying this assumption indicates that roughly 8 percent of the existing vehicles on Meridian Boulevard would divert into the market during the p.m. peak hour.

The total external auto and pass-by trip generation of the project is shown in Table G. As the table indicates, based upon the assumptions identified above the project is expected to generate 914 p.m. peak-hour trips (320 entering and 594 exiting). However, this does not take into account the existing trip generation of the project site, although the EIR analysis will.

Parking Analysis

NOTE: The following two changes of assumptions were made in the parking analysis that were not made in the trip generation analysis, as follows:

- 25 percent of the employees are assumed to use transit to travel to/from work.
- The 22-unit Altis project was assumed to be built in the project build out condition.

These changes are not reflect ed in the trip generation analysis as it was determined that the changes in assumptions had a negligible impact on trip generation (less than two percent). However, these changes were reflected in the parking demand analysis.

The purpose of the parking analysis is to evaluate the demand for parking generated by the various elements of the project, assess the potential to reduce parking supply through the shared use of parking, and provide information useful in the development of parking supply strategies. With careful consideration of the individual uses to be accommodated on the site and variation in the need for parking over the day, it is possible to meet all of the parking needs while also minimizing the total amount of parking spaces that must be provided.

The following are the primary assumptions that were used to estimate parking demand.

- 29. In general, the Town of Mammoth Lakes parking requirements were applied in this analysis unless the parking requirement rates were found to not be applicable (as discussed below).
- 30. As most of the uses contained in the Base Lodge are skier amenities, no customer parking is required aside from the skier parking. However, parking would be required for employees, the ice rink, and day care/ski school drop offs.
- 31. The parking demand for Day Care drop-off was estimated based upon the Day Care a.m. peak-hour trip generation rate identified in *ITE Trip Generation Manual*. It was also assumed that 40 percent of the drop off vehicles per hour could enter the site within the peak 15 minutes. Each Day Care parking space was assumed to turn over every 15 minutes. Based upon these assumptions, it is estimated that 5 day care drop off spaces are required.
- 32. According to MMSA, the maximum drop off activity for the ski school would occur at 10:00 a.m., during which time 223 students arrive at the ski school. Assuming half of these students are dropped off, an average student vehicle occupancy of 1.5 (2.5 skiers per vehicle minus the driver), 27 parking spaces would be required for ski school drop off.

- 33. The employee schedule was used to estimate how many employees for the base lodge would park on site at one time. Assuming an average employee vehicle occupancy of 1.2, 0.83 parking spaces would be required per employee of the Base Lodge.
- 34. As the Town does not have a parking requirement for a day spa, ITE Parking Generation was used to estimate a parking demand rate based upon the Health/Fitness Club land use (5.19 spaces per 1,000 square feet of floor area).
- 35. Similarly, as the Town does not have specific parking demand rates for a convenience market, the *ITE Parking Generation* rate was used.
- 36. The parking demand for a Hotel Equivalent was based upon the Mammoth parking requirements.

Based upon the base parking demand rates identified above and as shown in Table I, the total parking demand for the site is 994 parking spaces, without reductions for internal trips, walking trips, or shared parking.

Parking Reduction for Internal and Pedestrian/Bicycle Trips

- 37. As the Eagle Lodge is a mixed use development project near other trip generators, there could be internal pedestrian trips that could tend to reduce parking needs. However, the applicable internal reductions for a parking analysis are not the same as a trip generation analysis. If, for example, a person decides to go skiing and then, afterwards, go out to dinner at the ski base, the ski area to dinner trip generates no auto trips. However, the parking demand remains on site even though the land use the parking demand is associated with shifts. Therefore, it is only appropriate to make reductions in parking demand for the following two types of trips:
 - Trips with one trip end internal to the site and one trip end external to the site that occur via non-auto modes. As skier walking trips between the Base Lodge and residences is already accounted for in the skier parking calculation, this reduction primarily applies to the commercial uses and is consistent with the assumptions identified in the trip generation analysis above.
 - Walking trips between the lodging and commercial uses. As 95 percent of the hotel parking is
 assumed to be dedicated for hotel guest use only, an internal reduction is applicable for trips
 between lodging and other uses. A reduction of 4 to 7 percent was applied to the ice rink, skier,
 and commercial uses based upon the internal trip analysis.
 - 25 percent of the employees are expected to take transit to/from work, based upon a review
 of parking permits at employee housing sites and the Mammoth Lakes Employee/Employer
 Commute Survey.

Shared Parking Demand Analysis

A "shared parking" analysis considers how two or more individual land uses can be provided with adequate shared parking, considering the variation in the peak accumulation of parked vehicles for different nearby land uses by time of day. This shared parking analysis is based upon the methodology

for assessment of shared parking developed by the Urban Land Institute, as documented in *Shared Parking* (2005, Second Edition). This strategy recognizes the fact that some land uses (such as skiing) have peak parking needs that occur at different times than other land uses (such as lodging). Therefore, the parking supply required to accommodate the needs of both land uses is less than the sum of the peak parking needs for the individual land uses.

The basis for this analysis is an hour-by-hour assessment of parking needs for individual land uses, which can then be added to identify the peak parking needs for the total land uses, and when this peak in demand occurs. Accordingly, parking demand for each individual land use in a development block by time of day is estimated. Based on these estimates, the total number of parking spaces required for all the land uses during a particular hour is calculated by adding the parking requirements for all the land uses within the block for that hour.

The shared parking analysis included the following assumptions:

- 38. Only five percent of the parking for lodging is not considered to be dedicated and therefore can be shared with other uses.
- 39. The parking analysis is prepared for weekend conditions. as parking demand will be higher on weekends due to high skier visitor numbers.
- 40. The variation by time of day of skier parking spaces is based upon accumulation counts provided by the Northstar-At-Tahoe and Heavenly Valley ski areas.
- 41. The hourly variation in the parking demand generated by the ice rink was assumed to equal that of a shopping center.
- 42. The hourly variation in parking demand for employees was estimated based upon the employee schedule provided by MMSA.
- 43. The hourly variation in the parking demand generated by the Day Spa was assumed to equal that of a health club.
- 44. It was also assumed that the ski school and day care parking spaces would be available to skiers from 11:00 AM on.
- 45. The parking demand of the restaurant was reduced by 50 percent during the noon peak hours to account for the fact that people will be less likely to travel to the site during this time period due to the fact that the area will be relatively crowded with skiers. It can be assumed that more customers would be skiers during this hour.

Table J presents the shared parking analysis for weekend conditions. As shown in Table J, during the weekend a total of 829 shared parking spaces would be required upon build out of the project, assuming hotel spaces are not designated and can be shared. Note that this number does not include the 26 spaces required to be reserved for the Juniper Springs project, per previous agreement.

State part Day Stat	138 138 138 138 22 22 487 487 99 99 108 24 44 4.0 61% 61% 61% 61% 61% 61% 1,080 830 1,080 830 1,080 830 1,080 830 1,080 830 1,080 1,100 61% 61% 44 4.0 61% 40 61% 61% 40 61% 61% 40 1,150 1,580 1,190 1,180 1,480 1,190 1,180 1,480 1,190 1,180 1,480 1,190 1,180 1,480 1,190 1,180 1,480 40% 40% 40% 40% 40% 40% 416 1,180 1,180 195 183 187 128 213 187 128 213 187 128 213 187 128 213 187 128 <	138 138 138 138 138 138 138 22 22 22 22 22 22 22 22 22 22 22 22 22	\$ 5.280 1, 3.650 6,000 the coll Lint ² the co		Existing Peak Saturday Conditions (for Assumption Validation)	Existing Typical Saturday Conditions	Plus Project Conditions on a Typical Saturday	Estimated Impact of Project on Skier Traffic and Other Variables
138 138 138 138 138 138 138 22 22 487 99 99 99 99 99 99 99 99 99 99 99 99 99	138 138 138 138 138 22 22 22 22 22 22 22 22 23 24 4.0 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	138 138 138 138 138 22 22 22 22 22 22 22 24 44 4 4 6 40 99 99 99 99 99 99 99 99 99 99 99 99 99	138 138 138 138 138 22 22 22 22 22 487 487 487 487 487 487 487 99 99 24 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	skiers per Day		3,650	6,000	2,350
Eagle Lodge Portal 487 22 22 22 487 99 99 99 99 99 99 99 99 99 99 99 99 99	22 22 22 22 22 487 487 487 487 487 487 487 487 487 487	2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	22 22 22 22 22 22 22 22 22 22 22 22 22	1000 feet of	138	138	ć	
487 487 487 99 99 99 99 99 99 44 4.0 4.0 61% 61% 4.0 61% 61% 40% 1,080 830 1,000 1,080 830 1,000 1,080 830 1,000 61% 61% 61% 15% 25% 15% 400 320 580 1,910 840 2,170 700 1,180 1,480 1,190 1,180 1,450 1,190 1,180 1,450 2,5 2.5 2.5 1,50 1,450 1,500 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,160 476 40% 40% 40% 40% 40% 40% 40% 40% 414 410 504 237 183 118 166 164 202 187 128 213 187 128 213 118 118 213	487 487 487 99 99 99 99 99 99 4,4 4,0 4,0 61% 61% 61% 61% 61% 61% 1,080 830 1,000 1,080 830 1,000 1,080 830 1,000 61% 61% 61% 62% 62% 62% 64% 61% 61%	487 487 487 487 487 99 99 99 99 99 99 99 99 99 99 99 99 99	487 487 487 487 99 99 99 99 99 99 99 99 99 99 99 99 99	Number of Ski In / Ski Out Non-Condos	22	22	22	1 1
2.4 2.4 2.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	2.4 2.4 2.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	2.4 2.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	2.4 2.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	Number of Condo Units within 1000 feet of Lift ²	487	487	487	;
2.4 4.0 4.0 4.4 4.0 4.0 61% 61% 61% 1,080 830 1,000 1,080 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 15% 25% 25% 400 700 480 840 1,190 1,180 1,450 1,190 1,180 1,450 2,170 480 800 1,190 1,180 1,450 2,5 15% 40% 40% 40% 40% 40% 410 504 237 195 183 195 183 187 128 213 353 292 415	2.4 2.4 4.0 61% 61% 61% 61% 61% 61% 50% 40% 1,080 830 1,000 17.4 17.4 4.0 61%	2.4 2.4 4.0 4.4 4.0 61% 61% 61% 61% 61% 661% 61% 1,080 830 1,000 1,080 830 1,000 1,480 1,150 1,580 1,910 840 2,170 700 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,150 1,190 1,180 1,150 1,190 1,180 1,150 1,190 1,180 1,160 1,190 1,180 1,160 1,180 1,160 1,180 1,160 1,180 1,160 1,180 1,160 1,180 1,160 1,180 1	2.4 4.4 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	Number of Ski In / Ski Out Condos	66	66	66	i
Fagle Lodge Portal 4.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	Fagle Lodge Portal 4.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	Fagle Lodge Portal 4,4 4,0 61% 61% 61% 61% 61% 61% 61% 61% 40% 40% 1,080 830 1,000 1,080 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	Fagle Lodge Portal 4,4 4,0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	Estimated Number of People per Non-Condo Unit	2.4	2 6	7.0	
Eagle Lodge Portal 61% 61% 61% 1,080 830 1,000 1,080 830 1,000 1,080 830 1,000 174 174 281 4,4 4,0 61% 61% 61% 61% 61% 61% 61% 15% 25% 15% 400 1,150 1,150 1,190 1,180 1,180 1,190 1,180 1,450 1,190 1,180 1,450 2,5 2,5 2,5 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 420% 1,160 166 164 202 187 128 213 187 128 213 187 128 213 187 128 213	Fagle Lodge Portal 40% 61% 61% 61% 61% 61% 61% 60% 40% 1,000 1,080	Fagle Lodge Portal 61% 61% 61% 61% 61% 61% 60% 40% 1,080 830 1,000	Eagle Lodge Portal 40% 50% 61% 61% 61% 61% 700% 1,080 830 1,080 1,080 1,080 830 1,090 1,080 830 1,090 1,090 1,140 1,144 4.0 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	Estimated Number of People per Condo Unit	1 4 1 4	4.0	4.7	: 1
Fagle Lodge Portal 40% 50% 40% 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,1480 1,1880 1,1	Fagle Lodge Portal 40% 50% 40% 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,100 1,150	Fagle Lodge Portal 40% 50% 40% 1,000 1,000 830 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,140 1	Fagle Lodge Portal 40% 50% 40% 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,100 1,450 1,000 1,100 1,450 1,000 1,100 1,000	Percentage of People per Unit Skiing per Day ³	61%	61%	61%	t
1,080 830 1,000 174 174 4.0 61% 61% 61% 61% 61% 15% 25% 15% 400 320 580 1,480 1,150 1,580 1,910 480 2,170 700 480 800 1,190 1,180 1,450 2,5 2.5 2.5 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 420 432 237 432 420 432 420 432 420 432 420 187 128 213 353 292 415 137 213 137 213	1,080 830 1,000 174 174 4.0 4,0 61% 61% 61% 61% 15% 25% 15% 400 320 580 1,480 1,150 1,580 1,480 1,150 1,580 1,910 480 800 2,5 15% 400 40% 40% 40% 40% 40% 40% 414 410 504 237 12% 15% 432 420 166 164 202 187 128 213 187 128 213	1,080 830 1,000 174 174 4.0 4,0 61% 61% 61% 61% 16% 25% 15% 400 320 580 1,480 1,150 1,580 1,480 1,150 1,580 1,910 480 800 2,5 2.5 2.5 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 41 410 504 42 420	1,080 830 1,000 174 174 281 4.4 4.0 61% 61% 61% 61% 15% 25% 15% 400 320 580 1,310 840 2,170 700 480 800 1,190 1,180 1,450 2.5 2.5 2.5 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 416 410 504 432 420 432 420 166 164 202 187 128 213 353 292 415 187 128 213 188 213 189 213	Percentage Skiers Within 1,000-Foot Walk Distance Accessing Other Portals or Driving to Eagle Lodge Portal	40%	20%	40%	: 1
re and Proposed Project) 4 174 174 174 281 40 40 40 61% 61% 61% 61% 700 840 320 580 11,910 840 2,170 700 840 2,170 1,190 1,180 1,480	se and Proposed Project) 4 174 174 281 40 40 61% 61% 61% 61% 61% 61% 61% 15% 25% 15% 680 1,910 840 2,170 1,910 1,910 840 2,170 1,910 1,190	Project * 174	Project * 174 174 281 4.4 4.0 61% 61% 61% 15% 25% 15% 1,480 1,150 1,580 1,910 440 2,170 1,910 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,180 1,450 1,180 1,450 1,180 1,450 1,180 1,160 1,180 1,160 1,180 1,180 1,180	Skiers Walking to Lift from Areas Other Than Juniper Springs and Proposed Project Site	1,080	830	1,000	170
Is and Proposed Project) 4 174 174 281 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	Is and Proposed Project) 1 174 174 281 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	Project)	Project) 4 174 174 281 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%					
1,4	6 4,4 6 4,0 6 14	61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	Number of Condo Units on Site (Juniper Springs and Proposed Project) * Estimated Number of People and Condo Init	174	174	281	107
15% 15%	15% 15%	61% 61% 61% 15% 25% 15% 14% 1,150 1,580 1,480 1,150 1,580 1,910 480 2,170 1,910 480 800 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,160 1,190 1,183 1,160 1,160 1,160 1,160 1,160 1,160	61% 61% 61% 61% 61% 61% 400 320 400 320 580 158% 61% 61% 400 320 1,480 1,480 1,180 1,580 1,190 1,190 1,180 1,450 1,190 1,180 1,180 1,450 1,190 1,180 1,450 1,18% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61	Parameter A final control of the con	4.4	4.0	0.4	ı
1976 22% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15	1.9% 2.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1	1976 22% 15% 15% 15% 15% 15% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16	1976 22% 15% 15% 15% 15% 15% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16	rencentage of reopie per onit oking per day. Percentage Skiers Accessing Other Dodgle	61%	61%	61%	1
1,480 1,150 1,580 1,910 840 2,170 700 480 800 1,190 1,180 1,450 2.5 2.5 2.5 1,190 1,180 1,450 1,190 1,180 1,450 2.5 2.5 2.5 1,5% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 41% 504 41 410 410 43 42 420 166 164 202 187 128 213 415 415 413 415 413 41 41 41 41 41	1,480 1,150 1,580 1,160 1,580 1,160 1,191 840 2,170 700 480 800 1,190 1,180 1,180 1,450 1,	1,480 1,150 1,580 1,910 840 2,170 700 480 800 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 40% 40% 40% 476 472 580 414 410 504 237 237 237 195 183 195 166 164 202 167 168 168 213 187 128 213	1,480 1,150 1,580 1,910 840 2,170 700 480 800 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 414 410 40% 40% 40% 40% 414 410 504 237 237 432 420 432 844 1,160 166 164 202 187 128 213 353 292 415	Skiers Walking to Lift from Juniper Springs or Proposed Project	400	320	15% 580	 260
ng Day M. Peak Hour A. Peak Hour A. Peak Hour 1,190 1,190 1,190 1,190 1,180 1,150 1	ng Day The seak Hour 1,480 1,150 1,580 1,191 1,150 1,580 1,191 1,191 1,191 1,190 1,145	1,480 1,150 1,580 1,580 1,191 1,150 1,580 1,100 1,1580 1,191 1,190 1,180 1,1450	kiere Walking to 1 in	•	;			
To a substitute of the control of th	To a substitute of the substit	1,310 480 5,170 1,190 1,180 1,460 1,190 1,180 1,460 1,190 1,180 1,460 1,190 1,180 1,460 1,190 1,180 1,460 1,190 1,190 1,460 1,190 1,190 1,160 1,190 1,190 1,160 1,190 1,190 1,160 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190	1,510 480 5,170 1,190 1,180 1,450 1,190 1,180 1,450 2.5 2.5 15% 40% 40% 40% 40% 40% 40% 414 410 504 237 237 237 195 183 432 420 166 164 202 187 128 213 187 128 213 187 128 213 187 128 213 187 128 213 187 128 213 187 128 213 187 128 213 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40	ones yearning to the	1,480	1,150	1,580	430
1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190	1,190 1,180 1,450 2,5 2,5 2,5 1,5% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40	1,190 1,180 1,450 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60	1,190 1,180 1,450 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,6	kiers Being Dropped Off	700	480	800	1,330
ng Day 2.5 2.5 2.5 .M. Peak Hour 15% 15% 15% .M. Peak Hour 40% 40% 40% .m. Peak Hour 47 40% 40% .m. Peak Hour 47 40% 40% .m. Peak Hour 47 40% 40% .m. Peak On Site 237 237 .m. Used on Meridian Blvd. 432 420 .m. Peak On Meridian Blvd. 16 164 202 .m. Peak On Meridian Blvd. 16 213 .m. Peak On Meridian Blvd. 128 213 .m. Peak On Meridian Blvd. 213 21	2.5 2.5 2.5 M. Peak Hour 15% 15% 15% M. Peak Hour 40% 40% 40% 40% 40% 40% 40% 40% 41% 40% 40% 40% 41% 40% 40% 40% 41% 40% 40% 40% 41% 41 504 41 420 11 11 432 420 1 11 432 420 1 1 432 420 1 203 166 164 203 187 128 213 187 128 213	2.5 2.5 2.5 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40	2.5 2.5 15% 15% 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40	klers Driving / Auto Passengers	1,190	1,180	1,450	270
ng Day 15% 15% 15% M. Peak Hour 40% 40% 15% M. Peak Hour 40% 40% 40% Annual Line 410 410 40% Annual Line 410 410 415 Annual Line 415 415 Annual Line	ng Day 15% 15% 15% 15% M. Peak Hour 40% 40% 40% In Peak On Meridian Blvd. 10% 10% 10 In Section Blvd. 10% 10% 10% In Section Blvd. 10% 10% 10% <tr< td=""><td>15% 15% 15% 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40</td><td>15% 15% 15% 15% 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40</td><td>Skier Vehicle Occupancy</td><td>2.5</td><td>2.5</td><td>2.5</td><td>ļ</td></tr<>	15% 15% 15% 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40	15% 15% 15% 15% 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40	Skier Vehicle Occupancy	2.5	2.5	2.5	ļ
M. Peak Hour 40% 40% 40% 40% 40% 40% 40% 40% 40% 40%	M. Peak Hour 40% 40% 40% ired 476 472 580 414 410 504 4 Used on Site 237 4 Used on Meridian Blvd. 432 420 432 420 952 944 1,160 166 164 202 187 128 213 187 128 415 187 128 213	40% 40% 40% 40% 40% 40% 40% 40% 414 414 410 504 504 504 504 504 504 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	40% 40% 40% 40% 40% 40% 40% 414 414 410 504 504 504 504 504 504 504 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%	Percent of Parking Spaces that Turn Over During Day	15%	15%	15%	
red 476 472 580 Used on Site 414 410 504 Used on Meridian Blvd. 195 183 195 422 420 952 944 1,160 166 164 202 187 128 213 353 292 415 187 128 213	red 476 472 580 * Used on Site 237 237 * Used on Meridian Blvd. 195 183 432 420 952 944 1,160 166 164 202 187 128 213 353 292 415 187 128 213	476 472 580 414 410 504 237 237 237 195 183 432 420 952 944 1,160 166 164 202 187 128 213 353 292 415 187 128 213	476 472 580 414 410 504 237 237 237 195 183 432 420 952 944 1,160 166 164 202 187 128 213 187 128 213	Percent Parked Vehicles that Exit Lot During P.M. Peak Hour	40%	40%	40%	ı
red 414 416 504 Used on Site Used on Meridian Blvd. 952 944 1,160 166 164 202 187 128 213 187 128 213	red v Used on Site v Used on Meridian Blvd. v Used on Meridian Blvd	an Blvd. 414 416 504 237 237 195 183 195 183 195 183 195 183 195 183 195 183 195 183 195 183 195 183 195 184 1,160 187 128 213 353 292 415 187 128 213	an Blvd. 414 416 504 237 237 195 183 432 420 432 420 166 164 202 187 128 213 353 292 415 187 128 213	/ehicles Entering the Site Per Day	476	1	ć	
Used on Site 195 195 183	Used on Site Used on Meridian Blvd. Used on Meridian Blvd. Used on Meridian Blvd. 432 420 420 1460 166 167 187 128 213	an Blvd. 237 237 195 183 432 420 952 944 1,160 166 164 202 187 128 213 353 222 415 187 128 213	8an Blvd. 237 237 195 183 432 420 952 944 1,160 166 164 202 187 128 213 187 128 213	stimated Number of Skier Parking Spaces Required	414	410	200	801
Used on Meridian Blvd. 195 183 420 420 952 944 1,160 166 164 202 187 128 213 187 128 213	Used on Meridian Blvd. 195 183 432 420 952 944 1,160 166 164 202 187 128 213 187 128 213	952 183 432 420 952 944 1,160 166 164 202 187 128 213 187 128 213	952 183 952 420 952 944 1,160 166 164 202 187 128 213 187 128 213	Maximum Number of Parking Spaces Currently Used on Site	237	237	t	5 1
432 420 952 944 1,160 166 164 202 187 128 213 353 292 415 187 128 213	432 420 952 944 1,160 166 164 202 187 128 213 187 128 415 187 128 213	432 420 952 944 1,160 166 164 202 187 128 213 187 128 213	432 420 952 944 1,160 166 164 202 187 128 213 353 292 415 187 128 213	τ	195	183	: :	
uning Peak Hour 952 944 1,160 uning Peak Hour 166 164 202 During Peak Hour 187 128 213 Trips Generated \$ Trips Generated \$ Trips Generated \$ 128 213	952 944 1,160 166 164 202 187 128 213 353 292 415 187 128 213	952 944 1,160 166 164 202 187 128 213 353 292 415 187 128 213	952 944 1,160 166 164 202 187 128 213 353 292 415 187 128 213	Current Number of Parking Spaces Used per Day	432	420	:	: :
uning Peak Hour 152 344 1,100 During Peak Hour 166 164 202 During Peak Hour 187 128 213 Trips Generated ⁵ 128 213 Trips Generated ⁵ 128 213	166 164 1,100 166 164 202 167 128 213 353 292 415 187 128 213	166 164 1,100 167 164 202 187 128 213 187 128 213	166 164 1,100 167 164 202 187 128 213 353 292 415 187 128 213	Daily Skier Vehicle Trips Generated	050	77.0	7 700	676
During Peak Hour 187 104 202 Trips Generated \$ 213 213 Trips Generated \$ 128 213 Trips Generated \$ 128 213	187 128 213 353 292 415 187 128 213	187 128 213 353 292 415 187 128 213	187 128 202 353 292 415 187 128 213	Parked Vehicles Exiting During Peak Hour	166	164	1, 19U	017
Trips Generated ⁵ 292 415 r Trips Generated ⁵ 128 213	35.3 29.2 41.5 187 128 213	353 252 415 187 128 213	353 292 415 187 128 213	Drop Off Vehicles Exiting During Peak Hour	187	128	202	8 28
r Trips Generated ⁵ 128 213	187 128 213	187 128 213	187 128 213	P.M. Peak-Hour Exiting Skier Trips Generated [§]	353	292	415	123
Unite 1. Recorded December 27 2005	iole 1: Recorded December 27, 2005. 10. 2. Does not include Junips Springs and Proposed Project.	vote 1: Recorded December 27, 2005. vote 2: Does not include Juhiper Springs and Proposed Project. vote 3: Based upon Town of Mammoth Lakes General Plan assumptions. vote 4: Includes 213 Hotel Equivalents. One Hotel Equivalent equals 0.5 condo units.	vote 1: Recorded December 27, 2005. Vote 2: Does not include Jumper Springs and Proposed Project. Vote 3: Based upon Town of Mammoth Lakes General Plan assumptions. Vote 4: Includes 213 Hotel Equivalents on Plant Equivalent equals 0.8 condo units. Vote 6: Assumes 40 percent of skiers leave during the p.m. peak hour.	P.M. Peak-Hour Entering Skier Trips Generated ⁵	187	128	213	82
	toto 1. Nocurous Descriptor 2., 2603. 1. C. Does and Chingle Julies Springs and Proposed Project.	viere 2. Toes and succeining it states and Project. viere 2. Does not include Julyes and Proposed Project. viere 3. Based upon Town Own Own Own takes General Plan assumptions. viere 4: Includes 213 Hotel Equivalents. One Hotel Equivalent equals 0.5 condo units.	Vote 2: December 2: Actors and Proposed Project. Vote 3: Based upon Town of Mammoth Lakes General Plan assumptions. Vote 3: Based upon Town of Mammoth Lakes General Plan assumptions. Vote 4: Includes 213 Hotel Equivalents. One Hotel Equivalent equals 0.5 condo units.	lyla (- Bannyka Danmha 27 1905				

