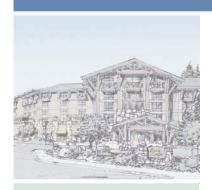
# ENVIRONMENTAL ASSESSMENT AND DRAFT ENVIRONMENTAL IMPACT REPORT VOLUME II - TECHNICAL APPENDICES



### EAGLE LODGE BASE DEVELOPMENT PROJECT


EA Number: California Clearinghouse Number: 2006012041

NEPA LEAD AGENCY:
USDA FOREST SERVICE
INYO NATIONAL FOREST
873 N. MAIN STREET
BISHOP, CALIFORNIA 93514

CEQA LEAD AGENCY
TOWN OF MAMMOTH LAKES
437 OLD MAMMOTH ROAD
MAMMOTH LAKES, CALIFORNIA 93546



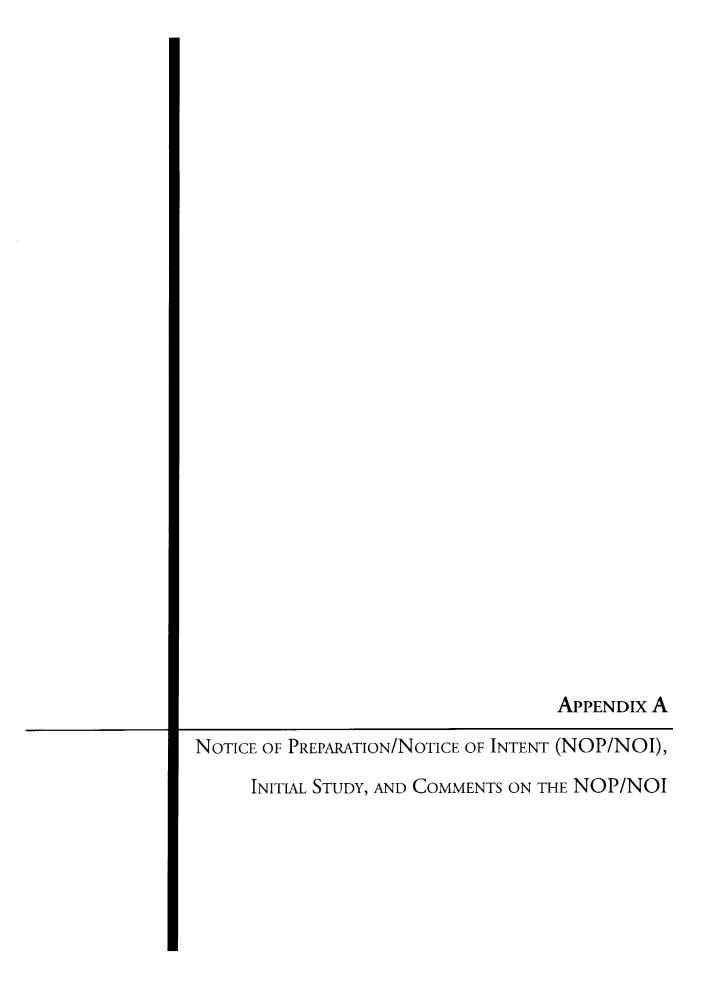
# ENVIRONMENTAL ASSESSMENT AND DRAFT ENVIRONMENTAL IMPACT REPORT VOLUME II - TECHNICAL APPENDICES



### EAGLE LODGE BASE DEVELOPMENT PROJECT

EA Number: California Clearinghouse Number: 2006012041

NEPA LEAD AGENCY: USDA FOREST SERVICE INYO NATIONAL FOREST 873 N. MAIN STREET BISHOP, CALIFORNIA 93514


CEQA LEAD AGENCY
TOWN OF MAMMOTH LAKES
437 OLD MAMMOTH ROAD
MAMMOTH LAKES, CALIFORNIA 93546

#### **TABLE OF CONTENTS (CONTINUED)**

#### **VOLUME II**

- Appendix A Notice of Preparation/Notice of Intent (NOP/NOI), Initial Study, and Comments on the NOP/NOI
- Appendix B Traffic Study
- **Appendix C Air Quality Technical Worksheets**
- Appendix D Noise Technical Worksheets
- Appendix E Floral and Faunal Compendia
- **Appendix F Cultural Resources Technical Report**
- Appendix G Detailed Height and Shade/Shadow Analysis
- Appendix H Preliminary Hydrogeologic Investigation; Preliminary Drainage Study; Storm Water Pollution Prevention Plan
- Appendix I Site Plan, Height Analysis, Visual Simulations and Shade/Shadow Analysis for Alternate Design Alternative

Eagle LodgeTown of Mammoth LakesState Clearinghouse No. 2006012041September 2006





### COMMUNITY DEVELOPMENT P.O. Box 1609, Mammoth Lakes, CA 93546 (760) 934-8989 ext. 286, fax (760) 934-8608

### NOTICE OF INTENT /NOTICE OF PREPARATION JOINT ENVIRONMENTAL ASSESSMENT/DRAFT ENVIRONMENTAL IMPACT REPORT AND NOTICE OF PUBLIC SCOPING MEETING

Date: January 6, 2006

To: Office of Planning and Research (State Clearinghouse) and Affected Resource Agencies

From: Town of Mammoth Lakes and U.S. Forest Service

**PROJECT LOCATION:** The Town of Mammoth Lakes is a destination resort community located in southwestern Mono County on the eastern side of the Sierra Nevada mountain range. The Town lies approximately three miles west of U.S. Highway 395, along State Route 203. The approximately 5.85-acre project site is located in the southwestern side of the developed part of Town, west of the intersection of Meridian Boulevard and Majestic Pines Road. A portion of the site, approximately 2.39 acres, is located within the Inyo National Forest. The area is locally referred to as the Juniper Springs area, or more recently the Eagle Base Area.

**DESCRIPTION OF THE PROJECT:** Mammoth Mountain Ski Area (MMSA) proposes to construct a permanent base lodge facility at 3256 Meridian Blvd (APN #'s 32-040-12 & 32-040-08) that would include visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa and locker club. Development is anticipated to be in one phase over a two-year timeframe beginning in Spring 2007 and ending in Spring 2009.

The project site is subject to the existing Juniper Ridge Master Plan "The Master Plan," the Mammoth Mountain Ski Area Master Development Plan "The MMSA Development Plan," and the Inyo National Forest Land and Resource Management Plan "The Inyo Forest Plan." The project would require amendments to both Plans in the areas of parking, height, density, setbacks, visual quality and land use. In addition, the project would require a General Plan amendment to rezone Lot 87 from Residential Single Family to Resort, with the majority of the lot being utilized for circulation and open space. Development of the project would be subject to further discretionary reviews that would include Use Permit, Tentative Map and Design Review Approvals. The project will be subject to environmental review and analysis under Forest Service Agency guidance and the National Environmental Policy Act. The project may require a non-significant amendment of the Inyo Forest Plan.

The more detailed project description, location, and the potential environmental effects are contained in the attached materials. A copy of the Initial Study ( $\boxtimes$  is  $\square$  is not) attached.

The Town of Mammoth Lakes has determined that an Environmental Impact Report will be required to analyze the environmental effects of the proposed lodge. Environmental factors that would be potentially affected by the project include Aesthetics, Air Quality, Biological Resources, Cultural Resources, Hydrology/Water Quality, Land Use and Planning, Noise, Population and Housing, Transportation and Circulation, Utilities and Service Systems (Water, Wastewater, and Stormwater), and Mandatory Findings of review Significance. The Initial Study is available for on the (www.townofmammothlakes.org), at Town Offices (Suite R, 437 Old Mammoth Rd, Mammoth Lakes, CA), and at the Mono County Library (960 Forest Trail, Mammoth Lakes, CA).

The Forest Service has determined that an Environmental Assessment will be required to analyze the effects of the proposed lodge and ancillary facilities on National Forest System Lands. Environmental factors that would be potentially affected by the project include those described above.

#### FOR FURTHER INFORMATION CONTACT:

Sonja Porter, Senior Planner with the Town of Mammoth Lakes at (760) 934-8989 **OR** Mike Schlafmann with the U.S. Forest Service at (760) 924-5503

HOW TO COMMENT ON THE NOTICE OF INTENT/NOTICE OF PREPARATION: Due to the time limits mandated by State law, your response must be sent at the earliest possible date but not later than 30 days after receipt of this notice. Therefore, written comments must be submitted by 5:00 p.m. on February 10, 2006.

Please send your comments to: Sonja Porter, Senior Planner, Town of Mammoth Lakes, P.O. Box 1609, Mammoth Lakes, CA 93566 or to Mike Schlafmann, U.S. Forest Service, Mammoth Ranger District Office, P.O. Box 148, Mammoth Lakes, CA 93546. Comments can also be submitted by FAX to the Town of Mammoth Lakes at (760) 934-8608 or the U.S. Forest Service at (760) 924-5537. In addition, comments can be submitted electronically to: <a href="mailto:sporter@ci.mammoth-lakes.ca.us">sporter@ci.mammoth-lakes.ca.us</a>. We will need the name of a contact person in your agency.

**SCOPING MEETING:** In addition, the Town of Mammoth Lakes and the U.S. Forest Service will hold a **Scoping Meeting** to receive comments on the possible environmental impacts of the proposed project so that those issues may be taken into consideration in the preparation of the joint Environmental Assessment/Draft EIR. The Scoping Meeting will be held on **Tuesday**, **January 31**, **2006**, **at 6:00 P.M.** at Little Eagle Base Lodge, which is located at 3256 Meridian Boulevard, Mammoth Lakes. Participation at the public meeting is encouraged.

| Project | t Title:        | Eagle Lodge Base Area Development |  |  |  |  |
|---------|-----------------|-----------------------------------|--|--|--|--|
| Project | Applicant:      | Mammoth Mountain Ski Area         |  |  |  |  |
| Date:   | January 6, 2006 | Signature                         |  |  |  |  |
|         |                 | Title Senior Planner              |  |  |  |  |
|         |                 | Telephone (760) 934-8989 x286     |  |  |  |  |

## INITIAL STUDY FOR EAGLE LODGE BASE AREA DEVELOPMENT PROJECT

### TOWN OF MAMMOTH LAKES COMMUNITY DEVELOPMENT 437 Old Mammoth Road, Suite R Mammoth Lakes, CA 93546

Prepared By:

PCR SERVICES CORPORATION 233 Wilshire Boulevard, Suite 130 Santa Monica, California 90401

January 2006

#### TABLE OF CONTENTS

|        |                                                 | <u>Page</u> |
|--------|-------------------------------------------------|-------------|
| ENVIRO | NMENTAL CHECKLIST                               |             |
| ATTACI | HMENT A: PROJECT DESCRIPTION                    | A-1         |
| Intro  | duction                                         | A-1         |
| Proje  | ct Location and Surrounding Uses                | A-1         |
|        | ing Site Conditions                             |             |
| Desc   | ription of the Proposed Project                 | A-5         |
|        | truction                                        |             |
| Nece   | ssary Approvals                                 | A-15        |
| ~~     |                                                 | <b>D</b> 4  |
|        | IMENT B: EXPLANATION OF CHECKLIST DETERMINATION |             |
| I.     | Aesthetics                                      |             |
| II.    | Agricultural Resources                          |             |
| III.   | Air Quality                                     |             |
| IV.    | Biological Resources                            |             |
| V.     | Cultural Resources                              |             |
| VI.    | Geology and Soils                               |             |
| VII.   | Hazards and Hazardous Materials.                |             |
| VIII.  | Hydrology and Water Quality                     |             |
| IX.    | Land Use and Planning                           |             |
| X.     | Mineral Resources                               |             |
| XI.    | Noise                                           |             |
| XII.   | Population and Housing                          |             |
| XIII.  | Public Services                                 |             |
| XIV.   |                                                 |             |
| XV.    | Transportation and Circulation                  | B-35        |
| XVI.   | Utilities and Service Systems                   | B-37        |
| XVII   | Mandatory Findings of Significance              | B-41        |

#### LIST OF FIGURES AND TABLES

| <u>Figure</u> |                                                       | <u>Page</u> |
|---------------|-------------------------------------------------------|-------------|
| 1             | Regional and Vicinity Location Map                    | A-2         |
| 2             | Aerial Showing Development Relative to Property Lines | A-4         |
| 3             | Site Plan                                             | A-6         |
| 4             | Rendering from Meridian Boulevard (Front Entrance)    | A-13        |
| 5             | Rendering from Majestic Pines Road                    |             |
| <u>Table</u>  |                                                       |             |
| 1             | Commercial Uses and Square Footage                    | A-8         |
| 2             | Residential/Hospitality Uses and Square Footage       |             |

#### **ENVIRONMENTAL CHECKLIST FORM**

1. Project Title Eagle Lodge Base Area Development

2. Lead agency name and address: Town of Mammoth Lakes Community Development

437 Old Mammoth Road Mammoth Lakes, CA 93546

3. Contact person and phone number: Sonja Porter, Senior Planner

(760) 934-8989 x286

4. Project location: 3256 Meridian Boulevard (APN #'s 32-040-12 & 32-040-08,

Town of Mammoth Lakes, CA

5. Project sponsor's name and address: Mammoth Mountain Ski Area (MMSA)

P.O. Box 24, Mammoth Lakes, CA 93546

6. General Plan designation: Resort; Lot 87 is designated Low Density Residential

7. Zoning: The privately owned portion of the site, consisting of approximately 3.46 acres, is primarily zoned Resort (R). The remaining portion of the site, approximately 2.4 acres, is located within the Inyo National Forest and is managed by the USFS.

8. Description of project: (Describe the whole action involved, including but not limited to later phases of the project, and any secondary, support, or off-site features necessary for its implementation. Attach additional sheets if necessary.)

Please see attached Project Description

9. Surrounding land uses and setting: Briefly describe the project's surroundings:

The Summit Condominiums are located to the south of the site across Meridian Boulevard. Southwest of the site is the Juniper Springs Lodge. To the west of the Juniper Springs Lodge is multi-family residential development. Immediately to the east of the site across Majestic Pines Road is the Mammoth Community Water District Ground Water Treatment Plant No. 2. The Mammoth Loop Trail is located to the north of the Treatment Plant and runs to the west ending at Majestic Pines Road directly across from the site. Mammoth Vista I single family subdivision is located to the north and Camp High Sierra is located to the northeast.

10. Other public agencies whose approval is required (e.g., permits, financing approval, or participation agreement.)

U.S.D.A. Forest Service Inyo National Forest; Regional Water Quality Control Board – Lahontan Region; Great Basin United Air Pollution Control District; Mammoth Lakes Fire Protection District; Mammoth Community Water District

#### ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages.

|                                                                                                          | Agriculture Resources                                                                                                                                                                       | ☑ Air Quality                                                                                |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| ⊠ Biological Resources                                                                                   | ☐ Cultural Resources                                                                                                                                                                        | ☐ Geology/Soils                                                                              |
| ☐ Hazards/Hazardous Materials                                                                            | ⊠Hydrology/Water Quality                                                                                                                                                                    | ☐ Land Use/Planning                                                                          |
| ☐ Mineral Resources                                                                                      | ⊠Noise                                                                                                                                                                                      | ☑ Population/Housing                                                                         |
| ☐ Public Services                                                                                        | Recreation                                                                                                                                                                                  | ☑ Transportation/Traffic                                                                     |
| ☑ Utilities/Service Systems                                                                              | Mandatory Findings of Significance                                                                                                                                                          | :                                                                                            |
| DETERMINATION: (To be co                                                                                 | ompleted by the Lead Agency)                                                                                                                                                                |                                                                                              |
| On the basis of this initial evaluat                                                                     | ion:                                                                                                                                                                                        |                                                                                              |
| ☐ I find that the proposed proje a NEGATIVE DECLARATION                                                  | ect COULD NOT have a significant exwill be prepared.                                                                                                                                        | ffect on the environment, and                                                                |
| there will not be a significant eff                                                                      | posed project could have a significant in this case because revisions in the ponent. A MITIGATED NEGATIVE                                                                                   | ne project have been made by                                                                 |
| ☐ I find that the proposed pr<br>ENVIRONMENTAL IMPACT F                                                  | oject MAY have a significant effect REPORT is required.                                                                                                                                     | on the environment, and an                                                                   |
| significant unless mitigated" in<br>adequately analyzed in an earlier<br>addressed by mitigation measure | act MAY have a "potentially significant on the environment, but at less document pursuant to applicable legals based on the earlier analysis as described REPORT is required, but it must a | east one effect 1) has been<br>al standards, and 2) has been<br>ribed on attached sheets. An |

| I find that although the proposed          | project could have a significant effect on the environment, |
|--------------------------------------------|-------------------------------------------------------------|
| because all potentially significant effect | ts (a) have been analyzed adequately in an earlier EIR or   |
|                                            | at to applicable standards, and (b) have been avoided or    |
|                                            | or NEGATIVE DECLARATION, including revisions or             |
| 2 ,                                        | on the proposed project, nothing further is required.       |
| minguison medicares with the imperce of    | 7                                                           |
|                                            |                                                             |
|                                            | 10.2006                                                     |
|                                            | January 10, 2006                                            |
| Signature                                  | Date                                                        |
|                                            |                                                             |
| Sonja Porter, Senior Planner               | Town of Mammoth Lakes                                       |
| Printed Name                               | For                                                         |

#### **EVALUATION OF ENVIRONMENTAL IMPACTS:**

- 1) A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources a lead agency cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 2) All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- 3) Once the lead agency has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- 4) "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level (mitigation measures from Section XVII, "Earlier Analyses," may be cross-referenced).