900	
5 and 2	
2005	
ween	
y Beti	
turda	
ak Sa	
or Peak	
nary t	
Sumr	
rship	
Ride	
ransit	rips)
ISA T	Son T
TABLE B: MM.	y Per
3LE B:	e-Wa
TAE	<u>ō</u>

	Route	ıte	
	Yellow and		
Date	Combo	Green	Total
Peak Saturday Ridership ¹	2,630	2,852	5,482
Typical Saturday Ridership ²	490	1,900	2,436
	0.46%	0.46%	ŀ
Percent Skiers on Day Routes ³	91.00%	91.00%	ŀ
Number of Skier Person Trips on Peak Day	2,405	2,609	5,014
Number of Skier Person Trips on Typical Saturday	448	1,738	2,186
Percent of Skier Ridership Accessing Eagle Lodge	20%	100%	ı
Percent of Skier Ridership Accessing Eagle Lodge on Typical Saturday	25%	%06	ŀ
	1,203	2,609	3,812
Skier Person Trips to and from Eagle Lodge on a Typical Saturday	112	1,564	1,676
_	602	1,305	1,906
Skier Person Round Trips to and from Eagle Lodge on a Typical Saturday	56	782	838

Note 1: Ridership occurring on December 29, 2005, during which time the mountain was at skier capacity. Note 2: Ridership recorded on January 7, 2006, factored up to represent typical Saturday. Note 3: Based upon Mammoth Lakes Transit Plan (LSC, 2000).

TABLE C: Base Lodge Trip Generation

Land Use	Quantity	Unit	ITE Code	ITE Land Use	Saturday P.M. Peak- Hour Trip Rates Saturday In Out Total Trip Rate	Sat ay Peak	Saturday P.M. eak-Hour Trip In Out Tot	rday P.M. Hour Trips Out Total	Saturday P.M. Saturday Peak-Hour Trips Saturday Trip Rate In Out Total Trips
Food and Beverage	8.74	KSF1	-	:	Skier Service ²	0	0	0	0
Bar and Coffee Bar	0.7	KSF		:	Skier Service	0	0	0	0
Rental / Demo / Repair Shop / Basket Check	3.7	KSF	1		Skier Service	0	0	0	0
Retail Shop	1.2	KSF		-	Skier Service	0	0	0	0
Ski School / Day Care 3	4.3	KSF	1	:	Skier Service	0	0	0	0
Ticketing / Lobby	2.6	KSF	:	1	Skier Service	0	0	0	0
Restrooms	4.5	KSF		1	Skier Service	0	0	0	0
Administrative	1.03	KSF	;	1	Skier Service	0	0	0	0
Employee Break Room	1.55	KSF	-		Skier Service	0	0	0	0
Ski Patrol	0.46	KSF	!	;	Skier Service	0	0	0	0
Maintenance/Loading Dock	1.5	KSF	-	;	Skier Service	0	0	0	0
Mechanical / Cell Site	0.55	KSF	-	1	Skier Service	0	0	0	0
Ice Rink	5	KSF	465	Ice Rink ⁴	1.15 1.40 2.55 39.93	3	7	13	200
Storage	0.55	KSF	:		Skier Service	0	0	0	0
Employees	122	employees	1	†	0.00 0.36 0.36 1.83	0	44	44	223
Base Lodge Total						¥	7	57	400
)						>	5	5	74

•

Note 1: KSF = 1,000 square feet of floor area.

Note 2: Skier services are considered skier amenities and do not generate external trips, excepting employee trips.

Note 3: No trips are expected to be generated during p.m. peak hour since ski school lessons start and end before late afternoon.

Note 4: Ice Rink weekend trip rate estimated based upon Ice Rink weekday trip rate compared to Multi-Purpose Recreational Facility weekend and weekday trip rates.

TABLE D: Eagle Lodge Commercial Component Trip Generation

					Saturda	Saturday P.M. Peak-	Peak-		Satu	Saturday P M	2	
			ITE	旦上	Hour	Hour Trip Rates	ates	Saturday Peak-Hour Trips Saturday	Peak	Hour	Trips	Saturday
Land Use	Quantity Unit	Unit	Code	Land Use	u		Total	Out Total Trip Rate	u	In Out Total	Total	Trips
Day Spa	ω	KSF1	492	Health/Fitness Club 1.33 1.27 2.60	1.33	1.27	2.60	20.87	11	10	21	167
Locker Club	12	KSF	;	1		Skier	Skier Service ²	2	0	-	-	7
Convenience Market	4	KSF	852	Convenience Market 38.55 38.55 77.10 863.10 (Open 24 Hours)	38.55	38.55	77.10	863.10	154 154	154	308	3,452
Sit-Down Restaurant	200	Seats ²	931	Quality Restaurant 0.19 0.14 0.33	0.19	0.14	0.33	2.81	38	28	99	562
Commercial Subtotal									203	192	203 192 395	4,181

Note 1: KSF = 1,000 sf floor area.

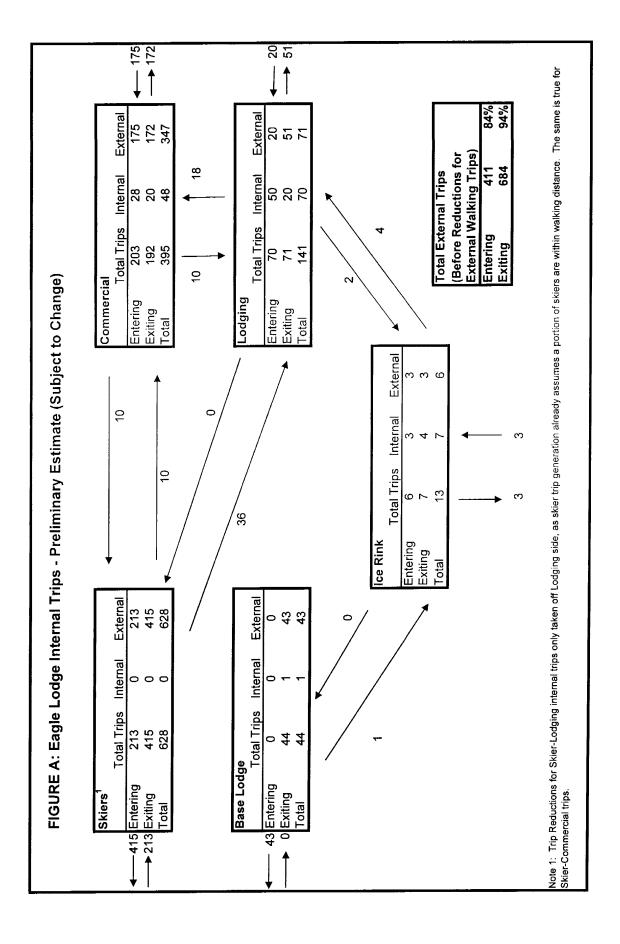
Note 2: Skier services are considered skier amenities and do not generate external trips, excepting employee trips.

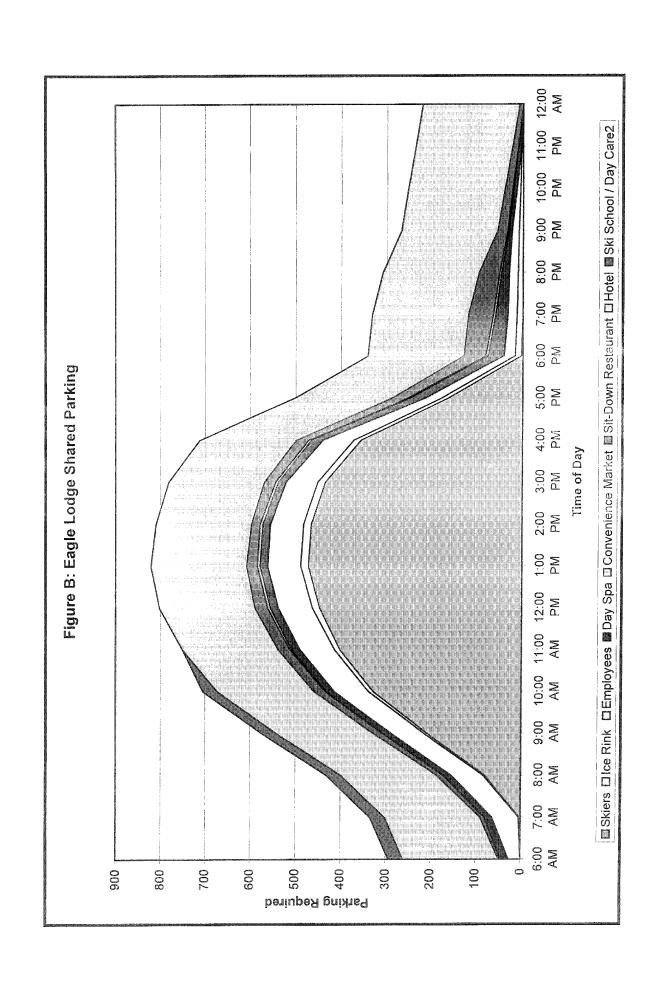
Note 3: Assumes 80 patio seats plus 120 seats inside.

TABLE E: Eagle Lodge Lodging Trip Generation									
			Saturda	Saturday P.M. Peak-Hour	ak-Hour		Satu	Saturday P.M.	
		•		Inp Kates		Saturday	Peak-	Hour Trips	ιÓ.
Land Use	Quantity	Unit	ln.	Out	Total	Trip Rate		In Out Total	al Trips
Hotel Equivalents	213	rooms	0.33	0.33	99.0	8	70	71 141	1,704
Conference Room	200	people at one time	No Pea	No Peak Hour Trip Gen	ip Gen	08.0	0	0	160
Commercial Property Management Unit	2	KSF		Lodging Amenity	Amenity		0	0	0
Back-of-House Service Areas (garbage, janitors closet, furnace room)	5	KSF		Lodging	Lodging Amenity		0	0	0
Lodging Total							20	71 14	70 71 141 1,864
Note 1: Daily trip rate based upon traffic model. Proportion occurring during peak hour based upon ITE Hotel trip rates. Note 2: KSF = 1,000 sf floor area. Note 3: These uses are considered amenities of the hotel and do not generate additional trips. Trips associated with these uses are considered to be included in the Hotel trip rate.	ed upon ITE ps. Trips ass	Hotel trip rates. ociated with these uses a	re considere	ed to be inclu	ded in the t	totel trip rate.			

					Saturo	Saturday P.M. Peak-	Peak-		Saturd	Saturday P.M. Peak-	Peak-	
			ᆵ	ITE	Hou	Hour Trip Rates 2	ates 2	Saturday	I	Hour Trips	s	Saturday
Q	Quantity	Unit	Code	Land Use	드		Out Total	Trip Rate	u	Ont	Total	Trips
Mountain Bikers	426	Bikers		-	0.00	60'0	60.0	0.40	0	38	38	170
Mountain Biking Employees	25	Employees			0.00	0.36	0.36	1.83	0	6	6	46
Day Spa	8	KSF 1	492	Health/Fitness Club	1.33	1.27	2.6	20.87	11	9	21	167
Convenience Market	4	KSF	852	Convenience Market (Open 24 Hours)	38.55	38.55	77.1	863.1	154	154	308	3,452
Sit-Down Restaurant	200	Seats	931	Quality Restaurant	0.19	0.14	0.33	2.81	38	28	99	562
Conference Facilities	200	People at One Time	1	-	0.4	4.0	0.8	1.6	80	80	160	320
Hotel Equivalents	213	Occupied Rooms	310	Hotel	0.33	0.33	99.0	8.00	70	7.1	141	1,704
Total									353		743	390 743 6.421

Note 1: KSF = 1,000 square feet of floor area. Note 2: Represents peak hour of site-generated traffic.


				Reductions for	_				Δď	P.M. Peak-Hour	ᅙ
	P.M	P.M. Peak-Hour		External		P.M. Peak-Hour	Hour		New B	New External Auto	Auto
	Exte	External Trips	rips	Walking	Extern	External Auto Trips	Trips	Percent		Trips	
Use	ll	Ont	Out Total	Trips	ln	Out Total	Total	Pass-By	ln	Out	Total
Skiers 1	213	415	628	1	213	415	628	%0	213	415	628
Base Lodge	0	43	43	%0	0	43	43	%0	0	43	43
Ice Rink	ო	က	9	2%	က	က	9	%0	က	က	ဖ
Commercial	175	172	347	42%	102	100	202	25%	77	75	152
Lodging	20	51	71	%0	20	51	71	%0	20	51	71
Buses	2	7	4	%0	2	7	4	%0	7	7	4
Trucks	വ	2	10	%0	2	ည	10	%0	2	2	10
Total	418	691	691 1,109		345	619	964		320	594	914


				-							
				Reductions for			•••		٦ Ξ	P.M. Peak-Hour	j
	<u>Б</u>	P.M. Peak-Hour	Hour	External	P.M.	P.M. Peak-Hour	Jour		New E	New External Auto	l Auto
	Ext	External Trips	ips	Walking	Extern	External Auto Trips	Trips	Percent		Trips	
Use	п	Out	Total	Trips	n	Out	Out Total	Pass-By	드	Out	Total
Mountain Bikers	0	38	38	1	0	38	38	%0	0	38	38
Mountain Biking Employees	0	တ	თ	%0	0	တ	တ	%0	0	თ	თ
Day Spa	7	10	21	10%	10	თ	19	%0	10	თ	19
Convenience Market	154	154	308	%09	77	77	154	25%	28	28	116
Sit-Down Restaurant	38	28	99	10%	34	25	59	%0	34	25	29
Conference Facilities	80	80	160	%0	80	80	160	%0	80	80	160
Lodging	70	71	141	%0	20	71	141	%0	20	7	141
Total	353	390	743		271	309	580		252	290	542

Land Use	Quantity	Unit	Parking Demand Rate	Source of Rate	Parking Demand
Skiers	000'9	Skiers per Day	See Table A in Appendix A	Appendix A 1	497
Base Lodge Food and Beverage Bar and Coffee Bar Rental / Demo / Repair Shop / Basket Check	8.74 0.7 3.7	KSF Z KSF KSF	No Incremental Parking Demand No Incremental Parking Demand No Incremental Parking Demand	No Incremental Parking Demand No Incremental Parking Demand No Incremental Parking Demand	
Retail Shop Ski School / Day Care (Drop Off Only) ² Ticketing / Lobby Restrooms	7.7 2.6 5.5 5.5	KSF KSF KSF	No Incremental Parking 7.44 No Incremental Parking No Incremental Parking		32
Administrative Employee Break Room Ski Patrol Maintenance/Loading Dock	1.03 1.55 0.46 1.5	X X X X X X X X X X X X X X X X X X X	No Incremental Parking	Parking Demand Parking Demand Parking Demand Parking Demand	
lce Rink Maximum Employees at One Time	5 122	KSF employees	3.60 0.83	LSC LSC	18
Commercial Day Spa Locker Club Convenience Market Sit-Down Restaurant	8 12 4 200	KSF KSF KSF Seats	5.19 No Incremental R 3.4 0.33	5.19 ITE No Incremental Parking Demand 3.4 ITE 0.33 Town Code	45 14 66
Lodging Hotel Equivalents TOTAL	213	rooms	1.05	Town Code	224 994
Note 1: Includes reductions for walking, drop-off, an transit trips. Note 2: KSF = 1,000 square feet of floor area.					

CABLE 3. Culturative raining Defination		Demain						•						-	Parking Demand by Hour for Shared Parking Analysis	Dema	nd by	Hour fe	or Shar	ed Pa	king A	nalysis				{		
Land Use	Quantity	Unit	Parking Demand Rate	Source of Rate	Parking Demand	Total Reduction for Non-Auto Access 1	Dedicated Parking	Available Spaces for Shared Parking	MA 00:3	MA 00:7	MA 00:8	MA 00:0	MA 00:01	MA 00:11	12:00 PM	1:00 PM M9 00:S	M9 00.5	M9 00:4	M9 00:8	M9 00:8	M9 00:7	MG 00:8	M9 00:9	M9 00:01	M9 00:11	MA 00:S1	Max Required Spaces Mis Without Spared	Max Required Spaces With Shared Use
Skiers	6,000	skiers per day	See	See Table A	497	2.0%	0	472	0	ъ	80	208 3	328 40	402 4	447 47	472 46	466 435	5 356	3 162	8	0	0	0	0	0		472	472
Base Lodge Ice Rink	ß	KSF	3.6	SC	8	5.0%	0	17	0	-	က										5	=	တ	φ	ო	0	17	17
Employees Ski School / Day Care ²	122 4.3	emplayees KSF	0.83	LSC	101 32	25.0% 0.0%	0	76 0	32	32	32	73	76 7	76 7	74 7	72 77 0	72 69 0	0 68	36	24 0	0 0	6 0	15	œ O	0 0	00	76 32	72 0
Commercial Day Spa Convenience Market Sit-Down Restaurant	8 4 200	KSF 1 KSF Seats	5.19 3.4 0.33	ITE ITE Town Code	47 7 8 8	16.0% 54.0% 16.0%	000	35 6 55	£ 0 ₹	0 0	<u>+</u> + <u>4</u>	18 20	17 1 3	18 4 5 2 5 2 5 2 2	18 1 28 2	17 1 24 1	17 17 6 6 19 25	7 26 5 27	38 35	35	26 5 55	45	213	r 2 t	۲-t	000	35 6 55	17 6 24
Lodging Hotel 213 Hotel Parking Available for Shared Use Dedicated Hotel Parking	213 for Shared	rooms Use	1.05	Town Code	224 11 213	0.0%	o	224 11 0	9 213	9 213	10	9 213	8 213 2	8 213 2	8 8 213 2	8 8 213 2.	8 8 213 213	9 3 213	9 213	9 1 213	9 213	9 213	10 213	10 213	10 213	10 213	11 213	8 213
TOTAL					1,005			896	302	343	441	582	712 7	758 8	810 8:	829 8	818 79	790 721	1 511	351	341	318	278	263	246	231	906	829
																										Juniper	Juniper Springs Total	26 855
																				ř	otal Pa	rking	Propo	sed to	8	Total Parking Proposed to Be Constructed On Site Parking Shorffall	On Site	544 -311
Note 1: Estimated walking trips from nearby residences.	rom nearby re	sidences.																					l					

Note 2. As the SKI School / Day Care parking will be provided as drop-off spaces and peak parking demand is assumed to occur during A.M. peak hour of skier traffic, all drop-off parking spaces were assumed to be utilized during A.M. peak hour and not available for shared parking.

PARKING STUDY - FEBRUARY 2006 - CAR COUNTS

MOITAGE LACE EL OCATOR	2/12/2006	2/18/2006	9002	2/25	2/25/2006
LITTE EAGLE LOCATION	(SUNDAY≈ 11am-12pm)	(SATURDAY≈ 12pm-1pm)	, 12pm-1pm)	(SATURDA)	(SATURDAY≈ 12pm-1pm)
CHAIR 15 PARKING LOT	237	219		224	
CHAIR 15 EMPLOYEE LOT	25 271	27	253	27	_ 260
CHAR 15 LOADING ZONE	6	7		6	
NORTH MERIDIAN BLVD	69	79	117	77	
SOUTH MERIDIAN BLVD	73 142	75	461	83	- 160
COMBINED LOT & STREET PARKING	413		407		420
Skier Count	14897	20225		17968	
CANYON LODGE LOCATION	2/11/2006	2/18/2006	9002	2/25	2/25/2006

CANYON LODGE LOCATION	2/11/2006	2/18/2006	2006	2/25	2/25/2006
CANTON LODGE LOCATION	(SUNDAY-11am-12pm)	(SATURDAY	(SATURDAY-12pm-1pm)	(SATURDA	(SATURDAY-12pm-1pm)
CANYON LODGE LOT	290	275		294	
CANYON LODGE LOADING ZONE	35 325	45	320	29	- 323
NORTH CANYON BLVD		30	1	-	
SOUTH CANYON BLVD		40	L 02	35	- 36
EAST FOREST TRAIL	7	2			
WEST FOREST TRAIL		0	n	2	m
NORTH RAINBOW LANE	94	58		69	
SOUTH RAINBOW LANE	58 132	70	128	86	- 155
NORTH LAKEVIEW BLVD	58	36		32	
SOUTH LAKEVIEW BLVD	/cl 66	100	136	134	- 166
EAST WARMING HUT II RD	98	28	3	31	
WEST WARMING HUT II RD	000	61	<u></u>	65	96
EAST MAMMOTH SLOPES DR		2	1	16	
WEST MAMMOTH SLOPES DR		0	`	0	9.
COMBINED LOT & STREET PARKING	727		755		795
count by:	pab		pr		ъ

----Original Message----

From: Becky [mailto:becky@lsctahoe.com] Sent: Wednesday, November 10, 2004 3:43 PM To: Sonja Brynelsen; Bill Taylor; Peter Bernasconi

Cc: "Sara Hertel"@server.exwire.com Subject: Mammoth LOS Standards

Hello all,

LSC is currently working on running the LOS calculations for the 2004 and four 2024 alternatives conditions. We propose to use the following LOS thresholds in our analysis, consistent with the Airport EIR:

For Signalized Intersections: Total intersection LOS D or better must be maintained. Therefore, if a signalized intersection is found to operate at a total intersection LOS E or F, we will assume mitigation is required. For Unsignalized Intersections: Approach intersection LOS D or better must be maintained. For example, if the minor street approach at an unsignalized two-way stop-controlled intersection operates at LOS E or F, then mitigation will be required.

Please let us know if you see fault in this approach as soon as possible. In the meantime, we will proceed with the LOS thresholds stated above.

Becky

Rebecca L. Bucar Transportation Engineer LSC Transportation Consultants, Inc. 2690 Lake Forest Rd. / PO Box 5875 Tahoe City, California 96145 P: (530)583-4053 F: (530)583-5966 becky@lsctahoe.com

Appendix B Level of Service Calculations

2005 No Project LOS

Page 1-1 Tue Jun 13, 2006 08:30:13 2005

> Eagle Lodge EIR 2005 No Project

Scenario Report

Scenario: 2005

Command: WO/ Proj
Volume: PM
Geometry: Default Geometry
Impact Fee: Default Impact Fee
Trip Generation: PM
Trip Distribution: Default Trip Distribution
Paths: Default Paths
Routes: Default Routes
Configuration: Future

2005 No Project

Turning Movement Report PM

Volume Type		orthbo Thru			outhbo Thru			astboi Thrii	ınd Right		estbou Thru		Total Volume
турс	DCTC	IIII a	n gire	2020	11114	50	2020					5	
#1 OLD	MAIN	1											
Base	346	0	60	0	0	0	0	301	648	84	275	0	1714
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	346	0	60	0	0	0	0	301	648	84	275	0	1714
#2 MER	IDIAN	OLDM											
Base	117	260	100	100	327	132	158	145	120	129	161	124	1873
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	117	260	100	100	327	132	158	145	120	129	161	124	1873
#3 MINA	ARET/N	MERIDI.	AN										
Base	14	87	23	161	187	70	97	333	30	23	178	97	1300
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	14	87	23	161	187	70	97	333	30	23	178	97	1300
#4 MINA	ARET/M	IAIN											
Base	124	120	60	540	205	132	90	471	155	69	345	90	2401
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	124	120	60	540	205	132	90	471	155	69	345	90	2401
#5 KELI	LY/LAF	(E MAR	Y										
Base	20	0	35	0	0	0	0	39	4	40	65	0	203
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	20	0	35	0	0	0	0	39	4	40	65	0	203
#6 MERI	DIAN	/ MAJ	ESTIC	PINES	(EAST)							
Base	0	. 0	2	78	0	20	16	253	9	9	162	69	618
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	2	78	0	20	16	253	9	9	162	69	618
#7 MER]	DIAN/	MAJES'	TIC PI	NES (W	EST)								
Base	3	10	24	199	22	2	1	15	3	46	20	90	435
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	3	10	24	199	22	2	1	15	3	46	20	90	435

Eagle Lodge EIR 2005 No Project

2005 NO Project

Impact Analysis Report Level Of Service

In	tersection	Base Del/ V/	Future Del/ V/	Change in
#	1 OLDM/MAIN	LOS Veh C C 22.9 0.871	LOS Veh C C 22.9 0.871	+ 0.000 D/V
#	2 MERIDIAN/OLDM	C 21.4 0.719	C 21.4 0.719	+ 0.000 D/V
#	3 MINARET/MERIDIAN	C 20.5 0.674	C 20.5 0.674	+ 0.000 D/V
#	4 MINARET/MAIN	C 20.8 0.784	C 20.8 0.784	+ 0.000 D/V
#	5 KELLY/LAKE MARY	A 1.5 0.000	A 1.5 0.000	+ 0.000 D/V
#	6 MERIDIAN / MAJESTIC PINES (EAS	В 1.6 0.000	B 1.6 0.000	+ 0.000 D/V
#	7 MERIDIAN?MAJESTIC PINES (WEST)	A 8.9 0.323	A 8.9 0.323	+ 0.000 V/C

				20	05 No	Projec	t					
	2000	HCM C	perati	ons M	ethod	Computa (Base	Volum	e Alte	ernativ	re)		
****				****	****	*****	****	* * * * * *	*****	****	* * * * * *	*****
Intersection	#1 0	LDM/M/	IN				++++					
	****			****							0.87	
Cycle (sec):	,	80		4		Critica Average					22.	
Loss Time (se				= 4 :		Level 0			2/ VEII/ .		22.	. C
Optimal Cycle	:: :****	38 *****) *****	****	****	*****	*****	* * * * * *	*****	****	****	
Approach:		rth Bo			ith Bo			ast Bo			est Bo	
Movement:	L		- R		- T			- T			- T	
Control:		rotect				ted		ot+Per			ot+Per	
Rights:		Inclu	ıde		Inclu	ıde		Inclu	ıde		Inclu	ıde
Min. Green:	0	0	0	0	0	0	0		0	0	0	0
Lanes:	1	0 0	0 1	0 (0 0	0 0	0 (. 1 (0 2	0 0
									- -			
Volume Module				_	_			0.05	c 4 0	0.4	075	•
Base Vol:	346	0	60	0	0	0	0	301	648	84	275	0
Growth Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00 275	1.00
Initial Bse:	346	0	60	0	0	0	1 00	301	648	84	1.00	1.00
User Adj:		1.00	1.00		1.00	1.00 0.90		1.00	1.00		0.90	0.90
PHF Adj:		0.90	0.90 67	0.90	0.90	0.90	0.90	334	720	93	306	0.50
PHF Volume:	384 0	0	0	0	0	0	0	0	720	0	0	0
Reduct Vol: Reduced Vol:	384	0	67	0	0	0	0	334	720	93	306	0
PCE Adj:		1.00	1.00	_	1.00	1.00		1.00	1.00	1.00		1.00
MLF Adj:		1.00	1.00	1.00		1.00		1.00	1.00	1.00		1.00
Final Vol.:	384	0	67	0	0	0	0	334	720	93	306	0
Saturation Fl				1						•		
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.93	1.00	0.83	1.00	1.00	1.00	1.00	0.90	0.81	0.90		1.00
Lanes:	1.00	0.00	1.00	0.00	0.00	0.00		2.00	1.00	1.00		0.00
Final Sat.:	1769	0	1583	0	0	0		3437	1537	1718		0
					- -			- -				
Capacity Anal				0 00	0 00	0 00	0 00	0 10	0 47	0.05	0 00	0.00
Vol/Sat:		0.00	0.04	0.00	0.00	0.00	0.00	0.10	0.47 ****	****	0.09	0.00
Crit Moves:	****	0 00	0.25	0.00	0 00	0.00	0 00	0.54	0.54	0.65	0 60	0.00
Green/Cycle:	0.25		0.25 0.17	0.00		0.00		0.18	0.87	0.15		0.00
Volume/Cap: Delay/Veh:	45.6	0.00	23.7	0.0	0.0	0.00	0.0	9.5	26.0	5.4	7.0	0.0
User DelAdj:			1.00	1.00		1.00		1.00	1.00	1.00		1.00
AdjDel/Veh:	45.6	0.0	23.7	0.0	0.0	0.0	0.0	9.5	26.0	5.4	7.0	0.0
HCM2kAvq:	13	0	1	0	0	0	0	2	19	1	2	0
********					-		****	****	****	*****	****	****

_____ Eagle Lodge EIR 2005 No Project Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #1 OLDM/MAIN ******************** Cycle (sec): 80 Critical Vol./Cap. (X): 0.871 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle:OPTIMIZED Level Of Service: ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____|___| _____| Volume Module: Base Vol: 346 0 60 0 0 0 301 648 84 275 0 Initial Bse: 346 0 60 0 0 0 0 301 648 84 275 0 Added Vol: 0 0 0 0 0 0 0 0 0 0 Final Vol.: 384 0 67 0 0 0 334 720 93 306 0 _____|___|___| Saturation Flow Module: Final Sat.: 1769 0 1583 0 0 0 0 3437 1537 1718 3437 0 _____| ____| ____| ____| ____| ____| ____| ____| ____| Capacity Analysis Module: Vol/Sat: 0.22 0.00 0.04 0.00 0.00 0.00 0.10 0.47 0.05 0.09 0.00 Crit Moves: **** AdjDel/Veh: 45.6 0.0 23.7 0.0 0.0 0.0 9.5 26.0 5.4 7.0 0.0 HCM2kAvg: 13 0 1 0 0 0 0 2 19 1 2 0

				20	05 No	Projec	t					
*****	2000	нсм с	perati	ons Me	ethod	Computa (Base	Volum	e Ālte	ernativ	e)		* * * * * * *
Intersection	#2 M	ERIDI <i>A</i>	AN/OLDM	Ī								
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	45 16 53	5 5 (Y+R 3	= 4 :	sec) A	Critica Average Level O	l Vol Dela f Ser	./Cap. y (sec vice:	(X): c/veh):		0.73 21	19 .4 C
Approach: Movement:	No:	rth Bo - T	ound - R	Son L	uth Bo - T	ound	E: L	ast Bo - T	ound - R	W.	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	' Р: О	rotect Inclu 0	ed ide 0	, P: 0	rotect Incl	ed ide 0	Sp.	lit Ph Inclu 0	nase	Spi	lit Pl Incl	nase ude 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.: Saturation F	117 1.00 117 1.00 0.90 130 0 1.00 1.00 1.00	260 1.00 260 1.00 0.90 289 0 289 1.00 1.00 289	100 1.00 1.00 0.90 111 0 111 1.00 1.00	100 1.00 100 1.00	327 1.00 327 1.00 0.90 363 0 363 1.00	132 1.00 132 1.00 0.90 147 0 147 1.00 1.00	158 1.00 158 1.00 0.90 176 0 176 1.00 1.00	145 1.00 145 1.00 0.90 161 0 161 1.00 1.00 161	120 1.00 120 1.00 0.90 133 0 133 1.00 1.00	129 1.00 0.90 143 0 143 1.00 1.00	161 1.00 161 1.00 0.90 179 0 1.00 1.00	124 1.00 124 1.00 0.90 138 0 138 1.00 1.00
Sat/Lane: Adjustment: Lanes: Final Sat.:	1900 0.93 1.00 1769	1900 0.98 1.00 1862	1900 0.83 1.00 1583	1900 0.93 1.00 1769	0.98 1.00 1862	1900 0.83 1.00 1583	0.93 1.00 1769	1900 0.87 1.09 1804	1900 0.87 0.91 1493	0.93 1.00 1769	1900 0.87 1.13 1869	1900 0.87 0.87 1439
Capacity Anal Vol/Sat: Crit Moves: Green/Cycle: Volume/Cap: Delay/Veh: User DelAdj: AdjDel/Veh: HCM2kAvg:	lysis 0.07 **** 0.10 0.72 32.7 1.00 32.7 4	Modul 0.16 0.27 0.58 16.1 1.00 16.1	0.07 0.27 0.26 13.4 1.00 13.4	0.06 0.11 0.58 23.7 1.00 23.7	**** 0.27 0.72 19.8 1.00 19.8 6	0.09 0.27 0.34 13.6 1.00 13.6 2	**** 0.14 0.72 28.5 1.00 28.5 4	0.09 0.14 0.65 21.6 1.00 21.6 3	0.09 0.14 0.65 21.6 1.00 21.6 3	0.13 0.61 23.0 1.00 23.0	0.72 24.4 1.00 24.4 4	0.10 **** 0.13 0.72 24.4 1.00 24.4 4

					-	Projec						
						-						
						Computa				۵)		
*****	2000 ****	HCM (perati	****	*****	(Base	****	*****	*****	****	****	*****
Intersection												
*****					****	*****	****	*****	****	****	****	* * * * * *
Cycle (sec):		45	5			Critica					0.6	
Loss Time (s			(Y+R	= 4		Average			c/veh):		20	
Optimal Cycl	e:	50				Level O						C
_					uth Bo			ast Bo			est Bo	_
Approach: Movement:	I L	rth Bo - T	- R		ucn bo - T			авс вс - Т			- Т	
Movement:												
Control:	1	lit Ph			lit Ph		•	lit Ph	•	•	lit Ph	•
Rights:		Inclu		-	Inclu		-	Inclu	ıde	-	Inclu	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:		-	1 0	. 1	0 0	1 0	. 1	0 1	1 0	1	0 1	1 0
	1											
Volume Module		0.7	2.2	1.61	107	70	97	333	30	23	178	97
Base Vol: Growth Adj:	14	87 1.00	23 1.00	161	187 1.00	1.00	1.00		1.00		1.00	1.00
Initial Bse:	1.00	87	23	161	187	70	97	333	30	23	178	97
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj:		0.90	0.90		0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
PHF Volume:	16	97	26	179	208	78	108	370	33	26	198	108
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	16	97	26	179	208	78	108	370	33	26	198	108
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00 78	1.00	1.00 370	1.00	26	1.00	1.00 108
Final Vol.:	16	97	26	179	208	/8 		370				
Saturation F	1		,			i	1		ı	I		I
Sat/Lane:		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:		0.95	0.95		0.94	0.94	0.93	0.92	0.92	0.93	0.88	0.88
Lanes:	1.00	0.79	0.21	1.00	0.73	0.27	1.00	1.83	0.17	1.00	1.29	0.71
Final Sat.:	1769	1427	377	1769	1299	486		3206	289		2169	1182
	l											
Capacity Anal				0 10	0 16	0 16	0 00	0 10	0.12	0 01	0.09	0.09
Vol/Sat:	0.01	0.07 ****	0.07	0.10	0.16	0.16	0.06	0.12	0.12	0.01	****	0.09
Crit Moves: Green/Cycle:	0 10		0.10	0.24	0.24	0.24	0.17	0.17	0.17	0.14		0.14
Volume/Cap:		0.10	0.67		0.67	0.67		0.67	0.67	0.11		0.67
Delay/Veh:		29.1	29.1	15.3		19.8		20.5	20.5	17.3	22.5	22.5
User DelAdj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
AdjDel/Veh:		29.1	29.1	15.3		19.8		20.5	20.5	17.3		22.5
HCM2kAvg:	0	3	3	3	5				4	0	4	4
*****	****	****	****	*****	****	****	****	****	****	****	****	****

._____ Eagle Lodge EIR 2005 No Project Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************* Intersection #3 MINARET/MERIDIAN ***************** Cycle (sec): 45 Critical Vol./Cap. (X): 0.674
Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): 20.5
Optimal Cycle:OPTIMIZED Level Of Service: C ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Split Phase
 Split Phase
 Split Phase
 Split Phase
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td _____| Volume Module: Base Vol: 14 87 23 97 333 30 23 178 97 161 187 70 Initial Bse: 14 87 23 161 187 70 97 333 30 23 178 97 Reduced Vol: 16 97 26 179 208 78 108 370 33 26 198 108 Final Vol.: 16 97 26 179 208 78 108 370 33 26 198 108 Saturation Flow Module: Lanes: 1.00 0.79 0.21 1.00 0.73 0.27 1.00 1.83 0.17 1.00 1.29 0.71 Final Sat.: 1769 1427 377 1769 1299 486 1769 3206 289 1769 2169 1182 _____| Capacity Analysis Module: Vol/Sat: 0.01 0.07 0.07 0.10 0.16 0.16 0.06 0.12 0.12 0.01 0.09 0.09 *** *** *** *** Crit Moves: AdjDel/Veh: 18.6 29.1 29.1 15.3 19.8 19.8 17.2 20.5 20.5 17.3 22.5 22.5 HCM2kAvq: 0 3 3 3 5 5 2 4 4 0 4 4

2005 No Project												
Level Of Service Computation Report												
	2000 HCM Operations Method (Base Volume Alternative)											

Intersection #4 MINARET/MAIN ************************************												
Cycle (sec): 40 Critical Vol./Cap. (X) : 0.784 Loss Time (sec): 12 $(Y+R = 4 \text{ sec})$ Average Delay (sec/veh) : 20.8												
Optimal Cycle: 50 Level Of Service: C												
*****	* * * * *	****	*****	* * * *	****	****	****	****	****	****	****	*****
Approach:	Nor	th Bo	und		uth Bo			ast Bo			est Bo	
Movement:	. L -	- T	- R	L	- T	- R		- T			- T	
Control: Rights:	Spi	it Ph. Inclu		Sp.	Inclu	ase de	Sp	lit Ph Inclu		sp	lit Ph Inclu	
Min. Green:	0	0	0	0		0	0		0	0		0
Lanes:	1 0			2	_	-	1			_	0 2	0 1
Volume Module	2:											
Base Vol:	124	120	60	540	205	132	90	471	155	69	345	90
Growth Adj:	1.00		1.00		1.00	1.00		1.00 471	1.00	1.00	1.00	1.00 90
Initial Bse: User Adj:	124	120	60 1.00	540	205 1.00	132 1.00	90	1.00	155 1.00		1.00	1.00
PHF Adj:	0.90		0.90		0.90	0.90		0.90	0.90		0.90	0.90
PHF Volume:	138	133	67	600	228	147	100	523	172	77	383	100
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	138	133	67	600	228	147	100	523	172	77	383	100
PCE Adj:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
Final Vol.:	138	133	67	600	228	147	100	523	172	77	383	100
Saturation Fl	ļ .			ļ		I	Ţ		ı	1		}
Sat/Lane:	1900		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	0.91	0.96	0.82	0.92	0.94	0.94	0.93	0.93	0.83	0.90	0.90	0.81
Lanes:	1.00		1.00		0.61	0.39		2.00	1.00		2.00	1.00
Final Sat.:	1734		1551		1087	700		3538	1583		3437	1537
Capacity Anal						}	1					
Vol/Sat:	0.08		0.04	0.17	0.21	0.21	0.06	0.15	0.11	0.04	0.11	0.07
Crit Moves:	****				****			****			***	
Green/Cycle:	0.10	0.10	0.10	0.27	0.27	0.27	0.19	0.19	0.19	0.14	0.14	0.14
Volume/Cap:	0.78		0.42		0.78	0.78		0.78	0.58		0.78	0.46
Delay/Veh:	37.7		18.7		21.8	21.8		21.5	17.5	16.1		17.2
User DelAdj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
AdjDel/Veh:	37.7 4	30.3	18.7 1	14.5	21.8 7	21.8 7	14.5	21.5 6	17.5 3	16.1 1	24.6 5	17.2 2
HCM2kAvg:	4			_	, ,	/ 		-		_	-	_