- 5) Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA process, an effect has been adequately analyzed in an earlier EIR or negative declaration. Section 15063(c)(3)(D). In this case, a brief discussion should identify the following:
  - a) Earlier Analysis Used. Identify and state where they are available for review.
  - b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of and adequately analyzed in an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
  - c) Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 6) Lead agencies are encouraged to incorporate into the checklist references to information sources for potential impacts (e.g., general plans, zoning ordinances). Reference to a previously prepared or outside document should, where appropriate, include a reference to the page or pages where the statement is substantiated.
- 7) Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 8) This is only a suggested form, and lead agencies are free to use different formats; however, lead agencies should normally address the questions from this checklist that are relevant to a project's environmental effects in whatever format is selected.
- 9) The explanation of each issue identify:
  - a) the significance criteria or threshold, if any, used to evaluate each question; and
  - b) the mitigation measure identified, if any, to reduce the impact to less than significance.

| Issues:                                                                                                                                                                                                                                                                                                                                                                               | Potentially<br>Significant<br>Impact | Less Than Significant With Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| I. AESTHETICS – Would the project:                                                                                                                                                                                                                                                                                                                                                    | •                                    |                                                     |                                    |              |
| a) Have a substantial adverse effect on a scenic vista?                                                                                                                                                                                                                                                                                                                               | $\boxtimes$                          |                                                     |                                    |              |
| b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?                                                                                                                                                                                                                              |                                      |                                                     |                                    |              |
| c) Substantially degrade the existing visual character or quality of the site and its surroundings?                                                                                                                                                                                                                                                                                   | $\boxtimes$                          |                                                     |                                    |              |
| d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?                                                                                                                                                                                                                                                                 | $\boxtimes$                          |                                                     |                                    |              |
| II. AGRICULTURE RESOURCES – In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. Would the project: |                                      |                                                     |                                    |              |
| a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?                                                                                                                                        |                                      |                                                     |                                    |              |
| b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?                                                                                                                                                                                                                                                                                                  |                                      |                                                     |                                    | $\boxtimes$  |
| c) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use?                                                                                                                                                                                                                         |                                      |                                                     |                                    | $\boxtimes$  |
| III. AIR QUALITY – Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations. Would the project:                                                                                                                                                      |                                      |                                                     |                                    |              |
| a) Conflict with or obstruct implementation of the applicable air quality plan?                                                                                                                                                                                                                                                                                                       | $\boxtimes$                          |                                                     |                                    |              |
| b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?                                                                                                                                                                                                                                                                    |                                      |                                                     |                                    |              |

| Issues:                                                                                                                                                                                                                                                                                                          | Potentially<br>Significant<br>Impact | Less Than Significant With Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?                      |                                      |                                                     |                                    |              |
| d) Expose sensitive receptors to substantial pollutant concentrations?                                                                                                                                                                                                                                           | $\boxtimes$                          |                                                     |                                    |              |
| e) Create objectionable odors affecting a substantial number of people?                                                                                                                                                                                                                                          | $\boxtimes$                          |                                                     |                                    |              |
| IV. BIOLOGICAL RESOURCES – Would the project:                                                                                                                                                                                                                                                                    |                                      |                                                     |                                    |              |
| a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service? |                                      |                                                     |                                    |              |
| b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?                                                                 |                                      |                                                     |                                    |              |
| c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?                                             |                                      |                                                     |                                    |              |
| d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native nursery sites?                                                                                        |                                      |                                                     |                                    |              |
| e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?                                                                                                                                                                              |                                      |                                                     |                                    |              |
| f) Conflict with the provisions of an adopted Habitat<br>Conservation Plan, Natural Community Conservation Plan, or<br>other approved local, regional, or state habitat conservation<br>plan?                                                                                                                    |                                      |                                                     |                                    | $\boxtimes$  |

| Issues:                                                                                                                                                                                                                                                                                | Potentially<br>Significant<br>Impact | Less Than Significant With Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| V. CULTURAL RESOURCES – Would the project:                                                                                                                                                                                                                                             |                                      |                                                     | •                                  | •            |
| a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?                                                                                                                                                                             |                                      |                                                     |                                    | $\boxtimes$  |
| b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to §15064.5?                                                                                                                                                                          | $\boxtimes$                          |                                                     |                                    |              |
| c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?                                                                                                                                                                                |                                      |                                                     |                                    |              |
| d) Disturb any human remains, including those interred outside of formal cemeteries?                                                                                                                                                                                                   |                                      |                                                     | $\boxtimes$                        |              |
| VI. GEOLOGY AND SOILS – Would the project:                                                                                                                                                                                                                                             |                                      |                                                     |                                    |              |
| a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:                                                                                                                                                       |                                      |                                                     | $\boxtimes$                        |              |
| i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42. |                                      |                                                     |                                    |              |
| ii) Strong seismic ground shaking?                                                                                                                                                                                                                                                     |                                      |                                                     | $\boxtimes$                        |              |
| iii) Seismic-related ground failure, including liquefaction?                                                                                                                                                                                                                           |                                      |                                                     | $\boxtimes$                        |              |
| iv) Landslides?                                                                                                                                                                                                                                                                        |                                      |                                                     | $\boxtimes$                        |              |
| b) Result in substantial soil erosion or the loss of topsoil?                                                                                                                                                                                                                          |                                      |                                                     | $\boxtimes$                        |              |
| c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?                                                     |                                      |                                                     |                                    |              |
| d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?                                                                                                                                       |                                      |                                                     |                                    |              |
| e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?                                                                                                   |                                      |                                                     |                                    |              |

| Issues:                                                                                                                                                                                                                                                                                                                                                                                       | Potentially<br>Significant<br>Impact | Less Than Significant With Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| VII. HAZARDS AND HAZARDOUS MATERIALS – Would the project:                                                                                                                                                                                                                                                                                                                                     | •                                    |                                                     | 1                                  | •            |
| a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?                                                                                                                                                                                                                                                       |                                      |                                                     |                                    |              |
| b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?                                                                                                                                                                                               |                                      |                                                     |                                    |              |
| c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?                                                                                                                                                                                                                               |                                      |                                                     |                                    |              |
| d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?                                                                                                                                                                |                                      |                                                     |                                    |              |
| e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?                                                                                                                              |                                      |                                                     |                                    |              |
| f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?                                                                                                                                                                                                                                   |                                      |                                                     |                                    | $\boxtimes$  |
| g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?                                                                                                                                                                                                                                                                     |                                      |                                                     |                                    |              |
| h) Expose people or structures to a significant risk of loss, injury or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?                                                                                                                                                                          |                                      |                                                     |                                    |              |
| VIII. HYDROLOGY AND WATER QUALITY — Would the project:                                                                                                                                                                                                                                                                                                                                        |                                      |                                                     |                                    |              |
| a) Violate any water quality standards or waste discharge requirements?                                                                                                                                                                                                                                                                                                                       |                                      |                                                     |                                    |              |
| b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)? |                                      |                                                     |                                    |              |

| Issues:                                                                                                                                                                                                                                                                                                     | Potentially<br>Significant<br>Impact | Significant With Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------|--------------|
| c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?                                                                          |                                      |                                           |                                    |              |
| d) Substantially alter the existing drainage pattern of the site or area, including through the alternation of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding onor off-site?                                    |                                      |                                           |                                    |              |
| e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?                                                                                                                       |                                      |                                           |                                    |              |
| f) Otherwise substantially degrade water quality?                                                                                                                                                                                                                                                           | $\boxtimes$                          |                                           |                                    |              |
| g) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?                                                                                                                                        |                                      |                                           |                                    | $\boxtimes$  |
| h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?                                                                                                                                                                                                         |                                      |                                           |                                    |              |
| <ul> <li>i) Expose people or structures to a significant risk of loss,<br/>injury or death involving flooding, including flooding as a<br/>result of the failure of a levee or dam?</li> </ul>                                                                                                              |                                      |                                           |                                    | $\boxtimes$  |
| j) Inundation by seiche, tsunami, or mudflow?                                                                                                                                                                                                                                                               |                                      |                                           |                                    | $\boxtimes$  |
| IX. LAND USE AND PLANNING – Would the project:                                                                                                                                                                                                                                                              |                                      |                                           |                                    |              |
| a) Physically divide an established community?                                                                                                                                                                                                                                                              |                                      |                                           | $\boxtimes$                        |              |
| b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect? |                                      |                                           |                                    |              |
| c) Conflict with any applicable habitat conservation plan or natural community conservation plan?                                                                                                                                                                                                           |                                      |                                           |                                    |              |
| X. MINERAL RESOURCES – Would the project:                                                                                                                                                                                                                                                                   |                                      |                                           |                                    |              |
| a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?                                                                                                                                                                      |                                      |                                           |                                    |              |
|                                                                                                                                                                                                                                                                                                             |                                      |                                           |                                    |              |

| Issues:                                                                                                                                                                                                                                                             | Potentially<br>Significant<br>Impact | Significant With Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------|--------------|
| b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?                                                                                               |                                      |                                           |                                    |              |
| XI. NOISE – Would the project result in:                                                                                                                                                                                                                            |                                      |                                           |                                    |              |
| a) Exposure of persons to or generation of noise level in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?                                                                                  | $\boxtimes$                          |                                           |                                    |              |
| b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?                                                                                                                                                             |                                      |                                           |                                    |              |
| c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?                                                                                                                                      |                                      |                                           |                                    |              |
| d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?                                                                                                                          |                                      |                                           |                                    |              |
| e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels? |                                      |                                           |                                    |              |
| f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?                                                                                                      |                                      |                                           |                                    |              |
| XII. POPULATION AND HOUSING – Would the project:                                                                                                                                                                                                                    |                                      |                                           |                                    |              |
| a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?                                                           |                                      |                                           |                                    |              |
| b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?                                                                                                                                               |                                      |                                           |                                    |              |
| c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?                                                                                                                                                         |                                      |                                           |                                    | $\boxtimes$  |

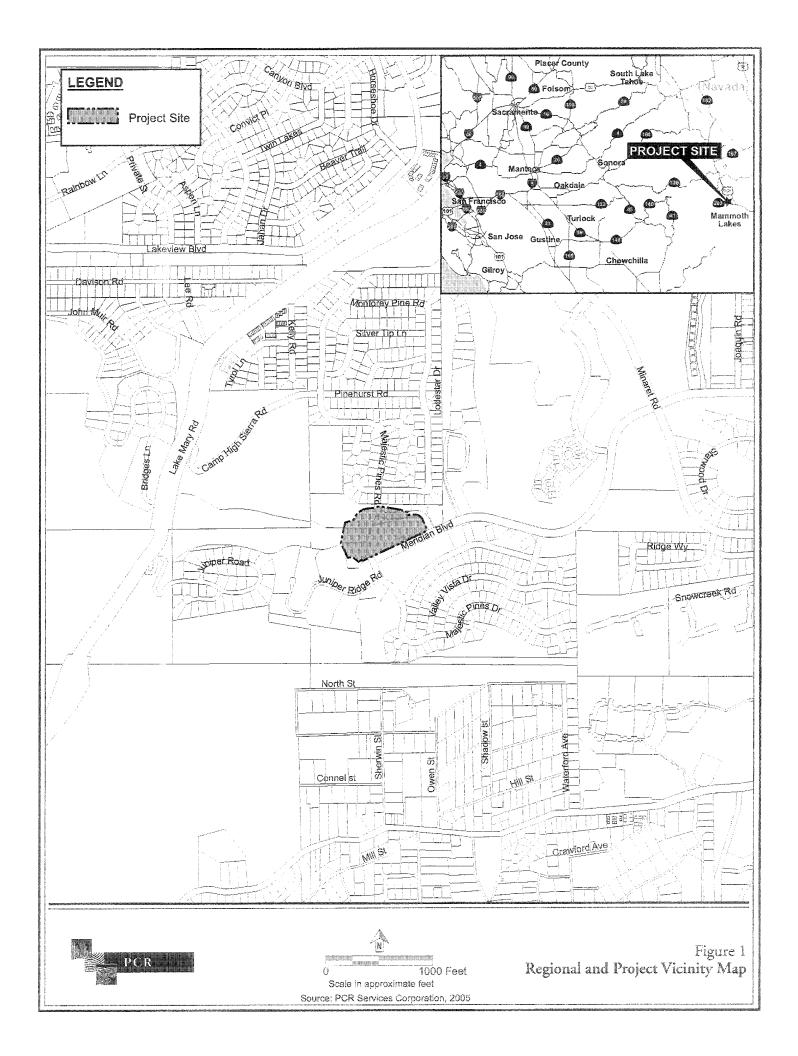
| Potentially<br>Significant<br>Impact | Significant<br>With<br>Mitigation | Less Than<br>Significant<br>Impact                      | No<br>Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------|-----------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | •                                 |                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      |                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      |                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                      | Significant Impact  Impact        | Potentially Significant Impact Mitigation Incorporation | Potentially Significant   With Mitigation   Impact   Impa |

| Issues:                                                                                                                                                                                                                           | Potentially<br>Significant<br>Impact | Less Than Significant With Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| e) Result in inadequate emergency access?                                                                                                                                                                                         |                                      |                                                     |                                    |              |
| f) Result in inadequate parking capacity?                                                                                                                                                                                         | $\boxtimes$                          |                                                     |                                    |              |
| g) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?                                                                                                  | $\boxtimes$                          |                                                     |                                    |              |
| XVI. UTILITIES AND SERVICE SYSTEMS – Would the project:                                                                                                                                                                           |                                      |                                                     |                                    |              |
| a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?                                                                                                                               | $\boxtimes$                          |                                                     |                                    |              |
| b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?                            | $\boxtimes$                          |                                                     |                                    |              |
| c) Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?                                     | $\boxtimes$                          |                                                     |                                    |              |
| d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?                                                                            |                                      |                                                     |                                    |              |
| e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments? |                                      |                                                     |                                    |              |
| f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?                                                                                                            |                                      |                                                     | $\boxtimes$                        |              |
| g) Comply with federal, state, and local statutes and regulations related to solid waste?                                                                                                                                         |                                      |                                                     | $\boxtimes$                        |              |

| Issues:                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Potentially<br>Significant<br>Impact | Less Than Significant With Mitigation Incorporation | Less Than<br>Significant<br>Impact | No<br>Impact |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|------------------------------------|--------------|
| XVII. MANDATORY FINDINGS OF SIGNIFICANCE                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                                     |                                    |              |
| a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory? |                                      |                                                     |                                    |              |
| b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?                                                                                                           |                                      |                                                     |                                    |              |
| c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?                                                                                                                                                                                                                                                                                                              |                                      |                                                     |                                    |              |

### ATTACHMENT A: PROJECT DESCRIPTION

#### INTRODUCTION


The Project Applicant, Mammoth Mountain Ski Area (MMSA), proposes to amend the Juniper Ridge Master Plan to accommodate the proposed Eagle Lodge Base Area Development (the project). The project site is comprised of approximately 5.85 acres and is located in the southwestern side of the developed part of the Town of Mammoth Lakes. A portion of the site, approximately 2.39 acres, is located within the Inyo National Forest. The project is a mixed-use development with a hotel condominium and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa and locker club. Development is anticipated to be in one phase over a two-year timeframe beginning in Spring 2007 and ending in Spring 2009.

The project site is subject to the existing Juniper Ridge Master Plan "The Master Plan". The project would require amendments to the Master Plan in the areas of parking, height, density, setbacks, and land use. In addition, the project would require a General Plan amendment to rezone Lot 87 from Residential Single Family to Resort, with the majority of the lot being utilized for circulation and open space. Development of the project would be subject to further discretionary reviews that would include Use Permit, Tentative Map and Design Review Approvals. In addition, the project site is located in the Mammoth Mountain Ski Area Master Development Plan "The MMSA Development Plan," and the Inyo National Forest Land and Resource Management Plan "The Inyo Forest Plan."

#### PROJECT LOCATION AND SURROUNDING USES

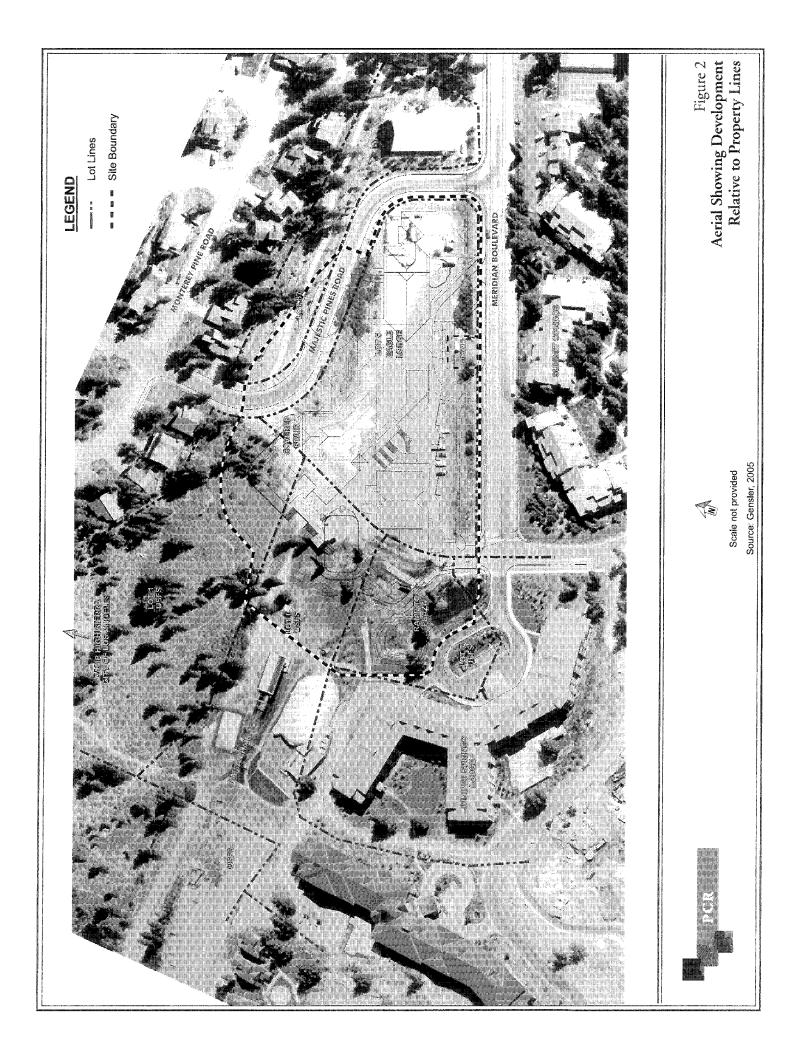
The Town of Mammoth Lakes is a destination resort community located in southwestern Mono County on the eastern side of the Sierra Nevada mountain range. The Town lies approximately three miles west of U.S. Highway 395, along State Route 203 as shown on Figure 1 on page A-2. The project site is located in the southwestern side of the developed part of Town, west of the intersection of Meridian Boulevard and Majestic Pines Road. The area is locally referred to as the Juniper Springs area, or more recently the Eagle Base Area. The Eagle Base Area is one of four key access portals to the Mammoth Mountain ski area. The other key portals to the ski area are The Village, Canyon Lodge and Main Lodge, all of which are located within the Town of Mammoth Lakes Municipal Boundary.

Town of Mammoth Lakes January 2006



The site is located at the base of the Eagle Express chairlift (chair 15), which is located on lands administered by the Inyo National Forest. Property to the north is developed with single family residences. The Summit Condominiums are located to the south of the site across Meridian Boulevard. Southwest of the site is the Juniper Springs Lodge. To the west of the Juniper Springs Lodge is multi-family residential development. Immediately to the east of the site across Majestic Pines Road is the Mammoth Community Water District Ground Water Treatment Plant No. 2. The Mammoth Loop Trail is located to the north of the Treatment Plan and runs to the west ending at Majestic Pines Road directly across from the site.

#### **EXISTING SITE CONDITIONS**


The site, which consists of private and public lands, is approximately 5.85 acres in size. As shown in Figure 2 on page A-4, the majority of the site, approximately 3.46 acres, is located on private property within the Town of Mammoth Lakes. The 3.46 acres is known as Lot 5 of the Juniper Ridge Subdivision (Area 4 of the Juniper Ridge Master Plan). The 3.46 acres is within the Urban Growth Boundary (UGB) and is also within the Juniper Ridge Master Plan Area. The remainder of the project site encompasses approximately 2.39 acres of land that is located within Inyo National Forest land and is administered by the U.S.D.A. Forest Service. This portion of the project covers 3 parcels, Lot 7, Lot 6 and Lot 1 (Area 9, 8 and 3 of the Juniper Ridge Master Plan).

Existing uses on the site include a surface parking lot for skiers utilizing Eagle Express and the temporary Little Eagle Base Lodge. The surface parking lot, which is bounded by Meridian Boulevard and Majestic Pines Road, can accommodate approximately 225 vehicles, inclusive of day-skier and temporary/drop-off parking. Access to the surface parking lot is provided from Meridian Boulevard.

In the path between the parking lot to the temporary ski facilities is a statue of an eagle in flight. The temporary ski facilities consist of a temporary, white framed membrane structure with attached trailers which provide support services. Little Eagle and associated trailers provide approximately 12,000 square feet of interior space. In addition, an approximately 3,000 square foot exterior barbeque and dining deck are also located on the site. Existing services at Little Eagle include: ticketing; food and beverage service comprised of an 80 seat interior restaurant, an interior bar/coffee bar area plus the exterior barbeque and dining deck for service of up to 200 seats; limited retail and rental of approximately 600 square feet; public restrooms; and back-of-house administrative space. The existing lift facilities include a six seat ("six-pack") detachable chairlift with a current maximum uphill capacity of 2,800 skiers per hour. In addition, a single "magic carpet" conveyor belt is used for very limited ski school operations. No formal ski

Town of Mammoth Lakes January 2006

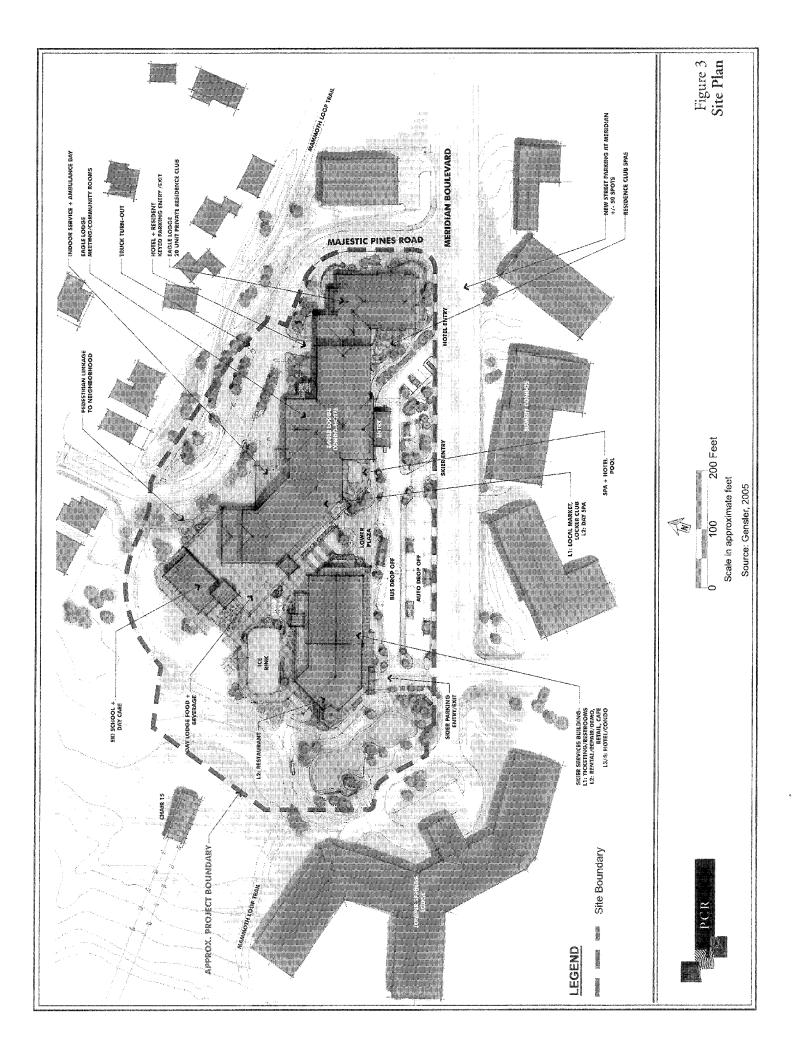
The site also contains a portion of Lot 87. The acreage of Lot 87 that is part of the project site is 0.15 acres.



school facilities exist at Little Eagle. Currently, all guests seeking ski school services must travel to Canyon Lodge or Main Lodge to enroll.

The Mammoth Community Water District (MCWD) owns a well site parcel that is located adjacent to Meridian Boulevard within the southern portion of Lot 5. The parcel contains the vault housing MCWD Well 16.

#### DESCRIPTION OF THE PROPOSED PROJECT


The proposed Eagle Lodge Base Area Development would develop permanent skier amenities. Figure 3 on page A-6 provides a conceptual site plan for the project. The project would include a mixed use of day skier commercial services, general commercial services and a mix of residential product type that will encourage high transient occupancy. Plaza areas and outdoor seating would connect the on-site facilities, which would be housed in two buildings. Amenities would include ticket sales, ski rental and repair, food services, lockers, retail, ski school, and day care.<sup>2</sup> The project is described in more detail below.

The lodge and associated commercial uses would be located within two buildings. The main building or lodge would front on Meridian Boulevard. The Skier Services Building would be located on the southwestern portion of the site while the Ski School/Day Care, contiguous with the day lodge cafeteria and hospitality lodging building would be located on the north side of the site stretching from the eastern boundary to the northwestern corner of the site adjacent to the slopes. The two buildings would be connected by outdoor plazas. An arrival or lower plaza would be created adjacent to the vehicular access to the south side of the site. The skier or upper plaza would connect the buildings and would surround the small open ice rink.

Although the majority of day lodge uses contemplated in the project are geared towards winter time use, the facilities would also lend themselves to summer uses such as a summertime outdoor performing arts venue, potential access to the summer mountain bike park, other outdoor activities such as a climbing rock or challenge ropes course, and assembly opportunities. While the peak use would be winter, the development would accommodate and provide for year-round use of the facility.

\_\_\_\_

In addition, on-hill improvements are anticipated in the future and would include a new detachable four seat ("quad") beginner chair lift and beginner ski run as well as additional magic carpets located adjacent to the proposed new base lodge. These improvements would be located entirely on Inyo Forest Land and would require environmental review and approval through the U.S. Forest Service.



#### **Commercial Uses**

Table 1 on page A-8 shows the proposed uses as well as approximate square footage within the facility. As shown in Table 1, the ski-related commercial uses within the facility would occupy approximately 40,000 gross square feet. Ski-related commercial uses would include a rental/demo/repair shop, retail shop, ticketing, ski school, food and beverage services and back-of-house space for administration, ski patrol, employee break room, and maintenance.

The street level would include ski school drop off and access area. The Skier Services Building, which is the southwestern portion of the building, would contain the ticketing and ski rental/demo shop as well as a retail space. The first floor of the lodge would also include administrative offices, an employee break room, ski patrol office, building maintenance shop, mechanical rooms, and a loading dock with dry and refrigerated storage.

A Ski School/Day Care facility would be located in the northwestern portion of the site adjacent to the slopes. The ski school and day care would operate from this location. The Day Care center would be a supplementary operation of the Ski School, available to guests, and would only be available during the term of the annual ski season. Generally, the Day Care center would not be available to local residents of the community but rather to patrons of the ski area and the ski school in particular.

As shown in Table 1, the lodge would contain an approximately 12,000 square foot Locker Club. The Locker Club would be located on the street level of the lodge and would have approximately 300 members. Membership to the Locker Club would include understructure parking access, exclusive members only access to the Club facilities, oversized wood lockers, men's and women's restroom and shower facilities, a business center, concierge services including a continental breakfast bar, afternoon bar services, ski tuning and other valet services.

An approximately 4,000 square foot neighborhood convenience market that would provide general food and groceries would be located on the street level of the lodge. The intent of the market would be to provide goods for users of adjacent residential developments and guests of the lodge.

The second level, or ski plaza level of the lodge would include an 8,000 square foot Day Spa, which would provide traditional full service wet/dry spa services. The Day Spa would be open to guests and the public.

The ski-plaza level would include a full-service food court (cafeteria style) located in the northern portion of the lodge. The food court would provide indoor dining for up to 250 persons. The outdoor patio would provide an additional 250 seats scattered throughout the patio area. An

Table 1

Commercial Uses and Square Footage

| Description                                | Approximate Square Feet |
|--------------------------------------------|-------------------------|
| Commercial Ski-Related Uses                |                         |
| Skier Food Service                         | 9,500                   |
| Dining Area (250 seats)                    |                         |
| Servery                                    |                         |
| Kitchen/storage/office                     |                         |
| Food Prep                                  |                         |
| Bar & Coffee Bar                           |                         |
| Skier Commercial Services                  | 9,200                   |
| Rental/Demo/Repair Shop/Basket Ck          |                         |
| Retail Shop                                |                         |
| Ski School/Day Care                        |                         |
| Skier Staging Facilities                   | 6,300                   |
| Ticketing/Lobby                            |                         |
| Public Restrooms                           |                         |
| Administrative Facilities                  | 5,000                   |
| Administrative Offices                     |                         |
| Employee Break Room/Locker Room            |                         |
| Ski Patrol                                 |                         |
| Maintenance / Loading Dock                 |                         |
| Mechanical / Cell Site                     |                         |
| Net Day Lodge Program                      | 30,000                  |
| Inefficiencies @ 25%                       | 10,000                  |
| Subtotal: Gross Day Lodge Square Footage   | 40,000                  |
| Additional Commercial Uses                 |                         |
| Day Spa                                    | 8,000                   |
| Locker Club                                | 12,000                  |
| Convenience Market                         | 4,000                   |
| Restaurant (seating for up to 200 patrons) | 4,000                   |
| Meeting/Conference Room                    | 4,000                   |
| Net Commercial Program                     | 32,000                  |
| Inefficiencies @ 20%                       | 8,000                   |
| Subtotal: Gross Commercial Square Footage  | 40,000                  |
| Total Commercial Square Footage            | 80,000                  |

indoor/outdoor bar would also be provided as part of the food court. An incidental counter café would be provided in the Skier Services Building adjacent to the lobby and an approximately 4,000 square foot sit-down restaurant space. The restaurant would be located adjacent to the ski slope and ice rink. The restaurant operation would accommodate approximately 120 people at a time with an additional 80 seats provided on an outdoor patio. With the indoor and outdoor dining, the restaurant could accommodate up to 200 persons at one time. It is anticipated this full-service restaurant would operate year-round.

The main building would contain an approximately 4,000 square foot meeting/conference facility that would be used to support the hospitality functions of the lodge. The meeting/conference facility would be available to the general public on an as-available commercial basis. During peak ski operations, the meeting/conference facilities would not be available to the public until the close of the chairlift operations and therefore, would not generate external traffic. The conference room could accommodate up to 200 people. In general, the meeting conference facilities would be operated so as to not conflict with peak parking demand during the ski season. It is anticipated the meeting/conference facilities would create incremental off ski season demand for lodging facilities thus promoting the year-round utilization of the lodge.

#### Residential Uses

The proposed Eagle Lodge Base Area Development would include hotel/condominium or hospitality operations that would provide housing for transient visitors. As shown in Table 2 on page A-10, the project would include 62 condo/hotel units and 21 fractional ownership condominiums. The 62 condo/hotel units would be wholly owned, individual units and would be located on the third through fifth level of the lodge. The 21 fractional ownership condominium units would be located in the eastern portion of the main building on the first through fourth levels. On-site lodging would accommodate up to 360 people. Related program elements of the hospitality component include a front desk operation, meeting/conference room facilities, as previously mentioned, and a club room. In addition, an outdoor pool and spa for the residences would be located at the ski plaza level on the southern side of the lodge. A hotel scenario is also being considered as mentioned in the footnote of Table 2.3

Lodging guests would enter a porte cochere covered driveway separate from day skier traffic where they could park temporarily to check-in at the front desk. Front desk operations would be linked to the skier day lodge facilities so that guests registering at the lodging, for example, would be able to purchase lift tickets and other skier services such as ski school.

#### Other

In addition to the skiing related services, the proposed base lodge would include a 50 foot by 100 foot outdoor ice skating rink which would be located on the skier plaza adjacent to the ski slope. A soft-membrane shade structure, supported on poles, would be located above the ice rink. Skate rentals would be available at the base lodge rental shop. The ice skating rink could be converted to seating and a stage for use during the non-winter months. The area would be

Town of Mammoth Lakes January 2006

The analysis provided in the environmental document considers the scenario that would result in the greatest level of impacts. The consequences of any combination inside the envelope of what is identified in the document would not be permitted if it were determined that impacts would be greater.

Table 2

Residential/Hospitality Uses and Square Footage

| Description                       | Number of<br>Units | Square Feet per Unit | Total Square<br>Feet |
|-----------------------------------|--------------------|----------------------|----------------------|
| Condo Hotel (average unit)        | 62                 | 925                  | 57,365 sf            |
| Private Residence Club (avg unit) | 21                 | 2,030                | 42,635 sf            |
| Commercial Management Office      | 1                  | 2,000                | 2,000 sf             |
| PRC Club Room                     | 1                  | 1,120                | 1,120 sf             |
| Back-of-House Service Areas       | 1                  | 5,000                | 5,000 sf             |
| Net Lodging Program               |                    |                      | 108,120 sf           |
| Inefficiencies @ 20%              |                    |                      | 27,030 sf            |
| Gross Lodging Program             |                    |                      | 135,150 sf           |

Note: Although the residential/hospitality lodging uses currently contemplate a mix of ownership type units, another scenario would be to substitute a pure hotel program within the proposed building envelope. The proposed building envelope could accommodate 213 hotel rooms. The overall intent of the hospitality mix is to encourage the highest level of transient occupancy possible given the constraints of current financial markets.

Source: MMSA, 2006

able to accommodate approximately 200 people. A portion of the shade structure may be removed for the use of the theatre area.