_____ Eagle Lodge EIR 2005 No Project ______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************* Intersection #4 MINARET/MAIN ************************ Cycle (sec): 40 Critical Vol./Cap. (X): 0.784 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle:OPTIMIZED Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R _____|__|__|
 Control:
 Split Phase
 Split Phase
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 1
 0
 1
 0
 2
 0
 1
 1
 0
 2
 0
 1
 _____| Volume Module: 69 345 90 Base Vol: 124 120 60 540 205 132 90 471 155 Initial Bse: 124 120 60 540 205 132 90 471 155 69 345 90 PHF Volume: 138 133 67 600 228 147 100 523 172 77 383 100 1.00 _____ Saturation Flow Module: Adjustment: 0.91 0.96 0.82 0.92 0.94 0.94 0.93 0.93 0.83 0.90 0.90 0.81 Lanes: 1.00 1.00 1.00 2.00 0.61 0.39 1.00 2.00 1.00 1.00 2.00 1.00 Final Sat.: 1734 1825 1551 3500 1087 700 1769 3538 1583 1718 3437 1537 -----|----|-----||------||------| Capacity Analysis Module: Vol/Sat: 0.08 0.07 0.04 0.17 0.21 0.21 0.06 0.15 0.11 0.04 0.11 0.07 Crit Moves: **** **** Green/Cycle: 0.10 0.10 0.10 0.27 0.27 0.27 0.19 0.19 0.19 0.14 0.14 0.14 Volume/Cap: 0.78 0.72 0.42 0.64 0.78 0.78 0.30 0.78 0.58 0.31 0.78 0.46 Delay/Veh: 37.7 30.3 18.7 14.5 21.8 21.8 14.5 21.5 17.5 16.1 24.6 17.2 AdjDel/Veh: 37.7 30.3 18.7 14.5 21.8 21.8 14.5 21.5 17.5 16.1 24.6 17.2 HCM2kAvg: 4 3 1 5 7 7 1 6 3 1 5 2

Eagle Lodge EIR 2005 No Project ______ Level Of Service Computation Report 1994 HCM Unsignalized Method (Base Volume Alternative) ******************* Intersection #5 KELLY/LAKE MARY ********************** Average Delay (sec/veh): 1.5 Worst Case Level Of Service: A ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 20 0 35 0 0 0 39 4 40 65 Initial Bse: 20 0 35 0 0 0 0 39 4 40 65 0 PHF Volume: 22 0 39 0 0 0 0 43 4 44 72 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 22 0 39 0 0 0 0 43 4 44 72 0 Adjusted Volume Module: _____| Critical Gap Module: -----| Capacity Module: Level Of Service Module: Α Α ApproachLOS: Α

Traffix 7.7.0715 (c) 2004 Dowling Assoc. Licensed to LSC DENVER

Eagle Lodge EIR 2005 No Project

Level Of Service Computation Report 1994 HCM Unsignalized Method (Future Volume Alternative) ******************* Intersection #5 KELLY/LAKE MARY ****************** Average Delay (sec/veh): 1.5 Worst Case Level Of Service: A ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R _____| _____|___|___| Volume Module: Base Vol: 20 0 35 0 0 0 39 4 40 65 0 Initial Bse: 20 0 35 0 0 0 0 39 4 40 65 0 Added Vol: 0 0 0 0 0 0 0 0 0 0 0 Adjusted Volume Module: 0% 08 0% Grade: Trck/Cmb PCE: xxxx xxxx xxxx xxxx xxxx Adj Vol.: 24 0 43 0 0 0 Critical Gap Module: -----| Capacity Module:

Level Of Service Module:

Traffix 7.7.0715 (c) 2004 Dowling Assoc. Licensed to LSC DENVER

2005 No Project Level Of Service Computation Report 1994 HCM Unsignalized Method (Base Volume Alternative) ***************** Intersection #6 MERIDIAN / MAJESTIC PINES (EAST) *************** Average Delay (sec/veh): 1.6 Worst Case Level Of Service: B ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| Volume Module:
Base Vol: 0 0 9 162 2 78 0 20 16 253 9 Initial Bse: 0 0 2 78 0 20 16 253 9 9 162 69 PHF Volume: 0 0 2 87 0 22 18 281 10 10 180 77 Reduct Vol: 0 0 0 2 87 0 22 18 281 10 10 180 77 _____| Adjusted Volume Module:
 Grade:
 0%
 0%
 0%

 % Cycle/Cars:
 xxxx xxxx
 xxxxx
 xxxxx
 xxxxx
 xxxxx
 xxxx
 xxxx</t _____|___|___| Critical Gap Module: -----| Capacity Module: Cnflict Vol: xxxx xxxx 146 527 xxxx 128 257 xxxx xxxxx 291 xxxx xxxxx Level Of Service Module: Stopped Del:xxxxx xxxx 3.1 9.2 xxxx 3.1 2.9 xxxx xxxxx 3.0 xxxx xxxxx LOS by Move: * * A * * * A * * * A * * * A * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT Shared Cap.: xxxx xxxxx xxxxx xxxxx 543 xxxxx 1248 xxxx xxxxx 1196 xxxx xxxxx Shared LOS: * * * B * A * * A * * ApproachDel: 3.1 8.3 0.2 0.1 ApproachLOS: Α В Α Α

Traffix 7.7.0715 (c) 2004 Dowling Assoc. Licensed to LSC DENVER

2005 No Project ______ Level Of Service Computation Report 1994 HCM Unsignalized Method (Future Volume Alternative) ******************* Intersection #6 MERIDIAN / MAJESTIC PINES (EAST) *********************** Average Delay (sec/veh): 1.6 Worst Case Level Of Service: B ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Lanes: 0 0 0 0 1 0 0 1! 0 0 0 1 0 1 0 1 0 1 0 _____| Volume Module:
Base Vol: 0 0 2 78 0 20 16 253 9 9 162 Initial Bse: 0 0 2 78 0 20 16 253 9 9 162 69 Added Vol: 0 0 0 0 0 0 0 0 0 0

 Initial Bse:
 0
 0
 2
 78
 0
 20
 16
 253
 9
 9
 162
 69

 Added Vol:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Adjusted Volume Module: 0 % Grade: 0% 0 응 Trck/Cmb PCE: xxxx xxxx Adj Vol.: 0 0 2 95 0 24 20 281 10 11 180 77 Critical Gap Module: _____|___|___| Capacity Module: Level Of Service Module: Stopped Del:xxxxx xxxx 3.1 9.2 xxxx 3.1 2.9 xxxx xxxxx 3.0 xxxx xxxxx LOS by Move: * * A * * * A * * * A * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT Shared Cap.: xxxx xxxx xxxxx xxxx 543 xxxxx 1248 xxxx xxxxx 1196 xxxx xxxxx Shared LOS: * * * * B * A * * A * ApproachDel: 3.1 8.3 0.2 0.1 В Α Α Α ApproachLOS:

Traffix 7.7.0715 (c) 2004 Dowling Assoc. Licensed to LSC DENVER

Eagle Lodge EIR 2005 No Project

	2005 NO FIOJECE											
Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ***********************************												
Intersection #7 MERIDIAN?MAJESTIC PINES (WEST)												
**************************************											0.32 8.	23 9 A
Approach: Movement:	Noi L	cth Bo - T	und - R	Soi L	uth Bo - T	und - R	Ea L -	ast Bo - T	ound - R	We L -	st Bo	ound - R
Control: Rights:	St	op Si Inclu	gn de	SI	top Si Inclu	gn		op Si Inclu	.gn	St	op Si Inclu	.gn
Min. Green: Lanes:	0 (0	0 0		0 1!		0 (1!	0 0	1 0	0	1 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:	3 1.00 3 1.00 0.90 3 0 3 1.00 1.00 3 1	10 1.00 1.00 0.90 11 0 11 1.00 1.00 11 	24 1.00 24 1.00 0.90 27 0 27 1.00 1.00 27	199 1.00 199 1.00 0.90 221 0 221 1.00 1.00 221 1.00	22 1.00 22 1.00 0.90 24 0 24 1.00 1.00 24	2 1.00 2 1.00 0.90 2 0 2 1.00 1.00 2 	1.00 1.00 0.90 1 0 1.00 1.00 1.00 1.00	15 1.00 15 1.00 0.90 17 0 17 1.00 1.00 17	3 1.00 3 1.00 0.90 3 0 3 1.00 1.00 3	46 1.00 46 1.00 0.90 51 1.00 1.00 51 1	20 1.00 20 1.00 0.90 22 0 22 1.00 1.00 22	90 1.00 90 1.00 0.90 100 100 1.00 1.00 1
Capacity Anal Vol/Sat: Crit Moves: Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move: ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:	7.5 1.00 7.5 A	Modul 0.05 **** 7.5 1.00 7.5 A 7.5 1.00 7.5	e: 0.05 7.5 1.00 7.5 A	0.32 9.7 1.00 9.7 A	0.32 **** 9.7 1.00 9.7 A 9.7 1.00 9.7	9.7 1.00 9.7 A	0.03 7.9 1.00 7.9 A	0.03 7.9 1.00 7.9 A 7.9 1.00 7.9	0.03 **** 7.9 1.00 7.9 A	0.08 8.9 1.00 8.9 A	0.16 **** 8.2 1.00 8.2 A 8.4 1.00 8.4	0.16 8.2 1.00 8.2 A

Eagle Lodge EIR 2005 No Project ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative) ********************** Intersection #7 MERIDIAN?MAJESTIC PINES (WEST) ********************** Cycle (sec): 100 Critical Vol./Cap. (X): 0.323 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____|___|___| Volume Module:
Base Vol: 3 10 24 199 22 1 15 3 46 20 90 2 Final Vol.: 3 11 27 221 24 2 1 17 3 51 22 100 _____|___|___| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.05 0.05 0.05 0.32 0.32 0.32 0.03 0.03 0.03 0.08 0.16 0.16

2009 No Project LOS

Page 1-1 2009 No Project Tue Jun 20, 2006 11:50:37 Page 1-1 Tue Jun 20, 2006 11:50:37

Eagle Lodge EIR

Scenario Report

Scenario: 2009 No Project

W/ Proj

W/ Proj

Volume: PM

Geometry: Default Geometry

Impact Fee: Default Impact Fee

Trip Generation: PM

Trip Distribution: Default Trip Distribution

Paths: Default Paths

Routes: Default Routes

Configuration: Future

2009 No Project	Tue Jun 20, 2006 11:50:37 Page 2-1										
Eagle Lodge EIR											
Trip Generation Report											
Forecast for PM											
Zone # Subzone Am	ount Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips					
Zone 2 Sub	1.00 Base Lodge total			101 101	223 223		100.0				
TOTAL					223	324	100.0				

2009 No Project Tue Jun 20, 2006 11:50:37													
	Eagle Lodge EIR												
	Trip Distribution Report												
Percent Of Trips Default													
To Gates 1 2 5 6 7 8 9 10 11 12 14													
Zone	1	2	5 -	6	7 	8	9	10	11	12	14		
2	11.0	0.0	1.0	2.0	5.0	4.0	11.0	2.0	9.0	18.0	14.0		
			Gates										
Zone	15 	16	17 	18	19								

2 4.0 5.0 10.0 2.0 2.0

2009 No Project Tue Jun 20, 2006 11:50:37 Page 4-1 Eagle Lodge EIR

Turning Movement Report PM

Volume Type		orthb Thru	ound Right		outhbo Thru	ound Right		astboı Thru	und Right		estbo Thru		Total Volume
	. /	_											
#1 OLD	•		4.0	•	_	^	0	204	668	70	285	0	1730
Base	346	0	48	0	0	0	0	304		79	285 0	0	1/30
Added	0	0	9	0	0	0	0	0	0	4 83	285	0	1743
Total	346	0	57	0	0	0	0	304	668	83	285	U	1/43
#2 MER	IDIAN,	OLDM/											
Base	122	305	73	131	385	106	101	173	141	122	192	148	1999
Added	2	0	0	0	0	18	40	22	4	0	10	0	96
Total	124	305	73	131	385	124	141	195	145	122	202	148	2095
#3 MINARET/MERIDIAN													
Base	20	112	24	166	187	48	60	269	5	23	174	139	1227
Added	18	0	0	0	0	15	33	91	40	0	41	0	238
Total	38	112	24	166	187	63	93	360	45	23	215	139	1465
#4 MINARET/MAIN													
	176	137	45	586	203	132	90	509	323	58	386	144	2789
Base		137	11	0	203	132	0	0	4	5	0	0	34
Added	8		56	586	205	132	90	509	327	63	386	144	2823
Total	184	141	56	586	205	134	90	503	321	0.5	300	111	2023
#5 KELI	LY/LAI												
Base	21	0	33	0	0	0	0	123	137	34	60	0	408
Added	1	0	1	0	0	0	0	1	1	1	3	0	8
Total	22	0	34	0	0	0	0	124	138	35	63	0	416
#6 MER	IDIAN	/ MA	JESTIC	PINES	(EAST	r)							
Base	0	0	2	120	0	12	32	70	9	9	55	107	416
Added	0	0	0	0	0	10	23	176	0	0	80	0	289
Total	0	0	2	120	0	22	55	246	9	9	135	107	705
#7 MER	TDTAN	MAJE	STIC P	INES (V	WEST)								
Base	3	0	48	0	0	0	0	15	3	46	20	0	135
Added	0	11	0	198	25	0	0	0	0	0	0	90	324
Total	3	11	48	198	25	0	0	15	3	46	20	90	459
#8 MER	IDIAN	/Bug/:	Auto Di	con Off	<u>-</u>								
#0 MEK.	O LDTWN	оць/ <i>1</i> О	0	0	. 0	0	0	61	0	0	62	0	123
Added	0	0	0	0	0	0	0	198	0	0	90	0	288
Total	0	0	0	0	0	0	0	259	0	Ô	152	0	411
TOLAL	U	U	U	J	J	U	U	200	Ü	J		Ū	

2009 No Project Tue Jun 20, 2006 11:50:37 Page 5-1 Eagle Lodge EIR

_____ Link Volume Report

PM

						1.1.1							
Volume	me NB Link SB Link							EB L	ink		WB L:	ink	Total
Type	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	Volume
#1 OLDM	/MAI	N											
Base	394		1141	0	0	0	972	631	1603	364	352	716	3460
Added	9		13	0	0	0	0	0	0	4	9	13	26
Total	403	751	1154	0	0	0	972	631	1603	368	361	729	3486
#2 MERIDIAN/OLDM													
Base	500	648	1148	622	554	1176	415	420	835	462	377	839	3998
Added	2	4	6	18	40	58	66	30	96	10	22	32	192
Total	502	652	1154	640	594	1234	481	450	931	472	399	871	4190
#3 MINA	,												
Base	156	215	371	401	311	712	334	242	576	336	459	795	2454
Added	18	40	58	15	33	48	164	74	238	41	91	132	476
Total	174	255	429	416	344	760	498	316	814	377	550	927	2930
#4 MINARET/MAIN													
Base	358	584	942	921	371	1292	922	694	1616	588	1140	1728	5578
Added	23	11	34	2	4	6	4	8	12	5	11	16	68
Total	381	595	976	923	375	1298	926	702	1628	593	1151	1744	5646
0.5 TED T	/ T. D.												
#5 KELL	,		225	0	0	0	260	81	341	94	156	250	816
Base	54	171		0	0	0	∠60 2	4	541	24 4	2	230	16
Added	2 56	2 173	4 229	0	0	0	262	85	347	98	158	256	832
Total	ОC	1/3	223	U	U	V	202	65	347	70	150	230	032
#6 MERI	DIAN	/ MAJ	ESTIC	PINES	(EAST	?)							
Base	2	18	20	132	139	271	111	67	178	171	192	363	832
Added	0	0	0	10	23	33	199	90	289	80	176	256	578
Total	2	18	20	142	162	304	310	157	467	251	368	619	1410
#7 MERI	יא א ד ח	2MA.TES	יידר פו	NES (V	VEST)								
Base	51	49	100	0	0	0	18	23	41	66	63	129	270
Added	11	25	36	223	101	324	0	0	0	90	198	288	648
Total	62	74	136	223	101	324	18	23	41	156	261	417	918
IOCAI	02	, -1	130	دعد		-21	10	20	1.1		_01	/	210
#8 MERI		•		_									
Base	0	0	0	0	0	0	61	62	123	62	61	123	246
Added	0	0	0	0	0	0	198	90	288	90	198	288	576
Total	0	0	0	0	0	0	259	152	411	152	259	411	822

2009 No Project	Tue Jun 20, 20	06 11:50:38	8	Pag	ge 6-1
	Eagle Lod	ge EIR			
	Signal Warrant S	ummary Repo	ort		
Intersection		Base Met	t	Future	Met
		[Del / Vo	ol]	[Del /	Vol]
# 5 KELLY/LAKE MARY		??? / ??	??	No /	No
# 6 MERIDIAN / MAJESTIC	PINES (EAST)	??? / ??	??	No /	No
# 7 MERIDIAN?MAJESTIC F		??? / ??	??	No /	No
# 8 MERIDIAN/Bus/Auto D		333 \ 33	??	No /	No

2009 No Project ______ Eagle Lodge EIR ______ Peak Hour Delay Signal Warrant Report ******************* Intersection #5 KELLY/LAKE MARY ***************** Future Volume Alternative: Peak Hour Warrant NOT Met Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ -----| Approach[northbound][lanes=1][control=Stop] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=59] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3] [total volume=438] FAIL - Total volume less than 650 for intersection with less than four approaches.

Signal Warrant Rule #3: [approach count=4] [total volume=742] FAIL - Total volume less than 800 for intersection

with four or more approaches.

Page 8-1 Tue Jun 20, 2006 11:50:38 2009 No Project ______ Eagle Lodge EIR _______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #1 OLDM/MAIN ****************** Cycle (sec): 75 Critical Vol./Cap. (X): 0.850 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 20.8 Optimal Cycle: 80 Level Of Service: CCritical Vol./Cap. (X): 0.850 ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----| Control: Protected Protected Prot+Permit Prot+Permit Rights: Include I Volume Module: Base Vol: 346 0 48 0 0 0 0 304 668 79 285 Initial Bse: 346 0 48 0 0 0 0 304 668 79 285 0 Final Vol.: 364 0 60 0 0 0 320 703 87 300 0 _____| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.21 0.00 0.04 0.00 0.00 0.00 0.00 0.09 0.46 0.05 0.09 0.00 Crit Moves: **** AdjDel/Veh: 42.0 0.0 22.6 0.0 0.0 0.0 0.0 8.9 23.1 5.0 6.7 0.0 HCM2kAvq: 12 0 1 0 0 0 0 2 17 1 2

______ Eagle Lodge EIR ______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #2 MERIDIAN/OLDM *********************** Cycle (sec): 50 Critical Vol./Cap. (X): 0.751 23.8 Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 58 Level Of Service: ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R _____|___|___| Volume Module: Base Vol: 122 305 73 131 385 106 101 173 141 122 192 148 Initial Bse: 122 305 73 131 385 106 101 173 141 122 192 148 MLF Adj: Final Vol.: 131 321 77 138 405 131 148 205 153 128 213 156 _____| Saturation Flow Module: -----| Capacity Analysis Module: Vol/Sat: 0.07 0.17 0.05 0.08 0.22 0.08 0.08 0.11 0.11 0.07 0.11 0.11 *** Crit Moves: **** HCM2kAvg: 4 6 1 3 8 2 3 5 5 3 5 5

Zowy No Flogect 1de dan 20, 2000 11.50050 2000 10.5

Eagle Lodge EIR _____ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #3 MINARET/MERIDIAN ***************** Critical Vol./Cap. (X): 0.696 Cycle (sec): 45 Critical Vol./Cap. (X): 0.696
Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): 21.3
Optimal Cycle:OPTIMIZED Level Of Service: C Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R -----|
 Control:
 Split Phase
 Include
 _____ Volume Module: Base Vol: 20 112 24 166 187 48 60 269 5 23 174 139 Initial Bse: 20 112 24 166 187 48 60 269 5 23 174 139 PHF Volume: 40 118 25 175 197 66 98 379 47 24 226 146 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 40 118 25 175 197 66 98 379 47 24 226 146 _____|___|___| Saturation Flow Module: Adjustment: 0.93 0.95 0.95 0.93 0.94 0.94 0.93 0.96 0.96 0.93 0.92 0.92 Lanes: 1.00 0.82 0.18 1.00 0.75 0.25 1.00 1.78 0.22 1.00 1.21 0.79 Final Sat.: 1769 1494 320 1769 1340 451 1769 3254 407 1769 2128 1376 _____| Capacity Analysis Module: Vol/Sat: 0.02 0.08 0.08 0.10 0.15 0.15 0.06 0.12 0.12 0.01 0.11 0.11 **** **** Crit Moves: AdjDel/Veh: 18.6 29.2 29.2 16.5 22.0 22.0 17.2 21.2 21.2 16.5 22.1 22.1 HCM2kAvg: 1 4 4 3 5 5 2 4 4 0 4 4 **********************

Page 11-1 2009 No Project Tue Jun 20, 2006 11:50:38 __________ Eagle Lodge EIR ______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ***************** Intersection #4 MINARET/MAIN ***************** Cycle (sec): 50 Critical Vol./Cap. (X): 0.842 12 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): Optimal Cycle: 63 Level Of Service: Approach: North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R L - T - R Movement:
 Control:
 Split Phase
 Include
 -----|----|------| Volume Module: Base Vol: 176 137 45 586 203 132 90 509 323 58 386 144 Initial Bse: 176 137 45 586 203 132 90 509 323 58 386 144 Added Vol: 8 4 11 0 2 0 0 0 4 5 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 184 141 56 586 205 132 90 509 327 63 386 144 PHF Volume: 194 148 59 617 216 139 95 536 344 66 406 152 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 194 148 59 617 216 139 95 536 344 66 406 152 Saturation Flow Module: Adjustment: 0.91 0.96 0.82 0.95 0.94 0.94 0.93 0.98 0.83 0.90 0.95 0.81 Lanes: 1.00 1.00 1.00 2.00 0.61 0.39 1.00 2.00 1.00 1.00 2.00 1.00 Final Sat.: 1734 1825 1551 3609 1087 700 1769 3724 1583 1718 3618 1537 -----| Capacity Analysis Module: Vol/Sat: 0.11 0.08 0.04 0.17 0.20 0.20 0.05 0.14 0.22 0.04 0.11 0.10 Crit Moves: **** **** Crit Moves: Green/Cycle: 0.13 0.13 0.13 0.24 0.24 0.24 0.26 0.26 0.26 0.13 0.13 0.13 Volume/Cap: 0.84 0.61 0.29 0.73 0.84 0.84 0.21 0.56 0.84 0.29 0.84 0.74 Delay/Veh: 44.6 25.1 20.3 20.7 32.4 32.4 14.8 16.8 32.1 20.2 33.8 34.1 AdjDel/Veh: 44.6 25.1 20.3 20.7 32.4 32.4 14.8 16.8 32.1 20.2 33.8 34.1