The project could include a climbing wall, which would be located between the trail and the ski plaza near the ice rink, for warm-weather use. The wall would be approximately 30 feet in height and would be seasonal and the structure would be removed during the winter months.

A snow management plan would be incorporated as part of the project. Snow storage would occur adjacent to the edge of the westernmost development on the site, along Majestic Pines adjacent to the vehicular access points, and just west of the site on the detention pond area.

MMSA is pursuing the opportunity to develop a geothermal production and injection well system that would meet all building heating needs as well as snow melting needs. The project site is located adjacent to the Juniper Springs Lodge, which was the site of a successful geothermal test well drilled in the early 1990s. MMSA applied to the California Energy Commission in August 2005 for a 50/50 grant to potentially implement a direct-use geothermal heating component of the project. However, given that MMSA is investigating the economic feasibility of developing this resource in conjunction with the overall development, the use of geothermal energy is uncertain. As such, this component of the project is considered as an optional element in the analysis contained in this document.

#### **On-Site Circulation and Parking**

Three primary public access points would be provided along Meridian Boulevard. The easternmost and center driveways would provide one-way westerly access along the arrival plaza, exiting at the westernmost driveway adjacent to the Juniper Springs Lodge. Lodging guests would enter a porte cochere covered driveway, which would be the easternmost driveway on Meridian Boulevard. Guests could park outside the lodge temporarily to check-in at the front These guests would exit the site using the westernmost driveway, which would be a desk. shared driveway with the day skier drop-off. The center driveway would provide site access for auto and transit drop-off. Vehicles would enter the center driveway and would drop day skiers off at the arrival plaza. The auto drop-off lane is designed to accommodate up to 16 vehicles at one time. In addition, a bus lane with pullout pockets for up to four buses at one time would be The cars and buses would exit the site using the located adjacent to the arrival plaza. westernmost driveway adjacent to the Juniper Springs Lodge. The westernmost driveway, which would be two-way, would also provide access to underground parking for day users of the facility.

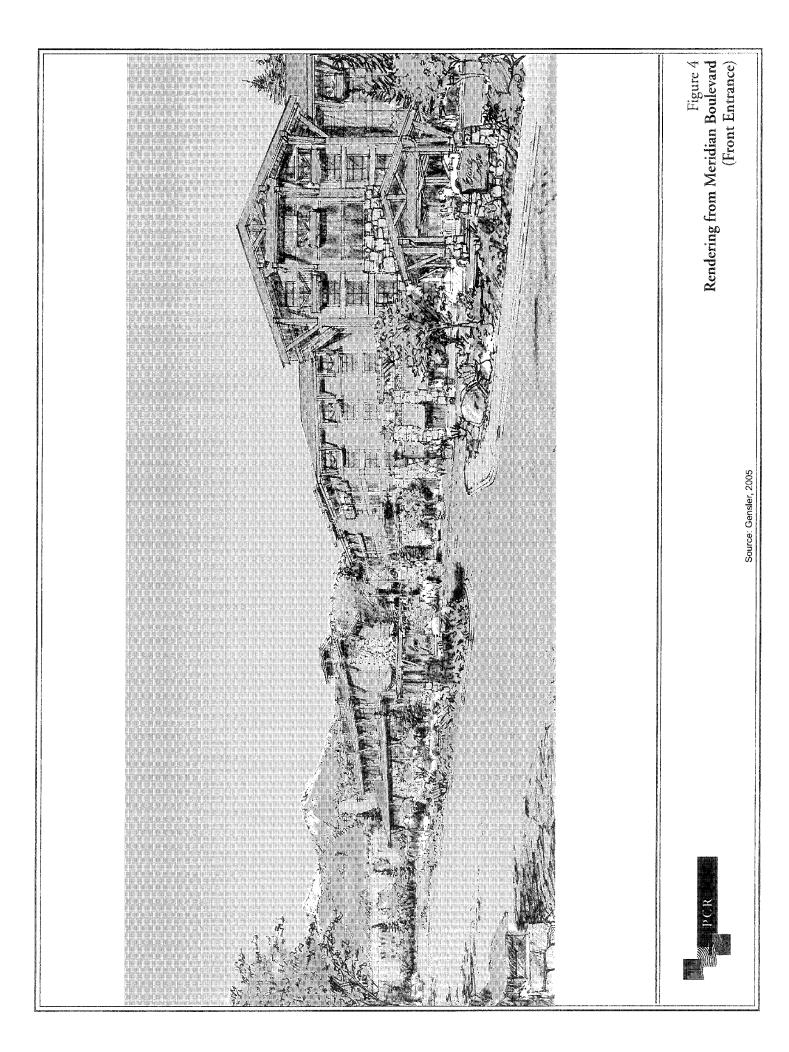
Access from Majestic Pines Road would be limited to condo-hotel, private residence guests and residents as well as Locker Club members. A keyed access for these guests and residents would be located in the northeastern portion of the building. A loading dock would be located parallel to Majestic Pines Road in the north-central portion of the lodge. The loading dock would be fully enclosed. The project includes access improvements on Majestic Pines Road to provide a truck turn-out, which would allow trucks to back into the loading dock. The improvements would require land from Lot 87, which is located adjacent to Majestic Pines Road.

The project proposes a 246,250-square-foot subterranean parking garage with up to 544-spaces. The parking garage would include 2 full levels and one partial level or subterranean parking. The partial level of the parking structure located at the northwestern portion of the building would include an exclusive drop-off parking area that would provide direct access to the ski school facilities above.

The project proposes to extend the Mammoth Loop Trail through the site. The Trail would be constructed from Majestic Pines Road, across from where the Trail currently ends, along the northwest side of the lodge to the end of the site. In addition, the project would include a pedestrian link from the northern end of the lodge to the single family neighborhood to the north of the site. The trail would intersect with the Mammoth Loop Trail. Additional at grade pedestrian improvements would provide access along the southern and western boundaries of the project site to the adjacent multi-family residential developments.

#### **Architecture**

As discussed above, the facility would be constructed on multiple levels. Figure 4 and Figure 5 on pages A-13 and A-14 are renderings of the development from Meridian Boulevard and Majestic Pines Road, respectively. The structure would be articulated in order to break up the massing of the building. There would be an approximately 15 foot elevation difference between the upper skier plaza, lift loading elevation and that of the lower, east end of the site. The elevation difference between the arrival plaza and the skier plaza would provide further variation in the building massing. Story heights from the arrival plaza area would vary from three, four and five stories. However, from the skier plaza end of the development, some portions of the day lodge and commercial uses would be one story from grade.


The average building height above finished grade would be 46.5 feet for the Skier Services Building. The peak building height of this building would be approximately 64 feet. The primary structure, the lodge, would have an average building height of 54 feet. The peak building height of the lodge would be approximately 77 feet.

Building materials would include heavy timbers and natural stone. The buildings would have pitched composite shingle roofs. The plazas would be finished with interlocking pavers. Landscaping would be provided on the plazas. The eagle statue that is currently on the site would be relocated to the arrival plaza at the base of the stairs.

The proposed project would be developed in accordance with the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) standards. The goal is to achieve certification level or above. LEED aims to improve occupant well being, environmental performance and economic returns of buildings using established and innovative practices, standards and technology. Major areas of evaluation include the following: Sustainable Sites, Water Efficiency, Energy & Atmosphere, Materials & Resources, Indoor Environmental Quality, Innovation & Design Process.

#### CONSTRUCTION

Construction of the project is expected to begin in Spring 2007 and would take approximately two years to complete. Construction would begin with the excavation of the parking garage moving from the western to the eastern portion of the site. A portion of the garage would be completed for the 2007/2008 ski season such that the usable portion of the parking garage would replace the approximately 225 surface parking spaces so as to result in no loss of parking during the interim ski season. Construction would continue through the winter months. The lodge would be completed by the 2008/2009 ski season. Final completion of the residential/hospitality portions of the project would occur in Spring 2009.



#### **NECESSARY APPROVALS**

Approvals required for development of the Eagle Lodge facility would include, but not be limited to, the following from the Town of Mammoth Lakes:

- Certification of the EIR
- General Plan Amendment
  - Rezone Lot 87 from Residential Single Family to Resort
- Amendment to Juniper Ridge Master Plan
  - Land Use; the majority of the project lies on Juniper Ridge Area #4, which was designated for parking and 35,000 sq. ft of commercial within the adopted master plan. There was also an anticipated base lodge facility on USFS of approximately 80,000 sq. feet which has been incorporated into the project. The project would require amending the permitted uses of area #4 to allow for development of the mixed use base lodge facility.
  - Density; the Master Plan currently permits a total of 289 dwelling unit equivalents<sup>4</sup>. The project proposes an increase in density of 84 dwelling units for a total of 373 dwelling unit equivalents in a worst-case (213) hotel room development program. The proposed density is less than the maximum density permitted under existing zoning, but greater than the density being evaluated under the draft General Plan Update and EIR.
  - Height; Area #4 is current designated for a parking structure and commercial uses with a building height up to 35 feet tall for the parking structure and 45 feet as measured from street grade for commercial buildings. The project proposes an average building height above finished grade of 46.5 feet for the Skier Services Building. The peak building height of this building would be approximately 64 feet. The primary structure, the lodge, would have an average building height of 54 feet. The peak building height of the lodge would be approximately 77 feet.
  - Parking; the current Master Plan requires that all off street parking shall be provided for all uses in accordance with the requirements and design standards of Title 17. The project would require amendment to this language to allow for parking to be determined through a needs based analysis instead of an hours of use analysis. The study would be conducted by a Town selected consultant.

1

<sup>&</sup>lt;sup>4</sup> Studios, 1 bdrms and hotels rooms are equivalent to ½ du.

- Setbacks; the project crosses property lines and therefore, amendments to setback provisions of the currently adopted Juniper Ridge Master Plan will be required.
- Use Permit/Tentative Tract Map/Design Review Approvals<sup>5</sup>
- Grading and Building Permits

The Forest Service has determined that an Environmental Assessment will be required to analyze the effects of the proposed project on National Forest System Lands. Approvals required for development of the Eagle Lodge facility would include, but not be limited to, the following from the U.S.D.A. Forest Service:

- Decision Notice
- Finding of No Significant Impact
- Non-significant amendment of the Inyo Forest Plan
- Amendment of the MMSA Master Development Plan

-

These applications have not been filed with the Town of Mammoth Lakes and may require additional environmental analysis.

#### ATTACHMENT B: EXPLANATION OF CHECKLIST DETERMINATION

## **I. AESTHETICS.** Would the project:

#### a) Have a substantial adverse effect on a scenic vista?

Potentially Significant Impact. A scenic vista is a view of a visually interesting natural or man-made feature. The project site is located at the base of Mammoth Mountain, which is the dominant view in the area. Visually, the area has dramatic changes in topography and includes native trees and rock outcroppings. The views from the project site of the upper elevations of Mammoth Mountain include the ridgeline features associated with Lincoln Knob. The lower elevations transition into a sloping, forested area that eventually comprise the existing residential/resort community associated with the Eagle Lodge Base Area.

The project site is developed with a surface parking lot for people using the temporary Little Eagle Base Lodge. The undeveloped portions of the site have a grassy terrain, with small boulders and pine tree groupings. A small portion of the western part of the site, approximately 2.39 acres, is located within the Inyo National Forest. The adjacent property to the north is developed with single-family residences and condominiums are located to the south of the site, across Meridian Boulevard. To the west of the site is the Juniper Springs Lodge. Multi-family residential development is located further to the west. Residential development is also located east of the project site.

Construction would result in exposed graded surfaces, construction debris, and the presence of construction equipment that may impact the visual character of the site. Construction of the project would occur over approximately two years. As a result, related impacts are temporary as they would cease upon completion of such activities. Project operations would result in the location of permanent recreational amenities at the Eagle Lodge Base Area, including commercial services and transient residential development. Slope improvements would include a beginner ski run located adjacent to the new lodge. The proposed lodge could be up to 77 feet in height, which would exceed the allowable 35 foot building height limit in Area 4 for parking structures and the 45 foot building height limit measured from street grade for commercial uses in Area 4 in the Juniper Ridge Master Plan. Due to the intensity and height of the proposed development, the project has the potential to affect the scenic resources associated with Mammoth Mountain. There is a prominent view of Mammoth Mountain, Mammoth Crest and the shoulder of Sherwin Ridge from Meridian Boulevard east of the project

Eagle Lodge Initial Study site. There is also a prominent view of the Sherwin Ridge/Mammoth Rock from Majestic Pines north of the project site. The proposed building will project substantially into both of those views. Further analysis of this issue is warranted and will be included in the Draft Environmental Impact Report (EIR)/Environmental Assessment (EA).

## b) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

No Impact. There are no local or state designated scenic highways in the immediate vicinity of the project site. The State Scenic Highway 395 provides access to the mountain community, which is located approximately 5 miles east of the project site. State Route 203, which is located approximately 1.2 miles northeast of the project site, is eligible for scenic highway designation but this designation has not been formally assigned. As Highway 395 provides access to the mountain community, vehicles for project construction and operation could utilize this roadway for access to the project site. Even so, vehicle activity would be conducted in a manner similar to current conditions and would not substantially damage scenic resources associated with Highway 395. The project would not damage scenic resources or other locally recognized desirable aesthetic natural feature within a designated scenic highway. No further analysis is warranted.

## c) Substantially degrade the existing visual character or quality of the site and its surroundings?

Potentially Significant Impact. The visual setting of the project area is dominated by the alpine character associated with Mammoth Mountain and the associated resort facilities, with a mixed use of day commercial services and residential development. The project site contains the temporary lodge facility, consisting of a white pavilion-like tent structure with attached trailers, and the surface parking lot. The temporary lodge is approximately 12,000 square feet in size. The natural features include open space with pine trees, mixed with grassy meadow and rocky conditions. Project construction could result in a temporary impact to the visual character of the site. As previously discussed, construction impacts are short term as they would cease upon completion of such activities. The Eagle Lodge hotel/condominium and hospitality operations would occupy the majority of the central portion of the site. An outdoor ice rink would be located adjacent to the plaza area. Plaza areas and outdoor seating would connect the proposed facilities. The project would provide a 30 foot climbing wall, constructed seasonally for summer use.

The project would be subject to the Town of Mammoth Lakes (Town) design ordinance and guidelines, which regulate the aesthetic character of all development in the community other than single family residences (Municipal Code 17.32.120). The proposed lodge would be up to

Town of Mammoth Lakes January 2006 77 feet in height, which exceeds the 35 foot building height limit in Area 4 for parking structures and the 45 foot building height limit measured from street grade for commercial uses in Area 4 in the Juniper Ridge Master Plan. Due to the intensity and height of the proposed development, the project has the potential to degrade the existing visual character or quality of the site and surrounding area. An analysis of these impacts will be conducted based on the Scenery Management System (SMS) and Scenic Integrity Objectives (SIOs) developed by the Forest Service. This information will be included in the Draft EIR/EA.

## d) Create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

Potentially Significant Impact. The existing sources of light and glare include windows and outdoor lighting associated with the temporary facility and vehicle headlights using the surface parking lot during evening hours. The surface parking lot, which can accommodate approximately 225 vehicles, does not have permanent lighting. For the project area, sources of light and glare include residential and condominium structures, which cast light and glare from windows and outdoor lighting, as well as automobiles traveling along the roadways. The Town Municipal Code Chapter 17.34 regulates outdoor lighting and prevents nuisances caused by unnecessary outdoor lighting, with the goal of protecting the ability to view the night sky. The proposed structure and vehicles associated with the project would create additional sources of light and glare. The project would result in an increase in the sources of light and glare both through the uses as well as the location of the building closer to the street and the adjacent residential uses. Therefore, light and glare will be further analyzed in the Draft EIR/EA.

The temporary facility is the only manmade source of shade or shadow on-site, and the structure is approximately one-story in height. The project would increase shade and shadow conditions as the project would include a new structure with a greater building height than the existing structure (approximately 77 feet) as well as the placement of the building closer to the street and the adjacent uses. Shade and shadow can have a positive cooling effect during summer months, but may result in the loss of natural light or warming effects during the winter, prolonging icy surface conditions. Therefore, shade/shadow analysis is warranted and will be provided in the Draft EIR/EA.

## II. AGRICULTURAL RESOURCES. Would the project:

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown the maps prepared pursuant to the Farmland Mapping Monitoring Program of the California Resources Agency, to non-agricultural uses?

No Impact. The majority of the site, approximately 3.46 acres, is located on private property. The remaining portion (approximately 2.39 acres) encompasses land within the Inyo National Forest, which is managed by the U.S. Forest Service (USFS). Existing land uses include a surface parking lot and the temporary Little Eagle Base Lodge. There are no agricultural uses or related operations within the site or surrounding area. Mono County has not been mapped as an area containing prime farmland, unique farmland, or farmland of statewide importance pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency.¹ There is no history of agricultural use on the project site. Therefore, the project would not convert such uses to non-agricultural use and no further analysis is required.