HCM2kAvg: 6 3 1 6 8 8 1 4 8 1 6 4

.______ Eagle Lodge EIR ______ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ***************** Intersection #5 KELLY/LAKE MARY ****************** Average Delay (sec/veh): 2.0 Worst Case Level Of Service: B[10.2] ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____|__|__| Volume Module: 33 0 0 123 137 34 60 Base Vol: 21 0 0 0 Initial Bse: 21 0 33 0 0 0 123 137 34 60 Added Vol: 1 0 1 0 0 0 0 1 1 1 3 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 3 Thirtial Fut: 22 0 34 0 0 0 0 124 138 35 63 0 0 123 0 0 1 137 34 60 0 Ω PHF Volume: 23 0 36 0 0 0 0 131 145 37 66 0 Reduct Vol: 0 0 0 0 0 0 0 0 131 145 37 66 0 Final Vol.: 23 0 36 0 0 0 0 131 145 37 66 0 Reduct Vol: 0 0 Final Vol.: 23 0 Critical Gap Module: ______|___|___| Capacity Module: Level Of Service Module: A * * LOS by Move: * * * * * * * * LT - LTR - RT LT - LTR - RT LT - LTR - RT Movement: LT - LTR - RT 7.9 xxxx xxxxx A * * Shared LOS: * B * * * * * * * * * * ApproachDel: 10.2 xxxxxx ApproachLOS: B * * * * XXXXXX

Eagle Lodge EIR

___________ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ****************** Intersection #6 MERIDIAN / MAJESTIC PINES (EAST) ************************* Average Delay (sec/veh): 3.8 Worst Case Level Of Service: C[15.1] *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R -----| Volume Module: Critical Gap Module: Critical Gp:xxxxx xxxx 6.9 7.5 xxxx 6.9 4.1 xxxx xxxxx 4.1 xxxx xxxxx FollowUpTim:xxxxx xxxx 3.3 3.5 xxxx 3.3 2.2 xxxx xxxxx 2.2 xxxx xxxxx Capacity Module: Cnflict Vol: xxxx xxxx 134 463 xxxx 127 255 xxxx xxxxx 268 xxxx xxxxx Potent Cap.: xxxx xxxx 896 487 xxxx 905 1322 xxxx xxxxx 1307 xxxx xxxxx Move Cap.: xxxx xxxx 896 466 xxxx 905 1322 xxxx xxxxx 1307 xxxx xxxxx Volume/Cap: xxxx xxxx 0.00 0.27 xxxx 0.03 0.04 xxxx xxxx 0.01 xxxx xxxx Level Of Service Module: A * * A * *
LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxx xxxxx xxxxx 15.1 xxxxx 7.8 xxxx xxxxx 7.8 xxxx xxxxx Shared LOS: * * * * C * A * * A * * ApproachDel: 9.0 15.1 xxxxxx ApproachLoS: A C * *

Loss Time (se)	= 4 sec) Average Delay (sec/veh):						A				
Approach:			ound		uth Bo			ast Bo			est Bo	
Movement:	T.	- T	- R	L	- T	- R	L	- T	- R		- T	
Control:	s	top Si	ign ide	St	top Si	ign	S	top Si	ign ide	S ⁻	top S:	ign
Rights:												
Min. Green:	_	0	0		0	0		0	0	_	0	0
Lanes:	0	0 1!	0 0			0 0			1 0			0 1
Volume Module		0	4.0	0	0	0	0	15	3	46	20	0
Base Vol:	3		48	1 00	1 00	1.00	-	1.00	1.00		1.00	1.00
Growth Adj:	1.00	1.00	1.00	1.00	1.00	0.10	0.11	15	3	46	20	0
Initial Bse:	0	11	0	198	25	0	0	0	0	0	0	90
Added Vol:			0	198	2.5	0	0	0	Ó	0	0	0
PasserByVol: Initial Fut:			48	198	25	0	0	15	3	46	20	90
		1.00	1.00		1.00	1.00	_	1.00	1.00		1.00	1.00
PHF Adj:		0.95	0.95	0.95		0.95		0.95	0.95		0.95	0.95
PHF Volume:	3		51	208	26	0	0	16	3	48	21	95
Reduct Vol:			0	0	0	0	0	0	0	0	0	0
Reduced Vol:			51	208	26	0	0	16	3	48	21	95
PCE Adj:			1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00
Final Vol.:	3	12	51	208	26	0	0	16	3	48	21	95
		 -										
Saturation Fl												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00		1.00			1.00	1.00
Lanes:	0.05	0.18	0.77		0.11	0.00		0.83			0.30	1.00
	40		643	681		0		589	118	435	189	763
Capacity Anal				0 01	0 21			0 03	0 02	0 11	0 11	0.12
Vol/Sat:	0.08	0.08	0.08	0.31	0.31	xxxx	xxxx	0.03	0.03	0.11	0.11	****
Crit Moves:	a -		7 5	9.5	9.5	0.0	0.0	7.9	7.9	8.9	8.9	7.8
	7.5		7.5 1.00	1.00		1.00		1.00	1.00	1.00		1.00
Delay Adj: AdjDel/Veh:		7.5	7.5	9.5	9.5	0.0	0.0	7.9	7.9	8.9	8.9	7.8
LOS by Move:		7.5 A	7.5 A		Э. Э А	*	*	, A	A	A	A	A
ApproachDel:	А	7.5	11		9.5			7.9	•		8.3	
Delay Adj:		1.00			1.00			1.00			1.00	
		7.5			9.5			7.9			8.3	
LOS by Appr:		Α			Α			Α			Α	
********	****	* * * * *	****	****	****	****	****	****	*****	****	****	*****

Tue Jun 20, 2006 11:50:38 Page 15-1 2009 No Project Eagle Lodge EIR ______ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

******************* Intersection #8 MERIDIAN/Bus/Auto Drop Off ******************* Average Delay (sec/veh): 0.0 Worst Case Level Of Service: A[9.0] ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 1 0 1 0 1 0 _____| Volume Module: 0 0 61 0 62 0 0 0 0 0 0 Base Vol: Initial Bse: 0 0 0 0 0 0 0 61 0 0 62 0 Added Vol: 0 0 0 0 0 0 198 0 0 90 0 Added Vol: Reduct Vol: 0 0 Final Vol.: 0 0 0 0 0 0 0 0 160 0 273 Critical Gap Module: _____| Capacity Module: Level Of Service Module: LOS by Move: * * * * * * * * * * * * LT - LTR - RT Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT

2009 Plus Project LOS

2009 Plus Project Fri Jun 30, 2006 08:47:59 Page 1-1

Mammoth Eagle Lodge EIR

Scenario Report

Scenario: 2009 Plus Project

W/O Proj

W/O Proj

Volume: PM

Geometry: Default Geometry

Impact Fee: Default Impact Fee

Trip Generation: PM

Trip Distribution: Default Trip Distribution

Paths: Default Paths

Routes: Default Routes

Configuration: Future

Zone #	Subzone Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	
				-				
2	Base Lodge (1.00 Zone 2 Subtotal				80 80	323 323	403 403	
4	Hotel 1.00 Zone 4 Subtotal				20 20	51 51	71 71	7.8 7.8
5	Bus Auto Dr 1.00 Zone 5 Subtotal				215 215	215 215	430 430	47.0 47.0
6	TRUCKS 1.00 Zone 6 Subtotal				5 5	5 5	10 10	1.1
TOTA	 L						914	100.0

2009 Plus Project	Fri Jun 30, 2006 08:47:59	Page 3-1
	Mammoth Eagle Lodge EIR	

Trip Distribution Report

Percent Of Trips Default

					To	Gates					
	1	2	5	6	7	8	9	10	11	12	14
Zone									- 		
2	11.0	0.0	1.0	2.0	5.0	4.0	11.0	2.0	9.0	18.0	14.0
4	0.0	0.0	1.0	22.0	17.0	3.0	3.0	10.0	0.0	2.0	15.0
5	11.0	0.0	1.0	2.0	5.0	4.0	11.0	2.0	9.0	18.0	14.0
6	0.0	0.0	15.0	10.0	25.0	0.0	0.0	0.0	0.0	0.0	25.0
		То	Gates								
	15	16	17	18	19						
Zone											
2	4.0	5.0	10.0	2.0	2.0						
4	3.0	0.0	14.0	5.0	5.0						
5	4.0	5.0	10.0	2.0	2.0						
6	0.0	0.0	25.0	0.0	0.0						

2009 Plus Project Fri Jun 30, 2006 08:47:59 Page 4-1 Mammoth Eagle Lodge EIR

Turning Movement Report PM

Volume Type		orthbo Thru	und Right		outhbo Thru	und Right		ıstboı Thru	ınd Right		stbou Thru		Total Volume
#1 OLDM	1 / M 7 T P	ıτ											
#1 OLDM Base	346	0	43	0	0	0	0	304	668	77	285	0	1723
Added	0	0	23	Õ	Ö	ő	0	0	0	12	0	0	35
Total	346	0	66	0	0	0	0	304	668	89	285	0	1758
#2 MERI	DIAN	/OLDM											
Base	121	305	73	131	385	99	83	163	140	122	188	148	1958
Added	8	0	0	0	0	58	107	62	16	0	34	0	285
Total	129	305	73	131	385	157	190	225	156	122	222	148	2243
#3 MINA	RET/N												
Base	19	112	24	166	187	41	42	232	2	23	159	139	1146
Added	54	0	0	0	0	56	107	246	98	0	132	0	693
Total	73	112	24	166	187	97	149	478	100	23	291	139	1839
#4 MINA	RET/N	MIAN											
Base	168	136	39	586	202	132	90	509	320	56	386	144	2768
Added	25	22	37	0	11	0	0	0	14	19	0	0	128
Total	193	158	76	586	213	132	90	509	334	75	386	144	2896
#5 KELL	Y/LAI	KE MAR	Υ										
Base	21	0	33	0	0	0	0	122	137	34	59	0	406
Added	3	0	6	0	0	0	0	5	2	3	10	0	29
Total	24	0	39	0	0	0	0	127	139	37	69	0	435
#6 MERI	DIAN	,		PINES	(EAST								
Base	0	0	2	120	0	12	31	39	9	9	39	107	368
Added	0	0	0	56	0	30	57	422	0	0	232	24	821
In-Pro	0	0	0	-13	0	13	13	13	0	0	13	-13	26
Total	0	0	2	163	0	55	101	474	9	9	284	118	1215
#7 MERI					EST)								
Base	3	0	45	0	0	0	0	15	3	39	19	0	124
Added	0	9	24	479	59	0	0	0	0	0	0	71	642
In-Pro	0	0	0	26	0	0	0	0	0	0	0	26	52
Total	3	9	69	505	59	0	0	15	3	39	19	97	818
#8 MERI									_			_	
Base	0	0	0	0	0	0	0	60	0	0	58	0	118
Added	0	0	0	0	0	0	24	479	0	0	71	191	765
In-Pro	0	0	0	0	0	0	0	26	0	0	26	0	52
Total	0	0	0	0	0	0	24	565	0	0	155	191	935
#9									_	_		_	
Base	0	0	0	0	0	0	0	138	0	0	132	0	270
Added	0	0	56	0	0	0	0	30	0	0	81	0	167
Total	0	0	56	0	0	0	0	168	0	0	213	0	437

Traffix 7.7.0515 (c) 2005 Dowling Assoc. Licensed to LSC DENVER

2009 P	lus Pr	oject		Fı	ci Ju	n 30, 2	2006 0	8:47:	59			Page	4-2
					/ammo	th Eagl	e Lod	ge EI	R				
Volume Type	No: Left '	rthbou Thru I			outhb Thru	ound Right	_	astbo Thru	und Right		estbou Thru		Total Volume
#10 Base Added Total	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	138 30 168	0 1 1	0 24 24	132 57 189	0 0 0	270 112 382

Mammoth Eagle Lodge EIR

Link Volume Report PΜ

						PM	I						
Volume		NB L	ink		SB Li	ink		EB L			WB L		Total
Туре	In	Out	Total	In	Out	Total	In	Out	Total	In	Out	Total	Volume
#1 OLDM	/MAI	N											
Base	389	745	1134	0	0	0	972	631	1603	362	347	709	3446
Added	23	12	35	0	0	0	0	0	0	12	23	35	70
Total	412	757	1169	0	0	0	972	631	1603	374	370	744	3516
#2 MERI	DIAN	/OLDM											
Base	499	647	1146	615	536	1151	386	408	794	458	367	825	3916
Added	8	16	24	58	107	165	185	100	285	34	62	96	570
Total	507	663	1170	673	643	1316	571	508	1079	492	429	921	4486
#3 MINA	RET/	MERID	IAN										
Base	155	212	367	394	293	687	276	219	495	321	422	743	2292
Added	54	98	152	56	107	163	451	242	693	132	246	378	1386
Total	209	310	519	450	400	850	727	461	1188	453	668	1121	3678
#4 MINA	RET/	MAIN											
Base	343	578	921	920	370	1290	919	686	1605	586	1134	1720	5536
Added	84	44	128	11	22	33	14	25	39	19	37	56	256
Total	427	622	1049	931	392	1323	933	711	1644	605	1171	1776	5792
#5 KELL	Y/LA	KE MAF	S.A.										
Base	54	171	225	0	0	0	259	80	339	93	155	248	812
Added	9	5	14	0	0	0	7	13	20	13	11	24	58
Total	63	176	239	0	0	0	266	93	359	106	166	272	870
#6 MERI	DIAN	/ MAG	JESTIC	PINES	(EAST	7)							
Base	2	18	20	132	138	270	79	51	130	155	161	316	736
Added	0	0	0	86	81	167	479	262	741	256	478	734	1642
In-Pro	0	0	0	0	0	0	26	26	52	0	0	0	52
Total	2	18	20	218	219	437	584	339	923	411	639	1050	2430
#7 MERI	DIAN	?MAJES	STIC PI	NES (V	WEST)								
Base	48	42	90	0	0	0	18	22	40	58	60	118	248
Added	33	59	92	538	80	618	0	0	0	71	503	574	1284
In-Pro	0	0	0	26	26	52	0	0	0	26	26	52	104
Total	81	101	182	564	106	670	18	22	40	155	589	744	1636
#8 MERI	DIAN	/Bus/ <i>I</i>	Auto Dr	op Off	=								
Base	0	0	0	0	0	0	60	58	118	58	60	118	236
Added	0	0	0	0	215	215	503	71	574	262	479	741	1530
In-Pro	0	0	0	0	0	0	26	26	52	26	26	52	104
Total	0	0	0	0	215	215	589	155	744	346	565	911	1870
#9													
Base	0	0	0	0	0	0	138	132	270	132	138	270	540
Added	56	0	56	0	0	0	30	81	111	81	86	167	334
Total	56	0	56	0	0	0	168	213	381	213	224	437	874

Traffix 7.7.0515 (c) 2005 Dowling Assoc. Licensed to LSC DENVER

2009 Pl	us P	rojec	t	F	ri Ju	n 30, 2	2006 0	8:47:	59 			Page	5-2
		- -]	Mammo	th Eagl	e Lod	ge EI	R				
Volume Type	In	NB L Out	ink Total	In	SB L: Out		In	EB L Out	_	In	WB L Out		Total Volume
#10 Base Added Total	0 0 0	25	_	0 0 0	0 0 0	0 0 0	138 31 169	132 57 189	270 88 358	132 81 213	138 30 168	270 111 381	540 224 764

2009 Plus Project Fri Jun 30, 2006 08:48:01 Page 6-1

Mammoth Eagle Lodge EIR									
Signal Warrant Intersection	Summary Report Base Met [Del / Vol]	Future Met [Del / Vol]							
# 5 KELLY/LAKE MARY # 6 MERIDIAN / MAJESTIC PINES (EAST) # 7 MERIDIAN?MAJESTIC PINES (WEST) # 8 MERIDIAN/Bus/Auto Drop Off # 9 # 10	<pre>3.3 \ 3.5. 3.5 \ 3.5. 3.5 \ 3.5. 3.5 \ 3.5. 3.5 \ 3.5. 3.5 \ 3.5. 3.5 \ 3.5. 3.7 \ 3.5.</pre>	No / No No / No No / No No / No No / No No / No							

with four or more approaches.

2009 Plus Project	Fri Jun 30, 2006	08:48:01	Page 7-9						
	Mammoth Eagle Lodge EIR								
Peak Hour Delay Signal Warrant Report									
Intersection #10 *********	******	*****	*****						
Future Volume Alterna	tive: Peak Hour Warrant	NOT Met							
Approach: North	Bound South Bound	East Bound	West Bound						
Movement: L - 7	' - R L - T - R	L - T - R	L - T - R						
Control: Stop	Sign Stop Sign	Uncontrolled	Uncontrolled						
Lanes: 0 0 0	0 0 0 0 1 0 0	0 0 0 1 0	1 0 1 0 0						
Final Vol.: 0	0 0 0 0	0 0 177 1	25 199 0						
ApproachDel: xxxxx	x xxxxx	xxxxxx	xxxxxx						
		-							

______ Mammoth Eagle Lodge EIR _____ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************** Intersection #1 OLDM/MAIN *********************************** Cycle (sec): 75 Critical Vol./Cap. (X): Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Critical Vol./Cap. (X): 0.854 Optimal Cycle:OPTIMIZED Level Of Service: ***************** L - T - R -----| -----|----| Volume Module: Base Vol: 346 0 43 0 0 0 0 304 668 77 285 0 -----| Saturation Flow Module: Adjustment: 0.93 1.00 0.83 1.00 1.00 1.00 1.00 0.90 0.81 0.90 0.90 1.00 -----| Capacity Analysis Module: Vol/Sat: 0.21 0.00 0.04 0.00 0.00 0.00 0.09 0.46 0.05 0.09 0.00 Crit Moves: **** Green/Cycle: 0.24 0.00 0.24 0.00 0.00 0.00 0.00 0.54 0.54 0.65 0.60 0.00 Volume/Cap: 0.85 0.00 0.18 0.00 0.00 0.00 0.00 0.17 0.85 0.14 0.15 0.00 Delay/Veh: 42.6 0.0 22.8 0.0 0.0 0.0 0.0 9.0 23.6 5.0 6.6 0.0 AdjDel/Veh: 42.6 0.0 22.8 0.0 0.0 0.0 0.0 9.0 23.6 5.0 6.6 0.0 HCM2kAvg: 12 0 1 0 0 0 0 2 17 1 2 0

Fri Jun 30, 2006 08:48:01 _____ Mammoth Eagle Lodge EIR ______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************************* Intersection #2 MERIDIAN/OLDM ************************ Cycle (sec): 55 Critical Vol./Cap. (X): 0.751 Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle:OPTIMIZED Level Of Service: ************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F Movement: L - T - R L - T - R L - T - R - T - R - T - R -----| Volume Module: Initial Bse: 121 305 73 131 385 99 83 163 140 122 188 148 Added Vol: 8 0 0 0 0 58 107 62 16 0 34 0 In-Process: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 129 305 73 131 385 157 190 225 156 122 222 148 PHF Volume: 136 321 77 138 405 165 200 237 164 128 234 156 -----| Saturation Flow Module: Adjustment: 0.93 0.98 0.83 0.93 0.98 0.83 0.93 0.87 0.87 0.93 0.88 0.88 Lanes: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.18 0.82 1.00 1.20 0.80 Final Sat.: 1769 1862 1583 1769 1862 1583 1769 1962 1360 1769 1995 1330 Capacity Analysis Module: Vol/Sat: 0.08 0.17 0.05 0.08 0.22 0.10 0.11 0.12 0.12 0.07 0.12 Crit Moves: **** **** **** Green/Cycle: 0.10 0.27 0.27 0.12 0.29 0.29 0.16 0.16 0.16 0.16 0.16 0.16 Volume/Cap: 0.75 0.64 0.18 0.64 0.75 0.36 0.70 0.75 0.75 0.47 0.75 0.75 Delay/Veh: 40.0 20.4 15.6 29.2 23.5 16.0 29.5 27.9 27.9 22.4 28.2 28.2 AdjDel/Veh: 40.0 20.4 15.6 29.2 23.5 16.0 29.5 27.9 27.9 22.4 28.2 28.2 HCM2kAvg: 4 6 1 4 8 3 5 5 5 3 5 5

Mammoth Eagle Lodge EIR

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)

Cycle (sec): 55 Critical Vol./Cap. (X): 0.788
Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): 27.4
Optimal Cycle:OPTIMIZED Level Of Service: C