## b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?

No Impact. The California Land Conservation Act (Williamson Act) was enacted as a means of preserving California's Prime agricultural lands from urbanization. As discussed in Response II.a above, there are no agricultural land uses on or in the vicinity of the project site. The privately owned portion of the site, consisting of approximately 3.46 acres, is zoned Resort (R). The remaining portion of the site, approximately 2.39 acres, is located within the Inyo National Forest and is managed by the USFS. The surrounding area is not zoned for agricultural use and no nearby lands are characterized for agricultural use under the Williamson Act. Therefore, he project would not conflict with existing zoning for agricultural uses or Williamson Act contracts and no further analysis is required.

c) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use?

**No Impact.** As previously discussed, there are no agricultural uses or related operations on or near the project site. The proposed project would not involve the conversion of farmland

California Department of Conservation. 2002. Map of Important Farmland in California. FMMP Survey Cycle Year 2002 Data, Map Published August 2004. Website: <a href="http://www.consrv.ca.gov/DLRP/fmmp/images/fmmp2002\_200.pdf">http://www.consrv.ca.gov/DLRP/fmmp/images/fmmp2002\_200.pdf</a>. Accessed November 2,1 2005.

to other uses, either directly or indirectly. Project construction and operations would not convert farmland to non-agricultural use. As a result, no further analysis is necessary.

- III. AIR QUALITY. The significance criteria established by the Great Basin Unified Air Pollution Control District (GBUAPCD) may be relied upon to make the following determinations. Would the project result in:
  - a) Conflict with or obstruct implementation of the applicable Air Quality Management Plan or Congestion Management Plan?

Potentially Significant Impact. The project site is located in Mono County, within a valley on the eastern slopes of the Sierra Nevada Mountain Range. The area is included in the Great Basin Valley Air Basin (Basin), which includes Mono, Inyo and Alpine Counties. The unique meteorological problems in California have resulted in the implementation of ambient standards by both the California Air Resources Board and the U.S. Environmental Protection Agency, referred to as the National and California Ambient Air Quality Standards. In general, the State standards are more stringent than the National standards. Ambient air quality standards have been promulgated for ozone (O<sub>3</sub>), particulate matter less than 10 microns in diameter (PM<sub>10</sub>) and less than 2.5 microns in diameter (PM<sub>2.5</sub>), carbon monoxide (CO), nitrogen oxides (NOx) and lead. The Great Basin Unified Air Pollution Control District (GBUAPCD) is responsible for enforcing applicable air quality regulations and ensuring the federal and state standards are met.

Each air basin is designated either as "attainment," "nonattainment" or "unclassified", depending on whether the basin meets an ambient air quality standard. Effective in 2005, the Mono County portion of the Basin has a nonattainment designation for the State  $O_3$  1-hour standard of 0.09 parts per million (ppm). The Basin is also nonattainment for the State  $PM_{10}$  standard of 50 micrograms per cubic meter ( $\mu g/m3$ ). In addition, the Mammoth Lakes area of the Basin is designated as nonattainment for the federal  $PM_{10}$  standard of 150  $\mu g/m3$ . The Mammoth Lakes area and Mono County are considered in attainment or are unclassified for all other federal and State standards.

The Air Quality Management Plan (AQMP) for the Town of Mammoth Lakes was adopted by the Town Council and GBUAPCD Board of Directors in 1990.<sup>2</sup> The AQMP is the primary document for the Town to satisfy the Clean Air Act requirements to develop a State

<sup>&</sup>lt;sup>2</sup> Great Basin Unified Air Pollution Control District and Town of Mammoth Lakes. Air Quality Management Plan for the Town of Mammoth Lakes. November 1990.

Implementation Plan (SIP) to demonstrate how the Mammoth Lakes area will attain and maintain ambient air quality standards for PM<sub>10</sub>. The AQMP includes analyses of PM<sub>10</sub> sources and summarizes the effectiveness of control measures to improve PM<sub>10</sub> levels. The AQMP concludes that the primary sources of PM<sub>10</sub> emissions for the area are wood smoke and road cinders. Control measures in the AQMP include vacuum street sweepers for cinders and road dust, reduction in vehicle traffic, wood stove replacement, opacity limits, fees, and penalties. The road dust reduction measure in the AQMP limits peak day traffic loads to 106,600 vehicle miles traveled. This reduction measure has been incorporated into the Mammoth Lakes Municipal Code Chapter 8.30, referred to as the Particulate Matter Ordinance. The Particulate Matter Ordinance largely implements the mitigation measures identified in the AQMP.

The GBUAPCD is responsible for establishing significance criteria for construction and operational activities within the Basin. The GBUAPCD has not established numerical thresholds for criteria pollutants to determine the significance of potential impacts associated with construction and operation of development projects. Instead, the GBUAPCD requires comprehensive mitigation measures to reduce potential impacts, such as the implementation of Rule 401 to control fugitive dust emissions. A portion of the site is located within the jurisdiction of the Inyo National Forest Service. As a result, the Forest Service Standards and Guidelines for air quality require coordination with the GBUAPCD when determining air quality impacts on forest service lands.

Project construction would begin in spring 2007 and would take approximately two years to complete, continuing through the winter months. Construction has the potential to create air quality impacts with the use of construction equipment and through vehicle trips generated from construction workers traveling to and from the project site. Air toxic emissions from the combustion of diesel fuel could include small quantities of diesel particulate matter. In addition, fugitive dust emissions would result from demolition and construction activities. The potential use of geothermal power would require drilling of extraction wells, which could result in the discharge of hydrogen sulfide emissions.

Emissions from project operations would result primarily from mobile source emissions (e.g., new traffic trips). Other air pollutant emissions associated with proposed project operations could include those generated by the consumption of electricity and natural gas. In addition, the project could include the operation of wood burning stoves and fireplaces. Wood smoke contains particulates, as well as various organic and inorganic compounds. Also, the potential use of geothermal energy could result in hydrogen sulfide and carbon dioxide emissions. As the construction and operation of the project would generate air emissions that could impede implementation of the AQMP, an analysis of the project's consistency with the AQMP and applicable federal and state thresholds of significance will be provided in the Draft EIR/EA.

## b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?

Potentially Significant Impact. As indicated above, the Mammoth Lakes area is designated as nonattainment for O<sub>3</sub> (State standard only) and PM<sub>10</sub> (State and federal standard). The O<sub>3</sub> nonattainment status is primarily resulting from pollution generated in the San Joaquin Valley, transported by air currents and winds over the Sierra Nevada's into the Mammoth Lakes area, and not a condition generated by Basin activities. This condition is so extreme that O<sub>3</sub> exceedances would likely occur without considering Basin emission precursor (NOx and hydrocarbon) contributions. The particulate matter exceedances are primarily caused by road dust and soot from wood combustion. For project construction, air quality impacts would occur as a result of construction equipment emissions, worker trips, and fugitive dust. Operational impacts would occur from an increase in mobile source emissions (e.g. vehicle trips). Considering the nonattainment status, the standards for PM<sub>10</sub> and O<sub>3</sub> could continue to be exceeded with the implementation of the proposed project. As the project would result in increased air emissions associated with construction and operation, the project could contribute to an existing or projected air quality violation. This issue will be analyzed in the Draft EIR/EA.

c) Result in a cumulatively considerable net increase of any criteria pollutant for which the air basin is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?

Potentially Significant Impact. As previously discussed, the project site is located in an area designated as nonattainment for  $O_3$  and  $PM_{10}$ . The GBUAPCD does not have numerical thresholds for criteria pollutants to determine whether the project would result in a cumulatively considerable net increase of  $PM_{10}$  or  $O_3$  precursors. However, construction and operation of the project would result in an increase in air emissions, such as those associated with construction equipment and vehicle trips, as compared to existing conditions. As the project would result in an increase of emissions, project implementation could result in a cumulative increase of pollutants in the Basin. As a result, a cumulative analysis of air emissions will be analyzed in the Draft EIR/EA.

## d) Expose sensitive receptors to substantial pollutant concentrations?

**Potentially Significant Impact.** Certain segments of the population, such as children, the elderly, and those individuals with compromised respiratory systems, are more sensitive to the effects of air pollution than is the general population. Those sensitive populations that are in proximity to localized sources of fine particulates, toxics and CO are of concern and are termed sensitive receptors. Adjacent and nearby residential development could house sensitive

receptors. Therefore, project construction and operation could expose sensitive receptors, such as nearby residents, to emissions above current levels. Potential impacts will be analyzed further in the Draft EIR/EA.

## e) Create objectionable odors affecting a substantial number of people?

Potentially Significant Impact. The existing on-site restaurant is a potential source of objectionable odors. Sources of odor in the area include smoke from burning wood debris and wood burning fireplaces. Project activities potentially resulting in odorous emissions would include construction equipment exhaust, restaurant activities, refuse from project construction/operation, and the potential use of geothermal energy. With regard to food service, the project would include a food court and a sit-down restaurant. Restaurant operations can result in odorous emissions from activities such as the cooking of meat and other food, as well as associated refuse. Odorous emissions can also result from the solid waste associated with transient residential use if decomposing materials are not properly managed or contained. The use of geothermal power can result in the release of hydrogen sulfide to the atmosphere, which smells like rotten eggs. As project activities could result in odorous emissions, the potential impacts of the project to create objectionable odors affecting a substantial number of people will be evaluated in the Draft EIR/EA.

## IV. BIOLOGICAL RESOURCES. Would the project:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

Potentially Significant Impact. The project is located at the base of Mammoth Mountain. Due to the high degree of variation in topography and geologic conditions, the region supports diverse biological communities. The biological communities primarily consist of species that have adapted to cold, snowy winters and arid summers. Mammals that occur in the area include deer, coyote, marmot, beaver, squirrel, chipmunk, mountain lion, marten, and black bear. More than 150 bird species have been identified in the region, including bald eagle, grey owl, red-tailed hawk, sage-grouse, various woodpeckers, chickadee, nuthatch, northern goshawk, and gray crowned rosy finch. The area also supports approximately 15 species of amphibians and reptiles, including the western toad, Pacific tree frog, sagebrush lizard, and western terrestrial garter snake. The most common plant community within the region is the Mixed Conifer Fir, and the Jeffery Pine species commonly occurs on gradual slopes and lower elevation

areas. The five major vegetation communities within the region are Mixed Conifer Fir, Upper Montane Mixed Shrub, Basin Sagebrush, Wet Meadow, and Alder Wouldow Riparian.

The proposed project would replace the existing surface parking lot and temporary lodge facility. Some of the proposed development would occur on currently vacant land. A literature review and preliminary site investigation indicates sensitive species could occur on-site. A portion of the site is located in the Inyo National Forest, and the Inyo beardtongue, which is on the CNPS Watch List, is a sensitive plant species that occurs in the Inyo National Forest. In addition, there is a potential for the western white-tailed jackrabbit to occur, which is considered a sensitive species by the California Department of Fish and Game. A biological field survey will be conducted to characterize the type and extent of biological communities present on the project site. The potential for the project to have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species, will be evaluated in a Draft EIR/EA.

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?

Potentially Significant Impact. Riparian habitats occur in transitional zones between aquatic and terrestrial environments. There are natural drainage features on-site, as well as the manmade detention basins. A preliminary site investigation indicates the occurrence of riparian habitat on-site, associated with natural drainage areas, the manmade basin, and non-drainage areas as well. Project implementation could impact the sparse riparian habitat by removal of native vegetation in development areas as well as changes to the water table that could occur as a result of development. In addition, project implementation could result in impacts by increasing open space land usage and increased pollution of stormwater and runoff flows. Therefore, additional analysis of this issue will be included a Draft EIR/EA.

c) Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

**Potentially Significant Impact.** Section 404 defines wetlands as areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas. The aquatic features on-site include the manmade detention basin and natural

Town of Mammoth Lakes January 2006 drainage areas. A preliminary site investigation indicates the presence of wetland habitat within the detention basin, and the potential for wetland habitat in a small wetland drainage area on-site. As a result, additional analysis with regard to federally protected wetlands as defined by Section 404 of the Clean Water Act is required and will be included in the Draft EIR/EA.

d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native nursery sites?

Less Than Significant Impact. There are specific areas of the Mammoth Lakes region that are utilized by migratory species, such as the Round Valley Herd of mule deer, which is a common migratory species for the area. The route used by this herd is south of the Town of Mammoth Lakes, through the Mammoth Lakes Basin, and then crosses over Mammoth Pass into the Middle Fork of the San Joaquin River drainage. The likelihood of the herd migrating on the project site is minimized by surrounding development, resulting in anthropogenic deterrence. Other migratory species include raptors and songbirds, which could nest within the trees, shrubs, and ground cover on-site. Nesting activity typically occurs from mid-February to mid-August. Active nests are protected under Fish and Game Code Section 3503. Even though activities associated with project construction and operation could impact habitat migration areas, compliance with regulations established to protect such species would reduce any potential impacts to less than significant. The project would not interfere with the movement of any native resident or wildlife species. Therefore, no additional analysis is required.

e) Conflict with any local policies or ordinances protecting biological resources, such as tree preservation policy or ordinance (e.g., oak trees or California walnut woodlands)?

Less Than Significant Impact. The Town of Mammoth Lakes currently has several policies and ordinances that apply to development, providing protection to natural resources. For example, Municipal Code Chapter 6.24 prohibits feeding of wildlife, Municipal Code Chapter 8.12 requires proper refuse disposal to eliminate the availability of refuse for wildlife, and Municipal Code 17.16.050 requires the preservation of trees and other vegetation. At the project site, small lodgepole pine, jeffrey pine, as well as small stands of quaking aspen, narrow-leaved willow, and arroyo willow occur within the site boundary. The Town of Mammoth Lakes may warrant replacement of these resources if impacted during construction or operation. Consistency with any local policies or ordinances protecting biological resources, such as tree preservation policy or ordinance, would reduce such impacts to less than significant. The project would comply with applicable policies and ordinances, such as the local tree preservation policy. Compliance with such policies and ordinances would assure that impacts from project

implementation would be less than significant. Therefore, no additional analysis of this issue is required.

f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

**No Impact.** Implementation of the proposed project would not conflict with any adopted Habitat Conservation Plans, Natural Community Conservation Plans, or other approved local, regional, or state habitat conservation plans. Conservation and recovery plans for areas which encompass or are in the vicinity of the project site include the following:

Owens Basin Wetland and Aquatic Species Recovery Plan, Inyo and Mono Counties, California, dated September, 1998, prepared by the U.S. Fish & Wildlife Service. This plan addresses the Owens pupfish, Owens tui chub, and Fish Slough milk-vetch. No conservation areas occur in the vicinity of the project site. The conservation areas for this plan include the Hot Creek Conservation Area, Little Hot Creek Conservation Area, Little Alkali Conservation Area, and Whitmore Conservation Area. These areas are located approximately 15 miles southeast of the site.

Mule Deer Herd Management Plans. A deer herd management plan was prepared by the California Department of Fish and Game for the Round Valley herd in the mid-1980s. As previously discussed, the project is not expected to impact mule deer migration as no known migration areas occur in the vicinity of the site.

Greater Sage-Grouse Conservation Plan for Nevada and Eastern California. The Greater Sage-Grouse Conservation Plan for Nevada and Eastern California first edition (Draft) was prepared June 30, 2004. An update to this document is expected to be completed at the end of 2006. The project would not interfere with the applicable conservation plan as the nearest Population Management Unit (PMU) is South Mono PMU, and the closest documented area is within the vicinity of the Mammoth Yosemite airport, approximately 8.7 miles east of the project.<sup>3</sup>

In summary, the project would not conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan. No further analysis is required.

Eagle Lodge To

Initial Study

<sup>&</sup>lt;sup>3</sup> Casazza, M.L., Overton, C.T. and Torregrosa, A., USGS, Ecology of Greater Sage-Grouse in the Bi-State Planning Area, Progress Report. March, 2005.

### V. CULTURAL RESOURCES. Would the project:

## a) Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?

**No Impact.** Section 15064.5(a)(3) of the CEQA Guidelines generally defines historical resources as any object, building, structure, site, area, place, record, or manuscript determined to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California. Historical resources are further defined as being associated with significant events, important persons, or distinctive characteristics of a type, period or method of construction; representing the work of an important creative individual or possessing high artistic values. The project would be located on an area developed by a parking lot and a temporary lodge facility. There are no historical resources pursuant to Section 15064.5(a)(3) on the project area. As a result, the project would not impact historic resources and no further analysis is warranted.

# b) Cause a substantial adverse change in significance of an archaeological resource pursuant to §15064.5?

Potentially Significant Impact. A preliminary cultural resource records search revealed that there is one recorded cultural resource within the project area (CA-MNO-1529) and 29 cultural resource properties within a one mile radius of the project area. In 1981, William Taylor conducted an archaeological reconnaissance of the Camp High Sierra Land Exchange area, which involved the western half of the project area. During the reconnaissance, the prehistoric archaeological site CA-MNO-1529 was recorded, containing obsidian lithic scatter and several bedrock milling features.<sup>4</sup> In 1982, University of California Davis (UC Davis) archaeological students conducted test excavations at CA-MNO-1529 as part of the UC Davis Field Class in Archaeology, but did not formally evaluate the site<sup>5</sup>. In 1997, a discussion of site CA-MNO-1529 was included in the U.S. Forest Service Environmental Assessment (EA) for the project area.<sup>6</sup> The EA states that the current project area was completely surveyed in conjunction with the Camp High Sierra Land Exchange, and that all potentially significant cultural resources were mitigated. However, even though impacts to site CA-MNO-1529 have already been mitigated, the California State Historic Preservation Officer (SHPO) requires survey work within five years

<sup>&</sup>lt;sup>4</sup> United States Department of Agriculture Forest Service, Inyo National Forest. 1997. Mammoth Mountain Ski Area Base VII Expansion Project Environmental Assessment.