**************************************											し * * * * * * *		
		rth Bo				ound		ast Bo			est Bo		
Movement:	L	- T	- R	L		- R			- R		- T		
Control:			nase										
Rights:		Inclu			Incl			Inclu			Incl		
Min. Green:	_	0	0	0	_	0	_	0	0	0		0	
Lanes:	. 1				0 0			0 1		, 1	0 1	1 0	
Volume Module	-								_		1.50	100	
Base Vol:	19		24	166	187	41	42		2	23		139	
Growth Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Initial Bse:	19	112	24	166	187	41	42		2	23	159	139	
Added Vol:	54	0	0	0	0	56	107		98	0	132	0	
In-Process:	0		0	0		0	0		0	0	0	0	
Initial Fut:	73	112	24	166	187	97	149	478	100	23	291	139	
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
PHF Adj:		0.95	0.95	0.95	0.95	0.95	0.95		0.95	0.95		0.95	
PHF Volume:	77	118	25	175	197	102	157	503	105	24	306	146	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0		0	
Reduced Vol:	77	118	25	175	197	102	157	503	105	24	306	146	
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Final Vol.:	77	118	25	175	197	102	157	503	105	24		146	
Saturation Fl													
Saturation Fi		1900	: 1900	1900	1000	1900	1000	1900	1900	1000	1900	1900	
Adjustment:		0.95	0.95	0.93		0.93		0.91	0.91		0.89	0.89	
Lanes:		0.82	0.18	1.00		0.34		1.65	0.35		1.35	0.65	
Final Sat.:		1494	320		1164	604		2850	596		2279	1089	
Capacity Anal				1		'	1		1	1		ı	
Vol/Sat:	-	0.08	0.08	0.10	0.17	0.17	0.09	0.18	0.18	0.01	0.13	0.13	
Crit Moves:		****				***		***			***		
Green/Cycle:	0.10	0.10	0.10	0.21	0.21	0.21	0.22	0.22	0.22	0.17	0.17	0.17	
Volume/Cap:			0.79	0.46	0.79	0.79	0.40	0.79	0.79	0.08	0.79	0.79	
Delay/Veh:		44.4	44.4	19.7	31.0	31.0	18.8	25.6	25.6	19.3	29.1	29.1	
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
AdjDel/Veh:	25.0	44.4	44.4	19.7	31.0	31.0	18.8	25.6	25.6	19.3	29.1	29.1	
HCM2kAvg:	2	5	5	3	7	7	3	7	7	0	6	6	
******	****	*****	*****	*****	****	*****	*****	*****	*****	*****	****	*****	

```
Mammoth Eagle Lodge EIR
______
                      Level Of Service Computation Report
           2000 HCM Operations Method (Future Volume Alternative)
*******************
Intersection #4 MINARET/MAIN
*******************
Cycle (sec): 55
                                       Critical Vol./Cap. (X): 0.845

b) Average Delay (sec/veh): 28.5
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle:OPTIMIZED Level Of Service:
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F
                                                                   L - T - R
-----|

        Control:
        Split Phase
        Rights:
        Include
        Include

-----|
Volume Module:
Base Vol: 168 136 39 586 202 132 90 509 320 56 386 144
Initial Bse: 168 136 39 586 202 132 90 509 320 56 386 Added Vol: 25 22 37 0 11 0 0 0 14 19 0 In-Process: 0 0 0 0 0 0 0 0 0 0
Added Vol: 25 22 37 0 11 0 0 0 14 19 0 0 In-Process: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 19 15 386 144
PHF Volume: 203 166 80 617 224 139 95 536 352 79 406 152 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 203 166 80 617 224 139 95 536 352 79 406 152
-----|
Saturation Flow Module:
Adjustment: 0.91 0.96 0.82 0.92 0.94 0.94 0.93 0.93 0.83 0.90 0.90 0.81
Lanes: 1.00 1.00 1.00 2.00 0.62 0.38 1.00 2.00 1.00 1.00 2.00 1.00
Final Sat.: 1734 1825 1551 3500 1106 685 1769 3538 1583 1718 3437 1537
_____|
Capacity Analysis Module:
Vol/Sat: 0.12 0.09 0.05 0.18 0.20 0.20 0.05 0.15 0.22 0.05 0.12 0.10 Crit Moves: **** ****
Green/Cycle: 0.14 0.14 0.14 0.24 0.24 0.24 0.26 0.26 0.26 0.14 0.14 0.14
Volume/Cap: 0.84 0.66 0.37 0.73 0.84 0.84 0.20 0.58 0.84 0.33 0.84 0.70
Delay/Veh: 46.1 28.6 22.6 22.7 34.1 34.1 16.0 18.5 33.8 22.1 36.0 32.7
AdjDel/Veh: 46.1 28.6 22.6 22.7 34.1 34.1 16.0 18.5 33.8 22.1 36.0 32.7
HCM2kAvg: 6 4 2 7 9 9 1 5 9 2 6 4
*********************
```

Mammoth Eagle Lodge EIR

Level Of Service Computation Report

Average Delay				2.2					Service		-	10.3]
Approach:	No	rth B	ound	So	uth B	ound	E	ast B	ound	W	est B	ound
Movement:			- R			- R			- R	_	_	- R
Control: Rights:	່ ຮ	top S	ign ude		 Stop Sign Include				olled	Un		olled
Lanes:			0 0	0	-	0 0			1 0	0		0 0
Volume Module	∋:											
Base Vol:	21	0	33	0	0	0	0	122	137	34	59	0
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	21	0	33	0	0	0	0	122	137	34	59	0
Added Vol:	3	0	6	0	0	0	0	5	2	3	10	0
In-Process:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	24	0	39	0	0	0	0	127	139	37	69	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.95	0.95	0.95	0.95	0.95	0.95	0.95		0.95	0.95	0.95	0.95
PHF Volume:	25	0	41	0	0	0	0	134	146	39	73	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Final Vol.:	25	0	41	0	0	0	0	134	146	39	73	0
Critical Gap												
Critical Gp:									XXXXX			XXXXX
FollowUpTim:		xxxx							xxxxx			xxxxx
Capacity Modu												
Cnflict Vol:		xxxx				xxxxx			XXXXX			XXXXX
Potent Cap.:		xxxx	839			XXXXX			XXXXX			XXXXX
Move Cap.:		XXXX	839			XXXXX			XXXXX			XXXXX
Volume/Cap:		XXXX			xxxx			xxxx			xxxx	
Level Of Serv												
					3,53,53,5	7,57,57,57	3535353535	75353535	3/3/3/3/3/	0 1	35353535	xxxxx
Stopped Del:x						XXXXX						XXXXX
LOS by Move:		*	*	*	*	*	*	*	*	7.9 A	*	*
Movement:		- LTR				- RT		- LTR			- LTR	
Shared Cap.:			- KI			XXXXX			XXXXX			XXXXX
Shared Cap.: SharedOueue:x						XXXXX						XXXXX
Shrd StpDel:x												XXXXX
Shared LOS:	*	В		*	*	*	*	*	*	A	*	*
ApproachDel:		10.3		xx	xxxx		xx	xxxx		x	xxxx	
ApproachLOS:		В			*			*			*	

Α

```
Mammoth Eagle Lodge EIR
______
           Level Of Service Computation Report
      2000 HCM 4-Way Stop Method (Future Volume Alternative)
*****************************
Intersection #7 MERIDIAN?MAJESTIC PINES (WEST)
Cycle (sec): 100 Critical Vol./Cap. (X): 0.779
Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 17.7 Optimal Cycle: 0 Level Of Service: C
**************************
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
                                 L - T - R
-----|
-----|
Volume Module:
-----|
Saturation Flow Module:
Lanes: 0.04 0.11 0.85 0.90 0.10 0.00 0.00 0.83 0.17 0.67 0.33 1.00
Final Sat.: 28 83 633 683 80 0 0 474 95 351 171 614
-----|
Capacity Analysis Module:
Vol/Sat: 0.11 0.11 0.11 0.78 0.78 xxxx xxxx 0.03 0.03 0.12 0.12 0.17 Crit Moves: **** ****

Delay/Veh: 8.1 8.1 8.1 21.6 21.6 0.0 0.0 8.9 8.9 9.9 9.9 9.1
AdjDel/Veh: 8.1 8.1 8.1 21.6 21.6 0.0 0.0 8.9 8.9 9.9 9.9 9.1
LOS by Move: A A A C C * * A
ApproachDel: 8.1 21.6 8.9
Delay Adj: 1.00 1.00 1.00
ApprAdjDel: 8.1 21.6 8.9
LOS by Appr: A C A
                             A A A
                                   9.4
                                  1.00
                                  9.4
*********
```

Level Of Service Module:

Shared LOS: * * * * * * * * ApproachDel: xxxxxx xxxxx A * * A * * xxxxxx

xxxxxx ApproachLOS:

```
Mammoth Eagle Lodge EIR
______
     Level Of Service Computation Report
   2000 HCM Unsignalized Method (Future Volume Alternative)
*************************
Intersection #9
*****************
Average Delay (sec/veh): 1.2 Worst Case Level Of Service: A[ 9.4]
*************************
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
-----|
Volume Module:
Base Vol: 0 0
      0
        0 0
           0
            0 138
               0
                 0 132
Initial Bse: 0 0 0 0 0 0 138 0 0 132 0
0
                    0
PHF Volume: 0 0 59 0 0 0 0 177 0 0 224 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0
Final Vol.: 0 0 59
        0 0
           0
            0 177
               0
                 0 224
Critical Gap Module:
-----||-----||-----|
Capacity Module:
-----|
Level Of Service Module:
```

Fri Jun 30, 2006 08:48:01 Page 17-1 2009 Plus Project Mammoth Eagle Lodge EIR ______ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ************************ Intersection #10 ***************** Average Delay (sec/veh): 0.5 Worst Case Level Of Service: A[7.6] ************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R _____ Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 Volume Module: 0 0 0 Base Vol: 0 0 0 132 0 0 138 0 Initial Bse: 0 0 0 0 0 0 138 0 0 132 0 Critical Gap Module: _____| Capacity Module: -----| Level Of Service Module: A * *

Traffix 7.7.0515 (c) 2005 Dowling Assoc. Licensed to LSC DENVER

ApproachLOS: *

2024 No Project LOS

Page 1-1 2024 No Project Tue Jun 20, 2006 11:52:40

Eagle Lodge EIR

_ _ _

Scenario Report

Scenario: 2024 No Project

Command: W/ Proj
Volume: PM
Geometry: Default Geometry
Impact Fee: Default Impact Fee
Trip Generation: PM
Trip Distribution: Default Trip Distribution
Paths: Default Paths
Routes: Default Routes
Configuration: Future

2024 No Project	Tue Jun 20, 20		52:40			Page 2	2-1						
Eagle Lodge EIR													
Trip Generation Report													
Forecast for PM													
Zone # Subzone Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips							
							-						
2 Base Lodge (1.00 Zone 2 Subtotal				101 101	223 223		100.0						
TOTAL		- 		. 101	223	324	100.0						

2024 No	Project		T	ue Jun	20, 20	006 11	:52:40			F	age 3-1	
	Eagle Lodge EIR											
	Trip Distribution Report											
			P	ercent	Of Tr	ips De	fault					
To Gates												
Zone	1	2	5 	6 	7 	8	9	10	11	12	14	
2	11.0	0.0	1.0	2.0	5.0	4.0	11.0	2.0	9.0	18.0	14.0	
			Gates									
Zone	15 	16 	17 	18 	19 							

2 4.0 5.0 10.0 2.0 2.0

-----Eagle Lodge EIR

_______ Turning Movement Report

PM

Volume Type		orthbo Thru	und Right		outhbo Thru	ound Right	Eastbound Left Thru Right			We Left	Total Volume		
#1 OLD	M/MAIN	J											
Base	285	. 0	85	0	0	0	0	495	698	86	399	0	2048
Added	0	0	9	0	0	0	0	0	0	4	0	0	13
Total	285	0	94	0	0	0	0	495	698	90	399	0	2061
#2 MER	IDIAN/	OLDM											
Base	114	404	130	210	589	86	73	265	187	157	197	120	2532
Added	2	O	0	0	0	18	40	22	4	0	10	0	96
Total	116	404	130	210	589	104	113	287	191	157	207	120	2628
#3 MIN	ARET/M	ŒRIDI	AN										
Base	154	217	24	275	374	9	68	470	128	10	353	114	2196
Added	18	0	0	0	0	15	33	91	40	0	41	0	238
Total	172	217	24	275	374	24	101	561	168	10	394	114	2434
#4 MIN	ARET/M	IAIN											
Base	202	132	105	592	328	148	80	637	409	135	515	218	3501
Added	8	4	11	0	2	0	0	0	4	5	0	0	34
Total	210	136	116	592	330	148	80	637	413	140	515	218	3535
#5 KELI	LY/LAK	E MAR	Y										
Base	69	0	163	0	0	0	0	233	59	197	298	0	1019
Added	1	0	1	0	0	0	0	1	1	1	3	0	8
Total	70	0	164	0	0	0	0	234	60	198	301	0	1027
#6 MERI	IDIAN	/ MAJ	ESTIC	PINES	(EASI	")							
Base	0	0	0	200	0	55	135	81	0	0	114	180	765
Added	0	0	0	0	0	10	23	176	0	0	80	0	289
Total	0	0	0	200	0	65	158	257	0	0	194	180	1054
#7 MERI	IDIAN?	MAJES'	TIC PI	NES (W	EST)								
Base	3	1	113	0	0	0	0	74	11	81	80	0	363
Added	0	11	0	198	25	0	0	0	0	0	0	90	324
Total	3	12	113	198	25	0	0	74	11	81	80	90	687
#8 MERI	IDIAN/	Bus/A	uto Dr	op Off									
Base	0	0	0	0	0	0	0	185	0	0	157	0	342
Added	0	0	0	0	0	0	0	198	0	0	90	0	288
Total	0	0	0	0	0	0	0	383	0	0	247	0	630

______ Eagle Lodge EIR

Link Volume Report

PM

Volume Type	In	NB L	ink Total	In	SB L	ink Total	In	EB L:	ink Total	In	WB L:		Total Volume
#1 OLDM	/MAII	1											
Base	370	784	1154	0	0	0	1193	684	1877	485	580	1065	4096
Added	9	4	13	0	0	0	0	0	0	4	9	13	26
Total	379	788	1167	0	0	0	1193	684	1877	489	589	1078	4122
#2 MERII	DIAN	/OLDM											
Base	648	933	1581	885	597	1482	525	397	922	474	605	1079	5064
Added	2	4	6	18	40	58	66	30	96	10	22	32	192
Total	650	937	1587	903	637	1540	591	427	1018	484	627	1111	5256
#3 MINA	RET/I	MERID:	IAN										
Base	395	512	907	658	399	1057	666	516	1182	477	769	1246	4392
Added	18	40	58	15	33	48	164	74	238	41	91	132	476
Total	413	552	965	673	432	1105	830	590	1420	518	860	1378	4868
#4 MINA	RET/I	MAIN											
Base	439	872	1311	1068	430	1498	1126	865	1991	868	1334	2202	7002
Added	23	11	34	2	4	6	4	8	12	5	11	16	68
Total	462	883	1345	1070	434	1504	1130	873	2003	873	1345	2218	7070
#5 KELLY	//LAI	KE MAI	RY										
Base	232	256	488	0	0	0	292	367	659	495	396	891	2038
Added	2	2	4	0	0	0	2	4	6	4	2	6	16
Total	234	258	492	0	0	0	294	371	665	499	398	897	2054
#6 MERII	NAIC	/ MA	JESTIC	PINES	(EAST	Γ)							
Base	0	0	0	255	315	570	216	169	385	294	281	575	1530
Added	0	0	0	10	23	33	199	90	289	80	176	256	578
Total	0	0	0	265	338	603	415	259	674	374	457	831	2108
#7 MERII	DIAN:	MAJES	STIC PI	NES (V	VEST)								
Base	117	92	209	0	1	1	85	83	168	161	187	348	726
Added	11	25	36	223	101	324	0	0	0	90	198	288	648
Total	128	117	245	223	102	325	85	83	168	251	385	636	1374
#8 MERII)IAN	Bus/	Auto Dr	op Off	=								
Base	0	0	0	0	0	0	185	157	342	157	185	342	684
Added	0	0	0	0	0	0	198	90	288	90	198	288	576
Total	0	0	0	0	0	0	383	247	630	247	383	630	1260

Tue Jun 20,	2006	11:52:41
-------------	------	----------

2024 No Project

Pao	Δ.	6.	_ 1
rav	_	Ο.	- т

												
Eagle Lodge EIR												
Signal Warrant	Summary Report											
Intersection	Base Met	Future Met										
	[Del / Vol]	[Del / Vol]										
# 5 KELLY/LAKE MARY	??? / ???	No / No										
# 6 MERIDIAN / MAJESTIC PINES (EAST)	333 / 333	No / No										
# 7 MERIDIAN?MAJESTIC PINES (WEST)	??? / ???	No / No										
# 8 MERIDIAN/Bus/Auto Drop Off	<pre>\$3.5 \ 3.5.5</pre>	No / No										

with less than four approaches.

______ Eagle Lodge EIR Peak Hour Delay Signal Warrant Report ****************** Intersection #6 MERIDIAN / MAJESTIC PINES (EAST) ****************** Future Volume Alternative: Peak Hour Warrant NOT Met _____|___| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ~----| -----|----|-----|------| Approach[southbound][lanes=1][control=Stop] Signal Warrant Rule #1: [vehicle-hours=3.3] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=279] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=3] [total volume=1109] SUCCEED - Total volume greater than or equal to 650 for intersection with less than four approaches.

2024 No Proje	ect		Tue	Jun 2	0, 20	06 11:	52:41				Page	7-5	
				Eagl	e Lod	ge EIF	2						
Peak Hour Delay Signal Warrant Report													
Intersection *******							****	****	*****	*****	****	****	*
Future Volume					Warr	ant NC	T Met		1	1.1			,
Approach:	Nort	h Bour								We L -	st Bo		.
													.
Control:		p Sigr		Sto	-				olled			olled	
Lanes:	0 0	1! 0	0	0 0	1! 0	0	-	-	1 0		0	1 0	
Final Vol.:	0	0	0	0	0	0	0	403	0	0	260	C)
ApproachDel:	xxx	xxx		XXX	XXX		XXX	XXX		xx	xxxx		
													.

Eagle Lodge EIR ______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ************** Intersection #1 OLDM/MAIN ****************** Cycle (sec): 70 Critical Vol./Cap. (X): 0.848 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 17.4 Optimal Cycle:OPTIMIZED Level Of Service: -----|----|-----|
 Control:
 Protected
 Protected
 Prot+Permit
 Prot+Permit

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 _____| Volume Module: -----| Saturation Flow Module: Adjustment: 0.93 1.00 0.83 1.00 1.00 1.00 1.00 0.90 0.81 0.90 0.90 1.00 Capacity Analysis Module: Vol/Sat: 0.17 0.00 0.06 0.00 0.00 0.00 0.00 0.15 0.48 0.06 0.12 0.00 Crit Moves: **** *** Green/Cycle: 0.20 0.00 0.20 0.00 0.00 0.00 0.56 0.56 0.69 0.63 0.00 Volume/Cap: 0.85 0.00 0.31 0.00 0.00 0.00 0.00 0.27 0.85 0.17 0.19 0.00 Delay/Veh: 44.1 0.0 24.5 0.0 0.0 0.0 0.0 7.9 20.6 4.0 5.5 0.0 1.00 AdjDel/Veh: 44.1 0.0 24.5 0.0 0.0 0.0 0.0 7.9 20.6 4.0 5.5 0.0 HCM2kAvg: 10 0 2 0 0 0 3 16 1 2

_______ Eagle Lodge EIR

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

Intersection #2 MERIDIAN/OLDM

Cycle (sec): 70 Critical Vol./Cap. (X): 0.851
Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): 34.8
Optimal Cycle:OPTIMIZED Level Of Service: C

Approach:	No	rth B	ound	So	uth Bo	ound	Е	ast Bo	ound	West Bound			
Movement:	L	- T	- R	L	- T	- R	L	- T	- R	L	- T	- R	
					·								
Control:	P	rotect	ted	P						Split Phase			
Rights:		Incl	ude		Include			Incl	ıde	Include			
Min. Green:	0	0	0	0	0	0	0	-	0	_	0	0	
Lanes:	1				0 1			0 1			0 1	1 0	
	1												
Volume Module													
Base Vol:	114	404	130	210	589	86	73		187	157	197	120	
Growth Adj:		1.00	1.00		1.00	1.00	1.00		1.00		1.00	1.00	
Initial Bse:		404	130	210	589	86	73		187	157	197	120	
Added Vol:	2	0	0	0	0	18	40		4	0	10	0	
PasserByVol:	0	0	0	0	0	0	0		0	0	0	0	
Initial Fut:	116	404	130	210	589	104	113	287	191	157	207	120	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	
PHF Adj:	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	
PHF Volume:	122	425	137	221	620	109	119	302	201	165	218	126	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	122	425	137	221	620	109	119	302	201	165	218	126	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Final Vol.:	122	425	137	221	620	109	119	302	201	165	218	126	
					- -								
Saturation Fl	low Mo	odule:											
Sat/Lane:	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Adjustment:	0.93	0.98	0.83	0.93	0.98	0.83	0.93	0.88	0.88	0.93	0.88	0.88	
Lanes:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.20	0.80	1.00	1.27	0.73	
Final Sat.:	1769	1862	1583	1769	1862	1583		1997	1329	1769		1227	
					-								
Capacity Anal	lysis	Modul	.e:										
Vol/Sat:	0.07	0.23	0.09	0.12	0.33	0.07	0.07	0.15	0.15	0.09	0.10	0.10	
Crit Moves:	****				***			****				***	
Green/Cycle:	0.08	0.31	0.31	0.17	0.39	0.39	0.18	0.18	0.18	0.12	0.12	0.12	
Volume/Cap:	0.85	0.75	0.28	0.75	0.85	0.18	0.38	0.85	0.85	0.77	0.85	0.85	
Delay/Veh:	67.3	27.3	18.8	37.8	28.8	14.1	26.1	39.2	39.2	45.6	45.8	45.8	
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
AdjDel/Veh:	67.3	27.3	18.8	37.8	28.8	14.1	26.1	39.2	39.2	45.6	45.8	45.8	
HCM2kAvg:	5	10	2	7	15	2	3	8	8	6	6	6	
******	****	****	*****	****	****	*****	****	*****	****	****	****	*****	

```
2024 No Project
                              Tue Jun 20, 2006 11:52:41
                                                                               Page 10-1
 ----
                                   Eagle Lodge EIR
 Level Of Service Computation Report
              2000 HCM Operations Method (Future Volume Alternative)
********************
Intersection #3 MINARET/MERIDIAN
*******************
Cycle (sec): 85
                                             Critical Vol./Cap. (X): 0.896
Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): 45.7 Optimal Cycle:OPTIMIZED Level Of Service: D
******************************
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R

        Control:
        Split Phase
        Rights:
        Include
        Include

-----|----|-----|
Volume Module:
PHF Volume: 181 228 25 289 394 25 106 591 177 11 415 120
Saturation Flow Module:
Adjustment: 0.93 0.97 0.97 0.93 0.97 0.97 0.93 0.95 0.95 0.95 0.95 0.95
Lanes: 1.00 0.90 0.10 1.00 0.94 0.06 1.00 1.54 0.46 1.00 1.55 0.45 Final Sat.: 1769 1651 183 1769 1734 111 1769 2768 829 1769 2790 807
Capacity Analysis Module:
Vol/Sat: 0.10 0.14 0.14 0.16 0.23 0.23 0.06 0.21 0.21 0.01 0.15 0.15
Crit Moves:
                            ***
                                                ***
Green/Cycle: 0.15 0.15 0.15 0.25 0.25 0.25 0.24 0.24 0.24 0.17 0.17 0.17
Volume/Cap: 0.66 0.90 0.90 0.65 0.90 0.90 0.25 0.90 0.90 0.04 0.90 0.90
Delay/Veh: 39.9 63.7 63.7 31.6 50.2 50.2 26.6 43.4 43.4 29.8 50.8 50.8
AdjDel/Veh: 39.9 63.7 63.7 31.6 50.2 50.2 26.6 43.4 43.4 29.8 50.8 50.8 HCM2kAvg: 6 10 10 8 14 14 2 13 13 0 10 10
```

Eagle Lodge EIR

****************** Approach: North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-RL - T - R _____|___|___|
 Control:
 Split Phase
 Include
 -----| Volume Module: Initial Fut: 210 136 116 592 330 148 80 637 413 140 515 218 PHF Volume: 221 143 122 623 347 156 84 671 435 147 542 229 -----| Saturation Flow Module: Adjustment: 0.91 0.96 0.82 0.95 0.95 0.95 0.93 0.98 0.83 0.90 0.95 0.81 Lanes: 1.00 1.00 1.00 2.00 0.69 0.31 1.00 2.00 1.00 1.00 2.00 1.00 Final Sat.: 1734 1825 1551 3609 1251 561 1769 3724 1583 1718 3618 1537 _____ Capacity Analysis Module: Vol/Sat: 0.13 0.08 0.08 0.17 0.28 0.28 0.05 0.18 0.27 0.09 0.15 0.15 Crit Moves: **** **** Green/Cycle: 0.13 0.13 0.13 0.28 0.28 0.28 0.28 0.28 0.28 0.15 0.15 Volume/Cap: 0.98 0.60 0.60 0.61 0.98 0.98 0.17 0.64 0.98 0.56 0.98 0.97 Delay/Veh: 87.5 37.0 37.9 25.8 61.8 61.8 21.9 26.5 64.8 34.0 65.7 84.3 AdjDel/Veh: 87.5 37.0 37.9 25.8 61.8 61.8 21.9 26.5 64.8 34.0 65.7 84.3 HCM2kAvq: 10 4 4 8 18 18 2 8 16 4 11 10 ***************

Eagle Lodge EIR

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

20 ******									.terna		****	*****
Intersection	#5 K	ELLY/	LAKE M	ARY								
*****											****	*****
Average Delay	(se	c/veh):	6.7	Wor	st Cas	e Leve	l Of	Service	e:	- •	22.3]
*****											est B	
Approach:		rth B	ouna - R		uth B	- R		ast B	- R			- R
Movement:												
Control:		top S		, ,		ign	, ,		olled		contr	
Rights:		Incl			Incl			Incl			Incl	
Lanes:	0	0 1!	0 0	0	0 0	0 0	0	0 0	1 0		1 0	
					-							
Volume Module		•	1.60		^	0	0	222	59	197	298	0
Base Vol:	69	0		1 00	0 1.00			233			1.00	1.00
	69	1.00	1.00 163	1.00	0.1			233		197		0
Initial Bse: Added Vol:	1	0	103	0	0	_		255		1		0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	-	0
Initial Fut:		0	164	0	0	0	•	234	_	198	_	0
		1.00	1.00	_	1.00	1.00	_	1.00	1.00		1.00	1.00
_		0.95	0.95		0.95	0.95		0.95	0.95		0.95	0.95
PHF Volume:	74	0	173	0	0	0	0	246	63	208	317	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Final Vol.:	74	0	173	0	0	0	0	246	63	208	317	0
Critical Gap	Modu:	le:										
Critical Gp:	6.4	XXXX	6.2	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX	4.1	XXXX	XXXXX
FollowUpTim:	3.5	xxxx							XXXXX			XXXXX
Capacity Modu												
Cnflict Vol:						XXXXX			XXXXX			XXXXX
Potent Cap.:						xxxxx			XXXXX			XXXXX
Move Cap.:			766			XXXXX			xxxxx			XXXXX
Volume/Cap:			0.23			XXXX		xxxx	xxx		XXXX	
Level Of Serv							11			1.		
	-			xxxxx	xxxx	xxxxx	xxxxx	xxxx	xxxxx	0.6	xxxx	xxxxx
Stopped Del:x												xxxxx
LOS by Move:		*	*	*	*	*	*	*	*	Α	*	*
Movement:		- LTR	- RT	LT -	- LTR	- RT	LT -	- LTR	- RT	LT ·	- LTR	- RT
Shared Cap.:	xxxx	450	xxxxx	xxxx	xxxx	xxxxx	xxxx	xxxx	xxxxx	xxxx	xxxx	xxxxx
SharedQueue:x							xxxxx			0.6	xxxx	xxxxx
Shrd StpDel:x												xxxxx
Shared LOS:	*	C	*	*	*	*	*	*	*	A	*	*
ApproachDel:		22.3		XX	xxxx		XX	xxxx		XX	xxxx	
ApproachLOS:		С			*			*			*	

______ Eagle Lodge EIR

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ******************

Intersection #6 MERIDIAN / MAJESTIC PINES (EAST)

Average Delay						st Case						43.1] ******
Approach:	No	rth B	ound	So	uth B	ound	E	ast B	ound	W	est B	ound
Movement:			- R			- R			- R			- R
Control:	S					ign	Un			Un		
Rights:			ude		Incl		0	Incl		0	Incl	
Lanes:			0 0			0 0			1 0		1 0	1 0
Volume Module	1									11		
Base Vol:	0	0	0	200	0	55	135	81	0	0	114	180
Growth Adj:		1.00	1.00		1.00			1.00			1.00	1.00
Initial Bse:	0	0	0	200	0		135	81	0	0	114	180
Added Vol:	0	0	0	0	0	10	23	176	0	0	80	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	0	0	200	0	65	158	257	0	0	194	180
User Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
PHF Volume:	0	0	0	211	0	68	166	271	0	0	204	189
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Final Vol.:	0	0	0	211	0	68	166	271	0	0	204	189
Critical Gap	Modu.	le:										
Critical Gp:>	xxxx	XXXX	XXXXX	6.8	xxxx	6.9	4.1	xxxx	ххххх	XXXXX	XXXX	KKKKK
FollowUpTim:>										xxxxx		
								- -				
Capacity Modu												
Cnflict Vol:					xxxx				xxxxx			XXXXX
Potent Cap.:					xxxx				XXXXX			XXXXX
-			xxxxx		xxxx				XXXXX			XXXXX
			xxxx		XXXX	0.08 		xxxx	xxxx		XXXX	xxxx
Level Of Serv												
Oueue: x				YYYY Y	vvvv	VVVVV	0.5	XXXX	xxxxx	xxxxx	xxxx	XXXXX
Stopped Del:x										XXXXX		
LOS by Move:			*	*	*	*	Α.	*	*	*	*	*
Movement:		- LTR		LT -	- LTR	- RT		- LTR	- RT	LT -	LTR	- RT
Shared Cap.:			xxxxx	xxxx		xxxxx			xxxxx			xxxxx
SharedQueue:x		-				xxxxx	0.5	xxxx	xxxxx	0.0	xxxx	xxxxx
Shrd StpDel:x					43.1	xxxxx	8.6	xxxx	xxxxx	9.0	xxxx	xxxxx
Shared LOS:	*	*	*	*		*	Α	*	*	Α	*	*
ApproachDel:	xx	xxxx			43.1		XX	xxxx		XX	xxxx	
ApproachLOS:		*			E			*			*	

2024 No Project Tue Jun 20, 2006 11:52:41 Page 14-1 ______ Eagle Lodge EIR Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative) ******************* Intersection #7 MERIDIAN?MAJESTIC PINES (WEST) ************* Cycle (sec): 100 Critical Vol./Cap. (X): 0.349 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 9.7 Optimal Cycle: 0 Level Of Service: A ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R
 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign
 Rights:
 Include
 Include</t _____| Saturation Flow Module: Lanes: 0.02 0.09 0.89 0.89 0.11 0.00 0.00 0.87 0.13 0.50 0.50 1.00 Final Sat.: 17 69 648 598 75 0 0 562 84 302 299 714 -----| Capacity Analysis Module: Vol/Sat: 0.18 0.18 0.18 0.35 0.35 xxxx xxxx 0.14 0.14 0.28 0.28 0.13 Crit Moves: **** **** AdjDel/Veh: 8.5 8.5 8.5 10.7 10.7 0.0 0.0 8.9 8.9 10.6 10.6 8.2

ApproachLOS: *

Eagle Lodge EIR

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ******************* Intersection #8 MERIDIAN/Bus/Auto Drop Off ****************** Average Delay (sec/veh): 0.0 Worst Case Level Of Service: A[9.0] ****************** _____ Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 1 0 1 0 1 0 ______|___|___|___| Volume Module: Base Vol: 0 0 0 185 0 0 0 0 0 0 157 Initial Bse: 0 0 0 0 0 0 185 0 0 157 0 Final Vol.: 0 0 0 0 403 0 0 260 Critical Gap Module: Capacity Module: _____| Level Of Service Module: SharedQueue:xxxxx xxxx xxxxx xxxxx xxxxx 0.0 xxxx xxxxx 0.0 xxxx xxxxx Shared LOS: * * * * * * A
2024 Plus Project LOS

2024 Plus Project Fri Jun 30, 2006 08:52:29 Page 1-1 Page 1-1

Mammoth Eagle Lodge EIR

Scenario Report

Scenario: 2024 Plus Project

Command: W/O Proj
Volume: PM
Geometry: Default Geometry
Impact Fee: Default Impact Fee
Trip Generation: PM
Trip Distribution: Default Trip Distribution
Paths: Default Paths
Routes: Default Routes
Configuration: Future

Mammoth Eagle Lodge EIR

Trip Generation Report

Forecast for PM

Zone #	Subzone	Amount	Units	Rate Out	-	Trips Out	Total Trips	
2			Base Lodge		80 80	323 323	403 403	44.1 44.1
4			Eagle Lodge		20 20	51 51	71 71	7.8 7.8
5			Drop Off		215 215	215 215	430 430	47.0 47.0
6			Trucks		5 5	5 5	10 10	1.1
TOTAL				 	320	594	914	100.0

2024 Plus Project	Fri Jun 30, 2006 08:52:29	Page 3-1

2024 Plus Project

Page 3-1

Mammoth	Facile	anho.T	EIR
Maninoth	Eagre	ьоаде	DTL

Trip Distribution Report

Percent Of Trips Default

					То	Gates					
	1	2	5	6	7	8	9	10	11	12	14
Zone											
2	11.0	0.0	1.0	2.0	5.0	4.0	11.0	2.0	9.0	18.0	14.0
4	0.0	0.0	1.0	22.0	17.0	3.0	3.0	10.0	0.0	2.0	15.0
5	11.0	0.0	1.0	2.0	5.0	4.0	11.0	2.0	9.0	18.0	14.0
6	0.0	0.0	15.0	10.0	25.0	0.0	0.0	0.0	0.0	0.0	25.0
		То	Gates								
	15	16	17	18	19						
Zone			-								
2	4.0	5.0	10.0	2.0	2.0						
4	3.0	0.0	14.0	5.0	5.0						
5	4.0	5.0	10.0	2.0	2.0						
6	0.0	0.0	25.0	0.0	0.0						

- -

Turning	Movement	Report
	₽M	

Volume Type		orthbo Thru	ound Right		outhbo Thru	ound Right		astboı Thru	ınd Right		estbo Thru		Total Volume
#1 OLDN	1/MAI	N											
Base	285	0	80	0	0	0	0	495	698	84	399	0	2041
Added	0	0	23	0	0	0	0	0	0	12	0	0	35
Total	285	0	103	0	0	0	0	495	698	96	399	0	2076
#2 MERI	IDIAN	/OLDM											
Base	113	404	130	210	589	79	55	255	186	157	193	120	2491
Added	8	0	0	0	0	58	107	62	16	0	34	0	285
Total	121	404	130	210	589	137	162	317	202	157	227	120	2776
#3 MINA	ARET/N	MERID	[AN										
Base	153	217	24	275	374	2	50	433	125	10	338	114	2115
Added	54	0	0	0	0	56	107	246	98	0	132	0	693
Total	207	217	24	275	374	58	157	679	223	10	470	114	2808
#4 MINA	RET/N	MIAN											
Base	194	131	99	592	327	148	80	637	406	133	515	218	3480
Added	25	22	37	0	11	0	0	0	14	19	0	0	128
Total	219	153	136	592	338	148	80	637	420	152	515	218	3608
#5 KELI	LY/LAF	KE MAF	RY										
Base	69	0	163	0	0	0	0	232	59	197	297	0	1017
Added	3	0	6	0	0	0	0	5	2	3	10	0	29
Total	72	0	169	O	0	0	0	237	61	200	307	0	1046
#6 MERI	DIAN	/ MAC	JESTIC	PINES	(EAST	?)							
Base	0	0	0	200	0	55	134	50	0	0	98	180	717
Added	0	0	0	56	0	30	57	422	0	0	232	24	821
In-Pro	0	0	0	-13	0	13	13	13	0	0	13	-13	26
Total	0	0	0	243	0	98	204	485	0	0	343	191	1564
#7 MERI	DIAN?	MAJES	TIC PI	INES (V	EST)								
Base	3	1	110	0	0	0	0	74	11	74	79	0	352
Added	0	9	24	479	59	0	0	0	0	0	0	71	642
In-Pro	0	0	0	26	0	0	0	0	0	0	0	26	52
Total	3	10	134	505	59	0	0	74	11	74	79	97	1046
#8 MERI	DIAN/	Bus/A	uto Di	op Off	:								
Base	0	0	0	0	0	0	0	184	0	0	153	0	337
Added	0	0	0	0	0	0	24	479	0	0	71	191	765
In-Pro	0	0	0	0	0	0	0	26	0	0	26	0	52
Total	0	0	0	0	0	0	24	689	0	0	250	191	1154
#9 Maje	stic/	'Hotel	Out										
Base	0	0	0	0	0	0	0	314	0	0	255	0	569
Added	0	0	56	0	0	0	0	30	0	0	81	0	167
Total	0	0	56	0	0	0	0	344	0	0	336	0	736

Traffix 7.7.0515 (c) 2005 Dowling Assoc. Licensed to LSC DENVER

Page	4	-	2
------	---	---	---

2021 11db 110,000 111 041, 1010 1010 1010													
				N	/ammo	h Eagl	e Lod	ge EI	 R				
Volume		thbour nru Ri			uthbo	ound Right		astbo	und Right		estbo		Total Volume
Type Le	LL II	ii u K	rgire	петс	IIII u	Right	nerc	IIII u	Right	БСГС	IIILU	Kigiic	VOTAME
#10 Majes	tic/F	Hotel	In										
Base	0	0	0	0	0	0	0	314	0	0	255	0	569
Added	0	0	0	0	0	0	0	30	1	24	57	0	112
Total	0	0	0	0	0	0	0	344	1	24	312	0	681

Link	Volume	Report
	PM	

Volume Type	In	NB L	ink Total	In	SB L:	ink Total	In	EB L	ink Total	In	WB L		Total Volume
1100	111	ouc	Tocar		040	10001							
#1 OLDM	/MAI	N											
Base	365	782	1147	0	0	0	1193	684	1877	483	575	1058	4082
Added	23	12	35	0	0	0	0	0	0	12	23	35	70
Total	388	794	1182	0	0	0	1193	684	1877	495	598	1093	4152
#2 MERI	DIAN	/OLDM											
Base	647	932	1579	878	579	1457	496	385	881	470	595	1065	4982
Added	8	16	24	58	107	165	185	100	285	34	62	96	570
Total	655	948	1603	936	686	1622	681	485	1166	504	657	1161	5552
#3 MINA	RET/	MERID:	IAN										
Base	394	509	903	651	381	1032	608	493	1101	462	732	1194	4230
Added	54	98	152	56	107	163	451	242	693	132	246	378	1386
Total	448	607	1055	707	488	1195	1059	735	1794	594	978	1572	5616
#4 MINA	RET/	MAIN											
Base	424	866	1290	1067	429	1496	1123	857	1980	866	1328	2194	6960
Added	84	44	128	11	22	33	14	25	39	19	37	56	256
Total	508	910	1418	1078	451	1529	1137	882	2019	885	1365	2250	7216
#5 KELL	Y/LA	KE MAI	RY										
Base	232	256	488	0	0	0	291	366	657	494	395	889	2034
Added	9	5	14	0	0	0	7	13	20	13	11	24	58
Total	241	261	502	0	0	0	298	379	677	507	406	913	2092
#6 MERI	DIAN	/ MA	JESTIC	PINES	(EAST	Γ)							
Base	0	0	0	255	314	569	184	153	337	278	250	528	1434
Added	0	0	0	86	81	167	479	262	741	256	478	734	1642
In-Pro	0	0	0	0	0	0	26	26	52	0	0	0	52
Total	0	0	0	341	395	736	689	441	1130	534	728	1262	3128
#7 MERI	DIAN	MAJES	STIC PI	NES (V	VEST)								
Base	114	85	199	0	1	1	85	82	167	153	184	337	704
Added	33	59	92	538	80	618	0	0	0	71	503	574	1284
In-Pro	0	0	0	26	26	52	0	0	0	26	26	52	104
Total	147	144	291	564	107	671	85	82	167	250	713	963	2092
#8 MERI	DIAN,	/Bus/A	Auto Dr	op Off	:								
Base	0	0	0	0	0	0	184	153	337	153	184	337	674
Added	0	0	0	0	215	215	503	71	574	262	479	741	1530
In-Pro	0	0	0	0	0	0	26	26	52	26	26	52	104
Total	0	0	0	0	215	215	713	250	963	441	689	1130	2308
#9 Maje	stic	/Hote]	Out										
Base	0	0	0	0	0	0	314	255	569	255	314	569	1138
Added	56	0	56	0	0	0	30	81	111	81	86	167	334
Total	56	0	56	0	0	0	344	336	680	336	400	736	1472

Traffix 7.7.0515 (c) 2005 Dowling Assoc. Licensed to LSC DENVER

2024 Plu	2024 Plus Project Fri Jun 30, 2006 08:52:29											Page 5-2			
Mammoth Eagle Lodge EIR															
Volume Type		NB Lir Out T	ık Total	In	SB L	ink Total	In	EB L Out	ink Total	In	WB L: Out		Total Volume		
#10 Majestic/Hotel In Base 0 0 0 0 0 0 Added 0 25 25 0 0 0 Total 0 25 25 0 0								255 57 312	569 88 657	255 81 336	314 30 344	569 111 680	1138 224 1362		

2024 Plus Project Fri Jun 30, 2006 08:52:30 Page 6-1 Mammoth Eagle Lodge EIR ______ Signal Warrant Summary Report

with less than four approaches.

Intersection #1 OLDM/MAIN

Mammoth Eagle Lodge EIR

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

*****	****	****	*****	*****	****	*****	****	****	*****	****	****	*****
Approach:	No	rth Bo	ound	So	uth Bo	ound	E	ast B	ound	W	est B	ound
Movement:	L	- T	- R	L	- T	- R	L	- T	- R	\mathbf{L}	- T	- R
							1			,		
Control:	P	rotect	ted	P	rotect		Pr	ot+Pe:		Pro	ot+Pe:	
Rights:		Incl	ude		Incl			Incl			Incl	
Min. Green:	0	-	0	0	-	0	-	0	0	-	0	0
Lanes:	1	0 0	0 1	0	0 0	0 0	. 0	0 2	0 1	. 1) 2	0 0
Volume Module												_
Base Vol:	285	0	80	0	0	0	0		698	84	399	0
Growth Adj:		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00
Initial Bse:	285	0	80	0	0	0	0	495	698	84	399	0
Added Vol:	0	0	23	0	0	0	0	0	0	12	0	0
In-Process:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	285	0	103	0	0	0	0	495	698	96	399	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
PHF Volume:	300	0	108	0	0	0	0	521	735	101	420	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	300	0	108	0	0	0	0	521	735	101	420	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Final Vol.:	300	0	108	0	0	0	0	521	735	101	420	0
								- -				
Saturation Fl	Low Mo	odule:	:									
Sat/Lane:	1900	1900	1900	1900	1900	1900		1900	1900		1900	1900
Adjustment:	0.93	1.00	0.83	1.00	1.00	1.00	1.00	0.90	0.81	0.90	0.90	1.00
Lanes:	1.00	0.00	1.00	0.00	0.00	0.00		2.00	1.00		2.00	0.00
Final Sat.:	1769	0	1583	0	0	0	0	3437	1537	1718	3437	0
	- -											
Capacity Anal	lysis	Modu]										
Vol/Sat:	0.17	0.00	0.07	0.00	0.00	0.00	0.00	0.15	0.48	0.06	0.12	0.00
Crit Moves:	****								***	****		
Green/Cycle:	0.20	0.00	0.20	0.00	0.00	0.00		0.56	0.56	0.69		0.00
Volume/Cap:	0.85	0.00	0.34	0.00	0.00	0.00		0.27	0.85	0.18		0.00
Delay/Veh:	44.8	0.0	24.8	0.0	0.0	0.0	0.0	8.0	21.1	4.1	5.5	0.0
User DelAdj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
AdjDel/Veh:	44.8	0.0	24.8	0.0	0.0	0.0	0.0	8.0	21.1	4.1	5.5	0.0
HCM2kAvg:	10	0	2	0	0	0	0	3	17	1	2	0
*********	****	*****	*****	*****	****	*****	*****	****	****	****	****	*****

.____ ______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ****************** Intersection #2 MERIDIAN/OLDM ****************** Cycle (sec): 75 Critical Vol./Cap. (X): Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Critical Vol./Cap. (X): 0.862 36.7 D Optimal Cycle:OPTIMIZED Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----||------|
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< Volume Module: Base Vol: 113 404 130 210 589 79 55 255 186 157 193 120 Initial Bse: 113 404 130 210 589 79 55 255 186 157 193 120
 58
 107
 62
 16
 0
 34
 0