<sup>&</sup>lt;sup>5</sup> Basgall, M.E. 1984. The Archaeology of MNO-1529: A Secondary Reduction Site in Mammoth Lakes, Mono County, California.

<sup>&</sup>lt;sup>6</sup> United States Department of Agriculture Forest Service, Inyo National Forest. 1997. Mammoth Mountain Ski Area Base VII Expansion Project Environmental Assessment.

of proposed development. Therefore, an updated cultural resources report will be completed and analysis included in a Draft EIR/EA.

## c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?

No Impact. There are no known paleontological resources on site and no unique geological features for the project area other than those resulting from the alpine setting. Preliminary results of a paleontological records search through the University of California Museum of Paleontology (Berkeley) indicated that there are no recorded fossil localities within the project area or within a one mile radius of the project area. The closest vertebrate fossil locality is located more than 30 miles north of the project area. Initial consultation of collection records and geologic maps indicate that the Mammoth Lake area has no history of fossil resources largely because the terrain is dominated by igneous and metamorphic rocks. As there is no record of paleontological resources in the area and no features indicative of paleontological resources, the proposed project would result in an impact to paleontological resources and no further analysis is required.

## d) Disturb any human remains, including those interred outside of formal cemeteries?

Less Than Significant Impact. There are no areas known to contain human remains on the project site or in the immediate vicinity. A preliminary records search revealed that there are no recorded burials within the project area or within a one mile radius of the project area. If such resources were to be encountered during construction excavation and grading activities, all work shall cease in that area. Any discovery of human remains shall be treated in accordance with Section 5097.98 of the Public Resources Code (PRC) and Section 7050.5 of the Health and Safety Code. Compliance with regulatory requirements that assure resources, if discovered, are properly mitigated would decrease potential impacts to less than significant levels. The project would not disturb human remains and impacts would be less than significant. No further analysis is required.

### VI. GEOLOGY AND SOILS. Would the project:

- a) Exposure of people or structures to potential substantial adverse effects, including the risk of loss, injury or death involving:
  - i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.

Less Than Significant Impact. The project site is located within the Sierra Nevada province, a generally north to northwesterly trending, asymmetric, and tilted fault-block, bordered on the east by the Sierra Nevada frontal-fault system. The region is one of the most active seismic regions in the United States. Seismic activity in the vicinity of the project is a result of tectonic movement along the eastern front of the Sierra Nevada Mountain Range.

For the purposes of the Alquist-Priolo Earthquake Fault Zoning Map Act, the State of California defines active faults as faults that have historically produced earthquakes or shown evidence of movement within the past 11,000 years (during the Holocene Epoch).<sup>7</sup> Active faults may be designated as Earthquake Fault Zones under the Alquist-Priolo Earthquake Fault Zoning Act, which includes standards regulating development adjacent to active faults. The site is not located within any Earthquake Fault Zones or Alquist-Priolo Hazard Zones.<sup>8</sup>

Historically active faults located in the project area that have the greatest potential to create significant ground shaking include the Hartley Springs, Hilton Creek (1980 earthquake), Owens Valley (1972 earthquake) faults and the Chalfant Valley fracture (1986 earthquake). The nearest known active regional fault is the Hartley Springs fault. The closest projected trace for this fault zone is located approximately 0.2 mi (0.4 km) north/northwest of the site. This fault could produce a magnitude 6.6 (Mw) earthquake. The Hilton Creek fault, located approximately 6.8 mi (11.0 km) from the site, could produce a magnitude 6.7 (Mw) earthquake.

The project would locate a resort facility within an area known to contain potential seismic hazards. However, the project would comply with the California Department of Conservation, California Geologic Survey Special Publications 117, Guidelines for Evaluating

<sup>&</sup>lt;sup>7</sup> California Department of Conservation, California Geologic Survey. Potentially active faults have demonstrated displacement within the last 1.6 million years (during the Pleistocene Epoch), but do not displace Holocene Strata. Inactive faults do not exhibit displacement younger than 1.6 million years before the present.

<sup>&</sup>lt;sup>8</sup> Preliminary Geotechnical Investigation, Sierra Geotechnical Services, December 2005.

and Mitigating Seismic Hazards in California (1997), which provides guidance for evaluation and mitigation of earthquake-related hazards. In addition, the project would comply with the seismic safety requirements in the Town of Mammoth Lakes Municipal Code, Chapter 15.04 (Building Regulations and Uniform Codes). The Code requires that all structures within the boundaries of the Town shall be designed to the requirements of Seismic Zone 4 as defined in the 2001 California Building Code. Adherence to applicable regulations would assure appropriate building design, and would reduce the potential impacts of locating people in buildings susceptible to impacts from seismic activity to a less than significant level. Therefore, further analysis of this issue is not warranted.

### ii) Strong seismic ground shaking?

Less Than Significant Impact. As indicated above, active faults exist within the vicinity of the project site. The project site is located within the Sierra Nevada province, a generally north to northwesterly trending, asymmetric, and tilted fault-block, bordered on the east by the Sierra Nevada frontal-fault system. The area is one of the most active seismic regions in the United States. As a result, the fault system could produce seismic ground shaking that may affect the project site. The project would comply with applicable requirements, such as the California Geologic Survey Special Publications 117 and the Town of Mammoth Lakes Municipal Building Code, which are discussed above. Compliance with these requirements would reduce potential impacts to the project due to seismic ground shaking to less than significant levels. Therefore, no further analysis of this issue is necessary.

#### iii) Seismic-related ground failure, including liquefaction?

Less Than Significant Impact. Liquefaction of cohesionless soils can be caused by strong vibratory motion due to earthquakes. Research and historical data indicate that loose granular soils below a near-surface groundwater table are most susceptible to liquefaction. Liquefaction is characterized by a loss of shear strength in the affected soil layers, thereby causing the soil to behave as a viscous liquid. This effect may be manifested at the ground surface by settlement and, possibly, sand boils where insufficient confining overburden is present over layers. In order for the potential effects of liquefaction to be manifested at the ground surface, the soils generally have to be granular, loose to medium-dense and saturated relatively near the ground surface, and must be subjected to ground shaking of a sufficient magnitude and duration. The potential for liquefaction to occur is considered very low, given the very dense nature of the soils that exist on the site.<sup>9</sup> In addition, the project would comply with the State of California's minimum standards for structural design and construction provided in the California

<sup>&</sup>lt;sup>9</sup> Preliminary Geotechnical Investigation, Sierra Geotechnical Services, December 2005.

Building Code (CBC). Given that the potential for liquefaction is considered very low and the project would comply with applicable requirements, potential impacts with regard to seismic-related ground failure would be less than significant. Therefore, no further analysis of this issue is necessary.

## iv) Landslides?

Less Than Significant Impact. Landslides are earthquake-induced ground failure that occur primarily in areas with steep slopes, which have loose, granular soils that lose their cohesive characteristics when water-saturated. Landslides are limited primarily to areas with a combination of poorly consolidated material and slopes that exceed 30 percent. While slopes with these gradients are found in portions of Mammoth Mountain, slopes that exceed 30 percent are not located on the project site. In addition, there is no evidence of past landslides based on historic aerials and review in the field.<sup>10</sup> Therefore, no further analysis of this issue is necessary.

## b) Result in substantial soil erosion or the loss of topsoil?

Less Than Significant Impact. The highest erosion potential occurs in loose and/or shallow soils on steep slopes. Currently, the project site is generally level and developed with a surface parking lot and temporary lodge facility. The majority of undeveloped land on-site is covered with grassy vegetation, as well as evergreens, and lowlying trees and scrubs. Construction of the project would produce loose soils, which are subject to erosion as the surface area were to be disturbed or vegetation were to be removed. Municipal Code Section 12.08.076 requires that a grading permit be obtained for the project. In addition, construction activities are subject to requirements of the National Pollutant Discharge Elimination System (NPDES) Construction Permit. Compliance with the NPDES permit requires the implementation of Best Management Practices (BMPs), some of which are specifically implemented to reduce soil erosion or loss of topsoil. Project operations would result in new structures and an increase in impervious surface as compared to current conditions. Increased impervious conditions can increase stormwater runoff and increase erosion conditions. Even so, the project would comply with permitting requirements and regulations to minimize the loss of topsoil or erosion conditions. Compliance with required regulations would reduce potential impacts to a less than significant level. Therefore, no further analysis regarding soil erosion or the loss of topsoil is necessary.

<sup>&</sup>lt;sup>10</sup> Preliminary Geotechnical Investigation, Sierra Geotechnical Services, December 2005.

c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the Project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?

Less Than Significant Impact. The preliminary geotechnical investigation included borings at the site. Based on the borings, three general soil types underlie the site, consisting of Undocumented Fill, Alluvium, and Glacial Deposits. The borings indicated that undocumented fill is located to an approximate maximum depth of 4-feet below existing grade. In general, the undocumented fill consisted of a brown to grayish-brown, moist, loose to medium dense, silty, fine to coarse-grained SAND (Unified Soil Classification Symbols: SP and SP-SM) with few cobble clasts and boulders, and minor amounts of trash and debris. This material was likely dumped and/or stockpiled during construction of the parking area. Due to the poor density as well as the presence of trash and debris this material is considered unsuitable for the support of new fill or structural loads. Below the fill are alluvial deposits to approximately 6-feet in depth. In general, the alluvium consisted of a dark gray to black, and light grayish-brown to medium brown, moist to wet, medium dense to dense, silty, fine to medium-grained SAND (SM, SP and SP-SM) with abundant cobble clasts and boulders to approximately 36-inches in diameter. Below the alluvial deposits are glacial deposits. In general, the glacial deposits consisted of a reddish-brown to grayish-brown, olive-brown to brown, and gray, moist to wet, medium dense to very dense, silty, very fine to coarse SAND (SM, SP, and SP-SM) with abundant cobble clasts and boulders. In addition, compliance with applicable building and safety requirements would assure that the project is not located on a geologic unit or soil that is unstable, or that could become unstable and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse. Therefore, no further analysis of this issue is necessary.

d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?

Less Than Significant Impact. Expansive soils are typically those of high clay content that swell and shrink during wet and dry climatic events, respectively. As indicated above, the project would not be developed on expansive soils that would create substantial risks to life or property. Therefore, no additional analysis of this issue is required.

e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?

No Impact. The site is currently connected to the municipal sewer system. The proposed project would also be connected to the Town's infrastructure. In addition, the Basin Plan for the Lahontan Regional Water Quality Control Board (LRWQCB) prohibits individual

septic systems in the Mammoth Basin or within the entire drainage area of the Town. Since the Project would not involve the use of septic tanks or alternative wastewater disposal systems, no impact would occur. Therefore, no further analysis is required.

## VII. HAZARDS AND HAZARDOUS MATERIALS. Would the project:

a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?

Less Than Significant Impact. The project would result in the development of a resort facility with residential and commercial uses. Construction of the project would involve the use of potentially hazardous materials, including vehicle fuels, oils, and transmission fluids. Project operations would require the routine use of paints, cleaning solvents, pesticides, or other regulated chemicals during operation and maintenance. The quantity of such materials, if required, would not be to levels potentially resulting in a significant hazard to the public or the environment through the routine transport, use, or disposal. In addition, all potentially hazardous materials used during construction and operation would be contained, stored, and used in accordance with manufacturers' instructions and handled in compliance with applicable standards and regulations. Any risk associated with construction or operation would be adequately reduced to a less than significant level through compliance with these standards and regulations. As such, the project would not create a significant hazard to the public or the environment through the transport, use, or disposal of hazardous materials, and no additional analysis is necessary.

b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

Less Than Significant Impact. The existing temporary facility on the site would not contain hazardous materials that could be released during demolition. Project implementation would not result in land uses that emit or handle hazardous materials such as those related to industrial uses requiring large quantity chemical storage. The project would not create any significant hazard through the reasonable foreseeable release of hazardous materials. Numerous federal, state and local regulations oversee the management of hazardous materials to avoid the risk of the accidental release. However, the project does not require activities typical to those that may result in accidental releases of hazardous materials. Therefore, construction and operation of the project would not create a significant hazard to the public or the environment through upset and accident conditions involving the release of hazardous materials into the environment. No additional analysis is required.

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?

**No Impact.** The project site is not located within one-quarter mile of an existing school. The closest school is Mammoth Elementary School, located on 2600 Meridian Boulevard, approximately 0.83 mile northeast of the project site. School expansions are proposed, but no new school locations are proposed at this time. Therefore, the project would not result in hazardous emissions or the handling of hazardous or acutely hazardous materials within one-quarter mile of an existing or proposed school. No further analysis is warranted.

d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would create a significant hazard to the public or the environment?

**No Impact.** Government Code Section 65962.5 requires the California Environmental Protection Agency to develop at least annually an updated Cortese List, or Hazardous Waste and Substances Sites. The site is not included on the Cortese List and there are no known hazardous materials sites located on or adjacent to the subject property. In addition, proposed site activities would not generate significant amounts of hazardous waste or substances, resulting in a hazard to the public or the environment during future operations. Therefore, no additional analysis is required.

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?

**No Impact.** The Mammoth Yosemite Airport is located approximately 8.7 miles east of the project site. The project is not located within an airport land use plan or within two miles of a public airport or public use airport. Therefore, the project would not result in associated safety hazards for people residing or working in the project area. No additional analysis is required.

Personal communication with Stan Halperin, Superintendent of Mammoth Unified School District, November 29, 2005.

f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for the people residing or working in the area?

**No Impact.** There are no private airstrips in the vicinity of the project site. As indicated above, the Mammoth Yosemite Airport is located approximately 8.7 miles from the site and the project area is not located in the Airport Land Use Plan. The proposed project would not result in airport-related safety hazards for the people residing or working in the area. Therefore, no further analysis is required.

g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

Less Than Significant Impact. There are two emergency evacuation routes that serve the Town year-round. SR 203 and U.S. Highway 395 are the main routes for evacuation, and a secondary evacuation option is provided by the Scenic Loop extending from Minaret Road to U.S. Highway 395. During the summer months, two additional routes are available including Sherwin Creek Road and the Sawmill cutoff, both of which are graded dirt roads. The majority of construction activities for the project would be confined to the site. In addition, the construction or operation of the project would not require or result in any modifications to any roadways or other emergency routes that are considered a component of an adopted emergency response plan or emergency evacuation plan. Even though construction equipment and project related vehicles could use the roads area, the project would not impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan. No further analysis of this issue is required.

h) Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

Less Than Significant Impact. The Town and surrounding area have been rated as having a very high fire potential. Development in the area would increase the number and variety of potential ignition sources for wildland fires, including illegal or inappropriate burning, improper disposal of cigarettes, and other sources through an increase in population that would occur. The project would replace a temporary facility with a new structure. The project would be subject to review by the Mammoth Lakes Fire Protection District to ensure that fire regulations are met, such as ensuring adequate clearance of flammable vegetation around

Town of Mammoth Lakes
January 2006

Town of Mammoth Lakes, 2005. Draft Program Environmental Impact Report for the Town of Mammoth Lakes 2005 General Plan Update.

individual structures to prevent the spread of fire between wildlands and structures. Thus, compliance with applicable provisions and fire codes pertaining to control of fires would result in a less than significant impact. No further analysis is required.

## VIII. HYDROLOGY AND WATER QUALITY. Would the project:

a) Violate any water quality standards or waste discharge requirements?

Potentially Significant Impact. The project site is located within the jurisdiction of the Lahontan Regional Water Quality Control Board (LRWQCB). During project construction runoff from disturbed areas may contain silt and debris, which could result in short-term increases in the existing sediment load in the storm drain system. The operation of the project would increase the intensity of development on the site, which would result in an increase in surface water runoff as compared to existing conditions. Similar to existing conditions, runoff from the project site would include typical urban pollutants, i.e., gas and oil from vehicles. Project hydrology plans will be required to adhere to new regulatory requirements pertaining to on-site retention of initial storm-flows. With adherence to applicable regulations, no significant impacts are expected. However, the Draft EIR/EA will include a discussion of regulatory stormwater quality requirements, including National Pollutant Discharge Elimination System (NPDES) Permit requirements), as well as features that will be incorporated into the project to meet those requirements.

b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned land uses for which permits have been granted)?

Potentially Significant Impact. The project is located in the western periphery of the Long Valley Groundwater Basin and groundwater generally flows west to east.<sup>13</sup> The groundwater on the site ranges from approximately 4.5 to 21 feet below grade.<sup>14</sup> Given that the subsurface investigation was performed in the months of October and November (after snowmelt runoff) groundwater levels and flow are not anticipated to abate. Given the depth of groundwater on the site and the proposed subterranean parking, dewatering of the site will be

\_

LSA Associates, Inc. 1997. Environmental Assessment for Mammoth Mountain Ski Area Base VII Expansion Project. February 1997.

<sup>14</sup> Preliminary Geotechnical Investigation, Sierra Geotechnical Services, Inc., December 2005.

necessary. In addition, the Mammoth Community Water District (MCWD) Well 16 is located on the southern portion of the project site, adjacent to Meridian Boulevard. This well provides potable water for the Mammoth Lakes Community.<sup>15</sup> The project would result in the increase of impervious surfaces on the site, which could substantially reduce the recharge potential. Therefore, a discussion regarding groundwater issues will be included in the Draft EIR/EA.

c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?

Potentially Significant Impact. Surface water currently flows toward the existing parking lot and detention basins. There are no streams or rivers on or in the vicinity of the site. There are two existing manmade detention basins, located on U.S. Forest Service Lot 7. Project construction would alter the existing drainage pattern of the site. Erosion and runoff from construction of the project could result in a temporary impact the manmade basin. Upon completion of construction, the project would result in an increase in impervious area as compared to existing conditions. Development of the site would alter existing drainage patterns. Therefore, drainage will be analyzed in the Draft EIR/EA.

d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?

**Potentially Significant Impact.** As previously discussed, there are no streams or rivers on or in the vicinity of the site. However, the project would alter the existing drainage pattern of the site during construction and operation. Therefore, drainage will be analyzed in the Draft EIR/EA.

e) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

**Potentially Significant Impact.** As previously indicated, the project would alter the existing drainage pattern and could result in an increase in runoff from the site. An analysis of the amount of runoff that would occur with the project compared with existing conditions will be provided in the Draft EIR/EA. The Draft EIR/EA will identify the existing stormwater drains

\_

<sup>&</sup>lt;sup>15</sup> Personal communication, Gary Sisson, MCWD, November 28, 2005.

that serve the site, the capacity of these lines, and the project's contribution to flows within these lines. As indicated above, a discussion regarding water quality will be included in the Draft EIR/EA.

## f) Otherwise substantially degrade water quality?

**Potentially Significant Impact.** As previously discussed, the construction and operation of the project could degrade water quality. Construction runoff from disturbed areas could contain silt and debris. Runoff from development could also contain pollutants from motor vehicles, such as petroleum hydrocarbons, glycol, and dissolved heavy metals. An analysis regarding water quality will be included in the Draft EIR/EA.

g) Place housing within a 100-year flood plain as mapped on federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?

**No Impact.** The project site is not located in an area mapped as a 100-year flood corridor. Therefore, the proposed project would not place housing within a 100-year flood plain. No further analysis is warranted.

h) Place within a 100-year flood hazard area structures which would impede or redirect flood flows?

**No Impact.** As stated above in Response VIII.g, the project site is not located within a FEMA designated 100-year flood plain. Therefore, the project would not place structures within a 100-year flood plain, nor would it impede or redirect flood flows. No further analysis of this issue is required.

i) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?

**No Impact.** As stated above in Responses VIII.g and h, the project would not be located within a FEMA designated 100-year flood plain. There are no existing or future dams and levees located in close proximity to the project site. Therefore, the location of the project would not

\_

Town of Mammoth Lakes, 2005. Draft Program Environmental Impact Report for the Town of Mammoth Lakes 2005 General Plan Update.

expose people or structures to a significant risk of loss, injury or death involving flooding. No further analysis of this issue is required.

## j) Inundation by seiche, tsunami, or mudflow?

No Impact. A seiche is an oscillation of a body of water in an enclosed or semi-enclosed basin, such as a reservoir, harbor, lake, or storage tank. A tsunami is a great sea wave, commonly referred to as a tidal wave, produced by a significant undersea disturbance such as tectonic displacement of a sea floor associated with large, shallow earthquakes. Mudflows result from the downslope movement of soil and/or rock under the influence of gravity. The project site is relatively distant from the ocean, not in the vicinity of a reservoir, harbor, lake, or storage tank capable of creating a seiche and is not positioned downslope from an area of potential mudflow. Therefore, no further analysis with regard to these issues is necessary.

### IX. LAND USE AND PLANNING. Would the project:

## a) Physically divide an established community?

Less Than Significant Impact. The majority of the site, approximately 3.46 acres, is located within the urban growth boundary (UGB) of the Town and is designated Resort in the Town's adopted General Plan. The site is zoned Resort. The remaining 2.39 acres of the site is administered by the U.S.D.A. Forest Service. Existing uses on the site include a surface parking lot and the temporary Little Eagle Base Lodge facility. The site would replace the existing temporary facility with a permanent facility. Existing land uses surrounding the site include residential and resort uses. More specifically, single-family homes are located to the north, the Juniper Springs Resort is located to the west, and multi-family residences are located to the south. The Mammoth Community Water District Ground Water Treatment Plant No. 2 is located to the east. The Mammoth Loop Trail is located to the north of the Treatment Plan and runs to the west ending at Majestic Pines Road directly across from the site. The project would not introduce buildings or infrastructure that would physically divide the existing residential and resort community. Therefore, no further analysis of this issue is necessary.

b) Conflict with applicable land use plan, policy or regulation of an agency with jurisdiction over the project (including but not limited to the general plan, specific plan, coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?

Potentially Significant Impact. As indicated above, the site is located within the Town's UGB, with a small portion located on U.S.D.A. Forest Service land. The Town portion of the site is designated Resort in the adopted General Plan and zoned Resort except for Lot 87, which is designated Low Density Residential (LDR) and zone Single Family Residential. The site is proposed to retain the Resort designation with the Town's 2005 General Plan Update. However, Lot 87 would require a General Plan amendment to rezone it from Residential Singe Family to Resort. The Resort designation allows mixed visitor oriented uses, including visitor housing/lodging, tourist-oriented commercial and recreation uses. Commercial uses within the Resort designation are to be designed primarily to support residential occupancies within the same resort complex. The site is also located within the Juniper Ridge Master Plan Area. The project would require an amendment to the Juniper Ridge Master Plan with regard to intensity of development, land use, setbacks, parking, and building height.

The 2.39 acre portion of the site that is located on Forest Service land is located in the Mammoth Mountain Ski Area Master Development Plan "The MMSA Development Plan," and the Inyo National Forest Land and Resource Management Plan "The Inyo Forest Plan." Forest Plans link the requirements of laws, regulations, executive orders, policies, and the Forest Service National Strategic Plan to specific National Forests. Forest Plans describe desired resource conditions, management objectives, standards to be followed, suitable land use designations (similar to zoning), and monitoring strategies. In addition, Forest Plans provide a framework to guide site-specific project planning. The project would require non-significant amendment of the Inyo Forest Plan and an amendment of the MMSA Master Development Visual Plan.

Therefore, the Draft EIR/EA will provide a discussion of the project's consistency with applicable regional, state and local land use plans and policies, including the Town's proposed 2005 General Plan Update, if necessary. In addition, the project would result in permanent facilities that would provide for a greater intensity of use than currently exists. Given the proposed amendment to the Juniper Ridge Master Plan, the Inyo Forest Plan and the MMSA Master Development Visual Plan, the Draft EIR/EA will include an analysis of the compatibility of the proposed development and activities with the surrounding area.

## c) Conflict with any applicable habitat conservation plan or natural community conservation plan?

**No Impact.** There are no habitat conservation plan(s) or natural community conservation plan(s) applicable to the project site or project area. As such, project implementation would not conflict with any habitat conservation plans. Therefore, no further analysis of this issue is necessary.

### X. MINERAL RESOURCES. Would the project:

a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?

No Impact. Mineral resources in the Mammoth Lakes region include industrial minerals (clay, aggregate, cinders, etc.) and precious metals associated with volcanic rocks and hot spring and geothermal activity. The closest deposit of aggregate and a deposit of precious metals are located north of the Mammoth Yosemite Airport, approximately 8.7 miles from the site. A defined geothermal lease area encompasses a portion of the Town's northeastern area and extends to the north of the Town. There are no mining activities at the project site or in the project vicinity. In addition, the California Geological Survey (CGS) has not classified the site as being located in a principal mineral producing locality.<sup>17</sup> As a result, the project would not result in the loss or availability of such resources considered to be of value to the region or the residents of the state. No additional analysis is warranted.

b) Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?

**No Impact.** As previously stated, the project site is not located in an area known to contain significant mineral deposits, nor is it identified as an existing mineral resource extraction area for the State of California.<sup>18</sup> As previously discussed, the CGS has not classified the site as being located in a principal mineral producing locality. As the project site is not a designated

Town of Mammoth Lakes
January 2006

State of California Department of Conservation, California Geologic Survey, Map of California Principal Mineral Producing Localities: Accessed November 16, 2005. http://www.consrv.ca.gov/CGS/minerals/images/ YellowMap.pdf

Town of Mammoth Lakes, Department of Land Use and Planning, Mammoth Lakes General Plan Framework, Draft Environmental Impact Report, October 2005, Figure 4.4-1 and USFS Leases.

mineral extraction site or a regionally or locally-important significant mineral resource area, no further analysis of this issue is necessary.

### **XI. NOISE.** *Would the project result in:*

a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?

Existing noise sources in the project area include Potentially Significant Impact. traffic from Meridian Boulevard, flyover aircraft from operations at the Mammoth Yosemite Airport, flyover helicopter operations at Mammoth Hospital, and intermittent noise associated with snow removal and snow grooming activities, snowmaking operations, and potential avalanche control operations. Other noise sources include the use of snowmobiles in the winter. There are existing sensitive receptors adjacent to the project site, including single family residences to the north, the Summit Condominiums to the south, the Juniper Springs Lodge to the west. Sources of noise associated with the proposed project include noise generated during construction activities and noise generated during operation of the project. operational noise could result from increased traffic volumes as well as potential on-site noise intensive activities (e.g., ski plaza outdoor area, outdoor ice rink, ticketing and ski rental area, skier pickup/dropoff area, and snow removal equipment). In addition, operational noise could occur during summertime outdoor events. Finally, operational noise could also result from mechanical equipment associated with restaurant activities and other building operations, such as the loading dock, which would be situated adjacent to the residential homes to the north of the site. Therefore, an analysis of the potential for these sources of noise to result in significant impacts associated with the exposure of persons to or generation of noise levels in excess of established standards will be included in the Draft EIR/EA.

# b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?

Potentially Significant Impact. As indicated above in Response VI.c., the site is underlaid with glacial deposits below the undocumented fill and alluvium. In general, the glacial deposits consisted of a reddish-brown to grayish-brown, olive-brown to brown, and gray, moist to wet, medium dense to very dense, silty, very fine to coarse sand with abundant cobble clasts and boulders. Sections within this deposit were very well indurated/cemented and severely restricted in the drilling process. The material is considered marginally rippable to non-rippable using a Caterpillar D9 dozer. In general, excavations within 8-feet of the existing ground surface would be achievable using standard earthmoving equipment. However, some blasting may be

necessary in the well indurated/cemented zones based on localized conditions in the mass excavation area. Due to the proximity of sensitive receptors from such construction activities, an analysis of the potential impacts associated with groundborne vibration and groundborne noise will be included in the Draft EIR/EA. With regard to project operation, the project would not include the use of equipment that would expose persons to excessive groundborne vibration or noise levels. Therefore, no further analysis of operational groundborne vibration or groundborne noise is required.

c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?

Potentially Significant Impact. The project would include mixed-use commercial, recreational, and residential development, resulting in an increase of existing intensity and activity levels. The implementation of the project could permanently increase ambient noise levels by adding traffic, on-site activities, such as the ski plaza outdoor area, outdoor ice rink, ticketing and ski rental area, skier pickup/dropoff area, and snow removal equipment, as well as summertime outdoor events. Long-term operational noise also could result from mechanical equipment associated with restaurant activities and other building operations. Therefore, this issue will be analyzed further in a Draft EIR/EA.

d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

Potentially Significant Impact. Construction related activities and equipment used during the project's construction phase could result in a temporary or periodic increase in ambient noise levels above existing levels. During the operational phase, stationary equipment could also result in temporary or periodic increase in ambient noise levels. Therefore, further analysis of the potential impacts associated with temporary or periodic increases in ambient noise levels will be evaluated in a Draft EIR/EA.

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

**No Impact.** The project is not located within an airport land use plan area or within two miles of a public airport or public-use airport. The Mammoth Yosemite Airport is located approximately located approximately 8.7 miles east from the project site. Areas exposed to aircraft noise of CNEL 65 and higher remain within the airfield boundary of the Airport on either

Eagle Lodge
Initial Study

Town of Mammoth Lakes
January 2006

Airport property or vacant land controlled by the Airport through leases or use permits. Therefore, no further analysis of this issue is required.

f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

**No Impact.** The project is not located in the vicinity of a private airstrip. Therefore, the proposed project would not expose people to excessive noise levels associated with the operation of a private airstrip, and no further analysis of this issue is necessary.

### XII. POPULATION AND HOUSING. Would the project:

a) Induce substantial population growth in an area either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

**Potentially Significant Impact.** The project would result in an increase in local land development in the area. The proposed project would result in an increase in service-oriented employment opportunities and consequently an increase in the demand for housing. Therefore, an analysis of the projected increase in employment that will occur as a result of the project and the projected increase in the demand for housing will be included in the Draft EIR/EA.

b) Displace substantial numbers of existing housing necessitating the construction of replacement housing elsewhere?

**No Impact.** The project site is currently developed with a surface parking lot and temporary lodge facilities. Development of the proposed project would not displace any existing residences. Therefore, no further analysis of this issue is required.

c) Displace substantial numbers of people necessitating the construction of replacement housing elsewhere?

**No Impact.** As discussed above in Response XII.b, the project site does not currently contain residential uses. Project implementation would not displace any residents, but rather would provide transient residential units. Therefore, no further analysis of the potential impacts on the displacement of substantial numbers of people would be required.

XIII. PUBLIC SERVICES. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

### a) Fire Protection?

Less Than Significant Impact. The Mammoth Lakes Fire Protection District (MLFPD) provides fire protection and emergency response to the project site. The MLFPD service area includes approximately 3,000 acres of mountain resort area in and around the Town and over 2,500 acres within the Town. The MLFPD currently responds to calls for service from two fire stations. Fire Station No.1, the primary station, is located at 3150 Main Street and is in the process of being replaced with a larger, more updated facility. The new expanded facility is expected to be completed by the summer of 2006. Fire Station No.2 is located at 1574 Old Mammoth Road and contains housing facilities for full-time employees. The location of the project site is approximately 3.0 miles from both facilities.

Fire ratings range from one to ten, with one representing the best rating.<sup>19</sup> The Town currently has a fire rating of three, as a result of the recent Insurance Service evaluation conducted within the Town. The project could result in an increase in the quantity of emergency calls received by the MLFPD due to the increase in activity and use in the area. The project would comply with the applicable provisions as set forth in the Town Municipal Code (MLMC). In addition, the Town currently collects between \$648.00 and \$1,349.00 per unit of new development and between \$1.79/sq. ft. and \$0.86/sq. ft. for non residential uses, which is used to fund the required fire suppression equipment. While the project could result in an increase in calls, the project would not result in development that is unique in the area. The project would be subject to review by the MLFPD to ensure that the project complies with fire requirements. Therefore, further analysis of potential impacts associated with fire protection is not required.

#### b) Police Protection?

Less Than Significant Impact. Police protection and law enforcement in the Town of Mammoth Lakes are provided by the Mammoth Lakes Police Department (MLPD), the Mono County Sheriff's Department (MCSD), and the California Highway Patrol (CHP). The MLPD provides all non-traffic related services for the project area. Criminal investigation calls, the primary job function of the MLPD, increase during the peak visitor months. MLPD is

<sup>&</sup>lt;sup>19</sup> Chief Harold Ritter, MLFPD, Personal Communication, November 5, 2004.

responsible for all traffic related offences within the Town except for along SR 203 where CHP also provides traffic related services. The MLPD staff is currently comprised of 20 sworn officers, two non-sworn investigators and one Animal Control officer, all of whom operate out of a leased facility on Old Mammoth Road. Typically, two to four sworn officers are on duty at any one time. Dispatches for both the MLPD and MCSD are routed by Mono County. The MLPD plans to construct an approximately 12,500 square foot public safety facility that would be designed with a jail, holding cells, and administrative offices on land that the MLPD owns within the Town. The facility would likely be complete in 2009.<sup>20</sup>

The increase in visitors resulting from implementation of the project could result in a greater volume of emergency calls for police services and could potentially impact police protection and law enforcement services and facilities. The MLPD strives to provide a sworn-officer to resident ratio of 0.8 to 1,000 for permanent residents and fractional ownership units, 1.6 to 1,000 for seasonal residents, 0.4 to 1,000 for second home residents and visitors. As indicated in the Project Description, the project would either be a combination of hotel/fractional condominium units or a hotel. The two scenarios would result in a similar demand for police services, with the hotel scenario resulting in a slightly greater demand. The hotel scenario would provide 213 rooms and based on two visitors per room, the project would generate 426 visitors. Based on the MLPD ratio of 0.4 officers/1,000 visitors, the project would generate a demand for 0.17 officers. (The hotel/fractional condominium unit scenario would generate a demand of 0.1664 officers.<sup>21</sup>) However, the Town currently collects between \$473.00 and \$788.00 per residential unit and between \$0.78/sq. ft. and \$0.14/sq. ft. for non residential uses. The development impact fees would serve to mitigate potential impacts to police services. Therefore, no further analysis of potential impacts associated with police protection is required.