 0
 0
 0
 0
 0
 0
 Added Vol: 8 0 0 0 0 58 107 62 In-Process: 0 0 0 0 0 0 Final Vol.: 127 425 137 221 620 144 171 334 213 165 239 126 _____| Saturation Flow Module: -----| Capacity Analysis Module: Vol/Sat: 0.07 0.23 0.09 0.12 0.33 0.09 0.10 0.16 0.16 0.09 0.11 0.11 **** *** *** Crit Moves: **** Green/Cycle: 0.08 0.30 0.30 0.17 0.39 0.39 0.19 0.19 0.19 0.13 0.13 0.13 HCM2kAvg: 6 11 3 7 16 2 4 9 9 6 7 7 HCM2kAva:

Fri Jun 30, 2006 08:52:30 Page 10-1 2024 Plus Project _____ Mammoth Eagle Lodge EIR ______ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) ******************* Intersection #3 MINARET/MERIDIAN *********************** Critical Vol./Cap. (X): 0.989 Cycle (sec): 110 Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Movement: _____| -----| Volume Module: 2 Base Vol: 153 217 24 275 374 50 433 125 10 338 114 Initial Bse: 153 217 24 275 374 2 50 433 125 10 338 114 Reduced Vol: 218 228 25 289 394 61 165 715 235 11 495 120 MLF Adj: Final Vol.: 218 228 25 289 394 61 165 715 235 11 495 120 _____|___|___| Saturation Flow Module: _____| Capacity Analysis Module: Vol/Sat: 0.12 0.14 0.14 0.16 0.25 0.25 0.09 0.28 0.28 0.01 0.18 0.18 *** **** **** Crit Moves:

HCM2kAvg: 11 13 13 10 21 21 5 22 22 0 15 15

2024 Plus Pr	oject	Fı	ci Jun	30, 2	2006 08	3:52:3	0		Page	11-1	
	Mammoth Eagle Lodge EIR										
Level Of Service Computation Report											
2000 HCM Operations Method (Future Volume Alternative)											

Intersection	#4 MINARE	T/MAIN ******	*****	****	*****	****	****	*****	*****	*****	
Cycle (sec):	8	0		(Critica	al Vol	./Cap.	(X):	1.0		
Loss Time (s	ec): 1	2 (Y+R	= 4	sec) A	Average	e Dela	y (sec	:/veh):	: 53	. 1	
Optimal Cycl	e:OPTIMIZE	D			Level (D	

Approach:	North B						ast Bo		West B		
Movement:	_ L - T				- R			- R			
Control:									Split P		
Rights:	Incl							ıde 0	Incl 0 0		
Min. Green: Lanes:	0 0	0 1	2		1 0			0 1			
Lanes:											
Volume Modul	1	-				1			1	1	
Base Vol:		99	592	327	148	80	637	406	133 515	218	
Growth Adi:		1.00		1.00	1.00		1.00	1.00	1.00 1.00	1.00	
Initial Bse:		99	592	327	148	80		406	133 515	218	
Added Vol:	25 22	37	0	11	0	0		14	19 0	0	
In-Process:	0 0	0	0	0	0	0	0	0	0 0	0	
Initial Fut:		136	592	338	148	80	637	420	152 515	218	
User Adj:	1.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00	
PHF Adj:	0.95 0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95 0.95	0.95	
PHF Volume:	231 161	143	623	356	156	84	671	442	160 542	229	
Reduct Vol:	0 0	0	0	0	0	0	0	0	0 0	0	
Reduced Vol:		143	623	356	156	84	671	442	160 542	229	
PCE Adj:	1.00 1.00	1.00		1.00	1.00		1.00	1.00	1.00 1.00	1.00	
MLF Adj:	1.00 1.00	1.00		1.00	1.00		1.00	1.00	1.00 1.00	1.00	
Final Vol.:	231 161	143	623	356	156	84		442	160 542	229	
G. I I. i	1		1								
Saturation F. Sat/Lane:	1900 1900	: 1900	1000	1900	1900	1900	1900	1900	1900 1900	1900	
Adjustment:	0.91 0.96	0.82		0.95	0.95		0.93	0.83	0.90 0.90	0.81	
Lanes:	1.00 1.00	1.00		0.70	0.30		2.00	1.00	1.00 2.00	1.00	
Final Sat.:		1551		1260	552		3538	1583	1718 3437	1537	
Capacity Ana			1		'	1			1	'	
Vol/Sat:	0.13 0.09	0.09	0.18	0.28	0.28	0.05	0.19	0.28	0.09 0.16	0.15	
Crit Moves:	***			***				***	***		
<pre>Green/Cycle:</pre>	0.13 0.13	0.13	0.28	0.28	0.28	0.28	0.28	0.28	0.16 0.16	0.16	
Volume/Cap:	1.00 0.67	0.70		1.00	1.00		0.68	1.00	0.59 1.00	0.95	
Delay/Veh:	94.8 39.9	43.1	26.5		69.3		27.6	72.4	34.8 73.1	77.1	
User DelAdj:		1.00	1.00		1.00		1.00	1.00	1.00 1.00	1.00	
AdjDel/Veh:	94.8 39.9	43.1	26.5		69.3		27.6	72.4	34.8 73.1	77.1	
HCM2kAvg:	11 5	5	8	19	19	2	9	17	5 12	10	
******	*****	*****	***	****	****	***	****	****	*****	****	

Level Of Service Computation Report

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)												

Average Delav	(sec/vel	1):	7.0	Wor	st Cas	e Leve	l Of a	Service	:	C [23.4]	
**************************************	********* North l			***** uth Bo			***** ast B			***** est Bo		
Movement:	L - T	- R	L	- T	- R	L	- T	- R	L	- T	- R	
Control:	Stop S		S	top S:		Un		olled	Un		olled	
Rights: Lanes: 	0 0 1	0 0	0	0 0	0 0	0	0 0	1 0	-	1 0	0 0	
Volume Module									1		I	
Base Vol:		163	0	0	0 1.00	0	232	59 1.00	197	297 1.00	0 1.00	
Growth Adj: Initial Bse:	1.00 1.00) 1.00) 163	0.00	0.11	0	0	232	59	197	297	0	
Added Vol:) 6	0	0	0	0	5	2	3	10	0	
In-Process:		0	0	0	0	0	0	0	0	0	0	
Initial Fut:	72 (1 00	1 00	1.00	1 00	237	61 1.00	200	307	0 1.00	
	1.00 1.00			1.00	0.95		0.95	0.95		0.95	0.95	
PHF Adj: PHF Volume:	76		0.23	0.55	0.55	0.55	249	64	211	323	0.55	
Reduct Vol:) 0	0	Ō	0	0	0	0	0	0	0	
Final Vol.:	76 (178	0	0	0	0	249	64	211	323	0	
Critical Gap	Module:											
Critical Gp:	6.4 xxx	6.2	xxxxx	xxxx	xxxxx	xxxxx	xxxx	XXXXX			xxxxx	
FollowUpTim:	3.5 xxxx							XXXXX			XXXXX	
Capacity Modu Cnflict Vol:		282	vvvv	****	xxxxx	vvvv	vvvv	xxxxx	314	xxxx	xxxxx	
Potent Cap.:					XXXXX			XXXXX			xxxxx	
Move Cap.:					XXXXX			xxxxx	1247	xxxx	xxxxx	
Volume/Cap:	0.34 xxxx	0.23		xxxx		xxxx	xxxx	xxxx	0.17	xxxx	XXXX	
Level Of Serv												
	XXXX XXXX										XXXXX	
Stopped Del:x		XXXXX *	*****		**	*	xxxx *	**	8.5 A	*	xxxxx *	
LOS by Move:	* *			- LTR			- LTR			- LTR		
Movement: Shared Cap.: :	LT - LTE				- KI			XXXXX			XXXXX	
SharedQueue:x	AAAA 3.	XXXXX									xxxxx	
Shrd StpDel:x	xxxx 23.4	XXXXX	xxxxx	xxxx	xxxxx	xxxxx	xxxx	xxxxx			xxxxx	
Shared LOS:	* C	*	*	*	*	*	*	*	Α	*	*	
ApproachDel:	23.4	:	x	(XXXX		x	xxxx		xx	xxxx		
ApproachLOS:	С			*			*			*		

ApproachLOS: *

Mammoth Eagle Lodge EIR

Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)

************** Intersection #6 MERIDIAN / MAJESTIC PINES (EAST) ***************** Average Delay (sec/veh): 87.3 Worst Case Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R L - T - R Lanes: -----| Volume Module: Initial Bse: 0 0 0 200 0 55 134 50 0 0 98 180 Added Vol: 0 0 0 56 0 30 57 422 0 0 232 24 In-Process: 0 0 0 0 -13 0 13 13 13 0 0 13 -13 Initial Fut: 0 0 0 243 0 98 204 485 0 0 343 191 PHF Volume: 0 0 0 256 0 103 215 511 0 0 361 201 Reduct Vol: 0 0 0 0 256 0 103 215 511 0 0 361 201 Final Vol.: 0 0 0 256 0 103 215 511 0 0 361 201 Critical Gap Module: _____| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1146 xxxx 281 562 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxxx xxxxx 196 xxxx 722 1019 xxxx xxxxx xxxx xxxx xxxxx xxxxx Move Cap.: xxxx xxxx xxxxx 160 xxxx 722 1019 xxxx xxxxx xxxx xxxx xxxxx Volume/Cap: xxxx xxxx xxxx 1.60 xxxx 0.14 0.21 xxxx xxxx xxxx xxxx xxxx _____| Level Of Service Module: LOS by Move: * * * * * * A * * * * * Movement: LT - LTR - RT SharedQueue:xxxxx xxxxx xxxxx xxxxx 24.6 xxxxx 0.8 xxxx xxxxx 0.0 xxxx xxxxx Shrd StpDel:xxxxx xxxxx xxxxx xxxxx 395 xxxxx 9.5 xxxx xxxxx 9.0 xxxx xxxxx Shared LOS: * * * * F * A * * A * * ApproachDel: xxxxxx 394.8 xxxxxx xxxxxx

F

Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative) ************************

Intersection #7 MERIDIAN?MAJESTIC PINES (WEST) *******************

Cycle (sec): Critical Vol./Cap. (X): 0.886 100 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 23.6 Optimal Cycle: 0 Level Of Service: C

Optimal Cycle) ,	Level Of Service: C										
Approach:											est Bo	
Movement:	L	- T	- R	L	- T	- R	$\mathbf L$	- T	- R	L -	- Т	- R
		 -										
Control:	S	top Si	ign	St	top S:	ign	S.	top S:	ign ide	St	op S:	ign
Rights:		Incl										
Min. Green:	-	0	0		0	0	0		_	_	0	0
Lanes:		0 1!				0 0			1 0	0 1		
Volume Module	1											
Base Vol:	æ: 3	1	110	0	0	0	0	74	11	74	79	0
Growth Adj:			1.00		1.00	1.00	-	1.00		1.00		1.00
Initial Bse:			110	0	0	0	0	74		74	79	0
Added Vol:	0		24	479	59	0	0	0	0	0	0	71
In-Process:	0		0	26	0	0	0	0	0	0	0	26
Initial Fut:			134	505	59	0	0	74	11	74	79	97
User Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
PHF Volume:	3	11	141	532	62	0	0	78	12	78	83	102
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:			141	532	62	0	0	78		78	83	102
PCE Adj:			1.00		1.00	1.00		1.00		1.00		1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00		1.00		1.00
Final Vol.:		11	141	532	62		0		12		83	102
						-					. – – – -	
Saturation F				1 00	1 00	1.00	1 00	1.00	1.00	1.00	1 00	1.00
Adjustment:		0.07	1.00 0.91		1.00	0.00		0.87				1.00
Lanes: Final Sat.:			582		70		0.00			243		580
Final Sat.:			. - 1	1								
Capacity Anal				1		1	1		'	1		'
Vol/Sat:			0.24	0.89	0.89	xxxx	xxxx	0.17	0.17	0.32	0.32	0.18
Crit Moves:			****	***					***		***	
Delay/Veh:	9.8	9.8	9.8	34.6	34.6	0.0	0.0	10.6	10.6	12.5		9.8
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00
AdjDel/Veh:			9.8	34.6	34.6	0.0		10.6	10.6	12.5		9.8
LOS by Move:	Α		Α	D	D	*	*	_	В	В	В	A
ApproachDel:		9.8			34.6			10.6			11.4	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		9.8			34.6			10.6			11.4	
LOS by Appr:		A			D			В			В	
******	****	*****	*****	*****	****	*****	****			~ * * * * *	, x x x x	

______ Mammoth Eagle Lodge EIR

Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative) ******************

Intersection #8 MERIDIAN/Bus/Auto Drop Off

Average Delay (sec/ve		0.2 Worst Case Level Of Service: A[9.4					
Approach: North		outh Bound	East Bound	West Bound			
Movement: L - T		- T - R	L - T - R	L - T - R			
Control: Stop	Sign	Stop Sign	Uncontrolled	Uncontrolled			
Rights: Inc	lude	Include	Include	Include			
Lanes: 0 0 1	! 0 0 0		1 1	0 1 0 1 0			
l l							
Volume Module:				0 150 0			
Edebo (UL)	•	0 0 0	·				
Growth Adj: 1.00 1.0		0 1.00 1.00					
	•	0 0 0					
110000	•	0 0 0		•			
In Hoodbo.	0	0 0 0	•				
IIII CIGI I GO.	•	0 0 0					
User Adj: 1.00 1.0		0 1.00 1.00					
PHF Adj: 0.95 0.9							
1111 1010	•	0 0 0					
MCCCCC VOI.	0	0 0 0	= -				
	0 0	0 0 0	25 725 0	0 263 201			
Critical Gap Module:			4 1				
Critical Gp:xxxxx xxx				XXXXX XXXX XXXXX			
FollowUpTim:xxxxx xxx	X XXXXX XXXX	x xxxx xxxxx	2.2 xxxx xxxxx	XXXXX XXXX XXXXX			
Capacity Module:			464 xxxx xxxxx	xxxx xxxx xxxxx			
Cnflict Vol: xxxx xxx							
Potent Cap.: xxxx xxx		x xxxx xxxxx x xxxx					
Move Cap.: xxxx xxx		x xxxx xxxxx x xxxx xxxx					
Volume/Cap: xxxx xxx							
Level Of Service Modu			1 1	1 1			
	X XXXXX XXXX	v xxxx xxxxx	0.1 xxxx xxxxx	xxxxx xxxx xxxxx			
Stopped Del:xxxxx xxx			•	xxxxx xxxx xxxxx			
LOS by Move: * *		* *	Δ * *	* * *			
Movement: LT - LT		- LTR - RT	LT - LTR - RT	LT - LTR - RT			
	0 xxxxx xxx						
SharedQueue:xxxxx xxx							
Shrd StpDel:xxxxx xxx							
Shared LOS: * *		* *	A * *	A * *			
ApproachDel: xxxxx	x :	xxxxxx	xxxxxx	xxxxxx			
ApproachLOS: *		*	*	*			

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

***************** Intersection #9 Majestic/Hotel Out

******************** Average Delay (sec/veh): 0.8 Worst Case Level Of Service: B[10.7] ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Volume Module: 0 255 Initial Bse: 0 0 0 0 0 0 0 314 0 0 255
Added Vol: 0 0 56 0 0 0 0 0 0 0 0 81
In-Process: 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 0 0 56 0 0 0 0 344 0 0 336 PHF Volume: 0 0 59 0 0 0 0 362 0 0 354 0 Reduct Vol: 0 0 0 59 0 0 0 0 362 0 0 354 0 Final Vol.: 0 0 59 0 0 0 0 362 0 0 354 0 Reduct Vol: 0 0 0 Final Vol.: 0 0 59 Critical Gap Module: _____| Capacity Module: _____| Level Of Service Module:

*

В

ApproachLOS:

___________ Level Of Service Computation Report

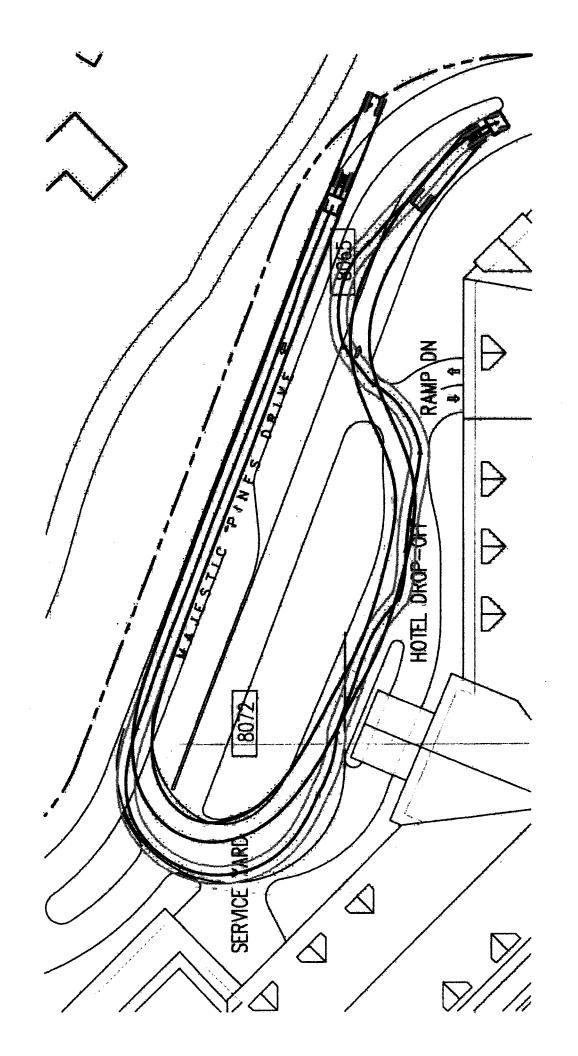
2000 HCM Unsignalized Method (Future Volume Alternative) ******************* Intersection #10 Majestic/Hotel In

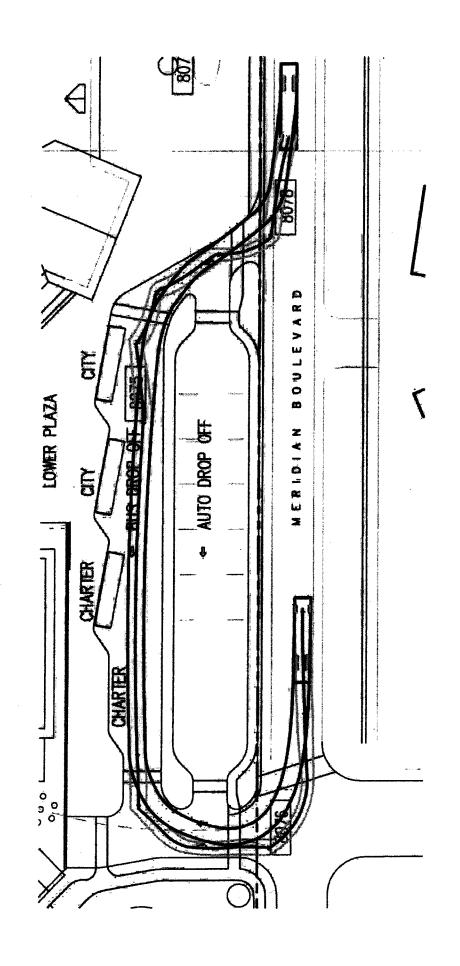
****************** Average Delay (sec/veh): 0.3 Worst Case Level Of Service: A[8.0] ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R

______|____|____| Volume Module: 0 314 0 255

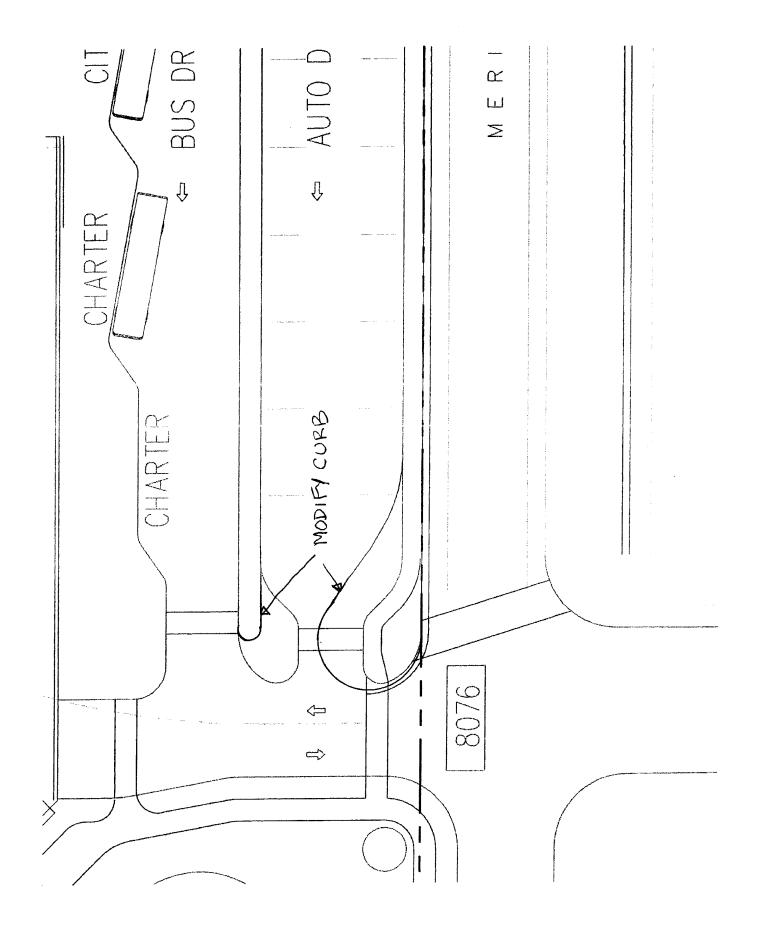
Initial Bse: 0 0 0 0 0 0 0 314 0 0 255
Added Vol: 0 0 0 0 0 0 0 0 30 1 24 57
In-Process: 0 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 0 0 0 0 0 0 0 344 1 24 312 PHF Volume: 0 0 0 0 0 0 0 362 1 25 328 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 0 0 0 0 362 1 25 328 0

Critical Gap Module: _____|


Capacity Module:


______|__|__|__| Level Of Service Module:

A * * LT - LTR - RT


ApproachDel: xxxxxx xxxxxx * * ApproachLOS:

Appendix C Truck Circulation Analysis

Appendix D Modify Curb Improvement