#### c) Schools?

Less Than Significant Impact. The Town is located within the jurisdiction of the Mammoth Unified School District (MUSD). The MUSD provides education to students in grades kindergarten (K) through grade 12 with facilities that include Mammoth High School, Mammoth Middle School, Mammoth Elementary School, Sierra High School, and the Mammoth Olympic Academy for Academic Excellence. The total current enrollment in MUSD schools is approximately 1,191 students in grades K through 12, slightly below the current estimated

<sup>&</sup>lt;sup>20</sup> Chief Donnelly, Mammoth Lakes Police Department, Personal Communication, January 3, 2006.

The hotel/fractional condominium unit scenario would generate the following demand: 62 condo units with 4 persons/unit = 248 persons x 0.4/1,000 (248/1,000 x 0.4) = 0.0992 + 21 fractional units with 4 persons/unit = 84 persons x 0.8/1,000 (84/1,000 x 0.8) = 0.0672. The total demand under this scenario would be 0.1664 officers.

capacity of 1,290 students.<sup>22</sup> The current capacity number is based on the highest number of students accommodated in a school year by the MUSD. In addition, MUSD is currently completing a land trade with the U.S. Forest Service for approximately 11 acres of land that could be used for expansion of an existing facility. The MUSD currently maintains an average pupil to teacher ratio throughout the District of 20 to one. The average per pupil spending throughout the District is approximately \$7,425 per student per year, including approximately \$1,400 per student in federal and state aid for categorical, special education, and support programs. Development of the project would result in an increase in employees, which would result in an indirect demand for additional housing. The additional housing could generate additional students within the MUSD service area.

However, Senate Bill 50 (SB 50), enacted in 1998, is a program for funding school facilities largely based on matching funds. SB 50 allows the MUSD to levy a fee, charge, dedication, or other requirement against any development project within its boundaries, for the purpose of funding the construction or reconstruction of school facilities. The current fees as of 2005 collected by the Town on behalf of MUSD are \$2.24/sf for residential and \$0.34/sf for non-residential. The payment of these fees by a developer serves to mitigate all potential impacts on school facilities that may result from implementation of a project to levels that are less than significant (Government Code Section 65995). Therefore, no further analysis of potential impacts associated with schools is required.

### d) Parks?

Less Than Significant Impact. The Mammoth Mountain Ski Area is one of the nation's leading ski resorts, with 1.25 million skier visits during the 2003 ski season.<sup>23</sup> The project would enhance the availability of recreational facilities in the Town through the provision of a permanent lodge that would replace the existing temporary facility. The project would not result in an increase in the capacity of the portal. The project would include on-site active and passive recreational opportunities, including a pool, spas, fitness centers, and landscaped open spaces. With regard to local parks, the Town provides public recreation facilities for use by the general public. The existing park areas, which are owned and operated by the Town, equal approximately 18 acres. In addition, there are 4 acres at Mammoth Creek Park and 12.5 acres at Shady Rest Park that are not owned but are operated by the Town under a Special Use Permit from the USFS. In addition, Whitmore Park, which is 18.66 acres, is operated jointly by the Town and Mono County on land leased from the Los Angeles Department of Water and Power. In total, there are over 53 acres of park and recreation land currently developed. The project would generate employees, which could increase the Town population. However, the existing

<sup>&</sup>lt;sup>22</sup> Patricia Henderson, MUSD, Personal Communication, November 10, 2005.

<sup>23</sup> Ibid.

park areas would not be significantly impacted from employee growth due to the recreational opportunities available in the area. Therefore, no further analysis is required.

#### e) Other public services?

Less Than Significant Impact. Other public services potentially impacted include public libraries, hospitals/healthcare, and public roadway maintenance. Additional discussions of roadway impacts are provided in Response XV, Transportation and Traffic. The Mammoth Lakes Branch Library, located at 960 Forest Trail next to the Mammoth Lakes Community Center, serves the Town and surrounding communities. The library is a branch of the Mono County Library and is operated in conjunction with the Mono County Office of Education under the direction of the Mono County Superintendent of Schools. The latest remodel occurred in 1996 and expanded the building to approximately 4,700 square feet. The current structure cannot be expanded further and there is no adjacent land for a new building. The library is currently at capacity with no shelf space for new materials.24 A second library facility was opened in August 2004 in the Crowley Lakes community. Known as the Crowley Library at Hilton Creek, the library facility was not designed to expand or replace the Mammoth Lakes Branch Library and provides only limited service to Crowley Lakes residents. A parcel of land has been purchased to accommodate a new library. It is anticipated that construction of the new library could begin as early as spring of 2006. Development associated with the project would result in an increase in transient population and a potential increase in demand for library services due to an indirect demand for new housing. However, the Town currently collects between \$448.00 and \$2,593.00 per residential unit to mitigate potential impacts to libraries. Therefore, no further analysis of potential impacts associated with library capacity is required.

Roadway maintenance within the community is provided by the Town, and includes road repair, maintenance, and snow removal. Roadway maintenance and snow removal on private roads and private property is the responsibility of the land owners. The project would not result in an increase in the demand for roadway maintenance as the infrastructure is currently in place and use. Given that the project would not result in an increase in levels of roadway maintenance, no additional analysis is required.

Eagle Lodge

<sup>&</sup>lt;sup>24</sup> Diane Hurlburt, Mammoth Lakes Branch Library, Personal Communication, November 5, 2004.

#### XIV. RECREATION

Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

Less Than Significant Impact. As discussed above in section XIII.d. Parks, the project would enhance the availability of recreational facilities. The Town of Mammoth Lakes is an alpine resort community located on the eastern side of the Sierra Nevada Mountains and situated in a basin at the base of Mammoth Mountain. The Mammoth Mountain Ski Area is one of the nation's leading ski resorts, with 1.25 million skier visits during the 2003 ski season.<sup>25</sup> The proposed project would enhance the Town's current recreational capacity by replacing the existing temporary facility with a permanent facility and improving the available resort infrastructure and related amenities. The project is proposed to include on-site active and passive recreational opportunities, including a pool, spas, fitness centers, and landscaped open spaces. Even though the project would result in an indirect demand for housing due to an increase in employees, the project would not result in a substantial increase in the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur. Therefore, no further evaluation is required.

b) Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

Less Than Significant Impact. As previously discussed, the project is proposed to include on-site active and passive recreational opportunities, including a ski resort, associated pool, day spa, fitness center, and landscaped open spaces. These amenities would be constructed as part of the project. In addition, as discussed in Response XIV.a, above, the project would enhance recreation facilities in the Mammoth Lakes area. Even though the project would increase the transient population for the area, the increase would not result in the need for the construction or expansion of existing recreational facilities. As such, no further analysis is required.

Ibid.

#### XV. TRANSPORTATION AND CIRCULATION. Would the project:

a) Cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)?

Potentially Significant Impact. The project would result in the replacement of the existing temporary facility with a permanent facility. Given the proposed mix of uses and the proposed increase in intensity of development at the site, the project could result in potentially significant impacts associated with a substantial increase in traffic or an exceedance of level of service standards. Therefore, a traffic study will be prepared. Project-generated traffic volumes will be based on the amount and type of land uses proposed by the project. Project-generated traffic will be compared to traffic generation associated with existing facility at the site. The analysis of traffic impacts will identify key intersections, quantify existing and future traffic conditions at those locations, identify impacts caused by the addition of project-generated traffic, and identify mitigation measures to reduce any potentially significant impacts generated by the project, as appropriate and where feasible. Consistent with traffic studies that have been prepared for the Town in the past, the traffic study will be primarily based upon typical winter Saturday p.m. peak-hour traffic volumes. However, as the project is intended to be a four-season resort, a qualitative analysis of summer traffic conditions will be provided.

b) Exceed, either individually or cumulatively, a level of service standard established by the Town for designated roads or highways?

Potentially Significant Impact. As indicated above, the project would result in the replacement of the existing temporary facility with a permanent facility. Given the proposed mix of uses and the proposed increase in intensity of development at the site, the project could result in potentially significant impacts associated with a substantial increase in traffic or an exceedance of level of service standards. Therefore, project implementation could individually or cumulatively affect the LOS standard established by the Town for specific roads or highways. The traffic study will include a project and cumulative analysis, which will be included in the Draft EIR/EA.

c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

**No Impact.** As discussed previously, the closest airport to the project site is the Mammoth Yosemite Airport, which is located approximately 8.7 miles southwest of the project site. The project site is not located within the Planning Boundary of the Mammoth Yosemite

Airport. The project does not propose any uses that would increase the frequency of air traffic or alter air traffic patterns. As such, safety risks associated with a change in air traffic patterns would not occur and no further analysis of this issue is necessary.

# d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

Potentially Significant Impact. There are no existing hazardous design features such as sharp curves or dangerous intersections on-site. However, Majestic Pines Road has a sharp curve within close proximity to the site. Potential traffic hazards that could occur during project construction would be short-term in nature. While the project does not include the creation of any roadway design hazards, the project would result in vehicles, including delivery trucks, crossing Majestic Pines Road in proximity to the sharp curve. The proposed circulation could result in an increase in hazards in the project vicinity. Therefore, further analysis of this issue will be included in the Draft EIR/EA.

#### e) Result in inadequate emergency access?

Less than Significant Impact. Two year-round emergency evacuation routes serve the Town. State Road 203 and U.S. Highway 395 are the main routes for evacuation, and a secondary evacuation option is provided by the Scenic Loop extending from Minaret Road to U.S. Highway 395. During the summer months, two additional routes are available including Sherwin Creek Road and the Sawmill cutoff, both of which are graded dirt roads. The project would comply with applicable Town of Mammoth Lakes Fire Department codes for emergency vehicle access, resulting in adequate emergency access to the site. In addition, the project would not impede emergency access for adjacent or surrounding properties during construction or operation. As such, the project would result in a less than significant impact with respect to emergency access and no further analysis of this issue is necessary.

#### f) Result in inadequate parking capacity?

Potentially Significant Impact. The current surface parking lot provides approximately 225 parking spaces. The project proposes a 246,250-square-foot, with up to 544-spaces, 3-level, subterranean parking garage. Of the 544 underground spaces, approximately 318 would be for the commercial and day-skier parking component of the project. The remaining parking (226 spaces) would be provided for the on-site residential/hospitality uses. The Juniper Ridge Master

Town of Mammoth Lakes
January 2006

<sup>&</sup>lt;sup>26</sup> Communication with Bill Taylor, Town of Mammoth Lakes Community Development Department, February 2005.

Plan requires that the project comply with Municipal Code parking requirements. Given that shared parking is anticipated due to the integration of uses, a parking analysis will be completed and will be included in the Draft EIR/EA.

g) Conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?

Potentially Significant Impact. Currently, public transportation is provided to the site. The project would include a bus drop off area parallel to Meridian Boulevard. In terms of pedestrian circulation, the project would extend the Mammoth Loop Trail through the site. The Trail would be constructed from Majestic Pines Road, across from where the Trail currently ends, along the northwest side of the lodge to the end of the site. In addition, the project would include a pedestrian link from the northern end of the lodge to the single family neighborhood to the north of the site. The trail would intersect with the Mammoth Loop Trail. The project would support alternative transportation. However, the project would include a truck turn-out that could result in conflict between trucks and the recreation loop. Therefore, further analysis of consistency with adopted policies, plans, or programs supporting alternative transportation will be included in the Draft EIR/EA.

#### XVI. UTILITIES AND SERVICE SYSTEMS. Would the project:

a) Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?

**Potentially Significant Impact.** The Mammoth Community Water District (MCWD) owns, operates and maintains the wastewater collection and treatment systems for the Town, including pump stations and over 35 miles of sewer mains and interceptors.<sup>27</sup> The wastewater treatment facility for the Town provides advanced secondary treatment, which includes biological treatment, filtration, and disinfection through utilization of chlorine. The existing wastewater treatment facility is designed to provide treatment for peak daily flows of 3.0 million gallons per day (mgd) and the current average daily flow is 1.4 mgd with a peak daily flow of 2.4

\_

Town of Mammoth Lakes, 2005. Draft Program Environmental Impact Report for the Town of Mammoth Lakes 2005 General Plan Update.

mgd.<sup>28</sup> An expansion of the wastewater treatment plant is planned for completion early 2006, increasing the design capacity of the treatment facility to 4.9 mgd.<sup>29</sup>

The project, which would replace the existing temporary facility with a permanent lodge, would result in an increase of wastewater generated at the site compared with existing conditions. The Draft EIR/EA will assess the proposed project's impacts with respect to wastewater treatment. The incremental quantity of wastewater generated by the proposed project will be estimated and compared with available treatment capacity. The ability of existing and proposed wastewater infrastructure to accommodate the project's incremental flow will also be assessed based on data provided by the wastewater treatment provider. The analysis will include a discussion of the wastewater infrastructure plan and improvements proposed as part of the project to adequately serve the wastewater needs of the project site.

b) Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

Potentially Significant Impact. The project would generate an increase in the demand for wastewater and water services. The project would result in an increase in the intensity of development on the site. With regard to wastewater, the incremental quantity of wastewater generated by the proposed project will be estimated and compared with available treatment capacity. The ability of existing and proposed wastewater infrastructure to accommodate the project's incremental flow will also be assessed based on data provided by the wastewater treatment provider. The analysis will include a discussion of the wastewater infrastructure plan and improvements proposed as part of the project to adequately serve the wastewater needs of the project site.

The analysis of potential impacts associated with water will quantitatively estimate the net increase in demand for water generated by the proposed uses. MCWD will be contacted to identify the adequacy of existing water supply and their ability to accommodate the demand for water generated by the project. A discussion of relevant state regulations regarding water supply will also be provided.

<sup>&</sup>lt;sup>28</sup> Ibid.

<sup>&</sup>lt;sup>29</sup> Gary Sisson, MCWD, Personal Communication, January 5, 2006.

c) Require or result in the construction of new stormwater drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

**Potentially Significant Impact.** The project would result in an increase in the amount of impervious surface on the site. Therefore, the project would result in an increase in the quantity of stormwater run off. The stormwater from project construction and operations either could drain to the existing detention basins on Lot 7, percolate into the soils, or be diverted to existing infrastructure. As such, potential impacts to the existing stormwater drainage system and related capacity requirements will be analyzed in the Draft EIR/EA.

d) Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?

Potentially Significant Impact. The Mammoth Community Water District (MCWD) is the water supplier (public water system) for the Town of Mammoth Lakes. The project would result in an increase in the level of development and intensity of uses at the site. Therefore, the project would generate an increase in the demand for water as compared with existing conditions. Further analysis with regard to water demand from the project will be included in the Draft EIR/EA.

e) Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

Potentially Significant Impact. The project would generate an increase in the demand for wastewater services. The project would result in an increase in the intensity of development on the site. As indicated previously, an analysis regarding wastewater will be provided in the Draft EIR/EA. The incremental quantity of wastewater generated by the proposed project will be estimated and compared with available treatment capacity. The ability of existing and proposed wastewater infrastructure to accommodate the project's incremental flow will also be assessed based on data provided by the wastewater treatment provider. The analysis will include a discussion of the wastewater infrastructure plan and improvements proposed as part of the project to adequately serve the wastewater needs of the project site.

f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?

Less Than Significant Impact. Solid waste disposal service for the Town of Mammoth Lakes is currently contracted to Mammoth Disposal Inc. Solid waste is disposed at the Benton

Crossing Landfill, which is located within Mono County. The landfill has a remaining capacity of 1.7 million cubic yards of compacted waste and is anticipated to have the capacity to accommodate the Town's waste generation and disposal needs for the next 20 years.<sup>30</sup> In addition, the Town has an option for five years at the Pumice Valley Landfill. With the existing capacity in the Benton Crossing Landfill as well as the option for disposal for five years at the Pumice Valley Landfill, there is adequate landfill capacity for the project population. While the project would generate an increase in the amount of solid waste disposed of at the landfill, the project would not result in the need to construct a new landfill or expand existing facilities to accommodate the project's solid waste disposal needs due to recycling efforts. An organized recycling program would be implemented throughout the proposed facility to include the collection and redemption of CRV plastic, glass and aluminum. Permanent recycling bays would be built into public food service areas for guest use, as well as public indoor and outdoor containers to be sited alongside trash containers, including portable containers for events. Back of house collection containers would also be sited in areas generating recyclables, including staff break rooms, offices and food service. Mixed paper and cardboard would also be collected where generated, including offices, food service and retail locations. All CRV materials, mixed paper and cardboard would be taken to Mammoth Disposal's recycling facility for regular redemption by staff or contracted recycling service provider. Maintenance areas would also have programs and containers for collecting and properly disposing of universal and hazardous wastes, such as used batteries, fluorescent lamps, motor fluids, unused cleaning and landscaping supplies, and painting materials. With the proposed recycling, the project would not generate an increase in the amount of solid waste disposed of at the landfill, such that the project would result in the need to construct a new landfill or expand existing facilities. Therefore, no additional analysis is required.

# g) Comply with federal, state, and local statutes and regulations related to solid waste?

Less Than Significant Impact. Solid waste management is guided by the California Integrated Waste Management Act of 1989 that emphasizes resource conservation through reduction, recycling, and reuse of solid waste. The Act requires that localities conduct a Solid Waste Generation Study (SWGS) and develop a Source Reduction Recycling Element (SRRE). In 1989, Assembly Bill 939 (AB 939), known as the Integrated Waste Management Act, was passed because of the increase in waste stream and the decrease in landfill capacity. AB 939 mandates a reduction of waste being disposed and establishes an integrated framework for program implementation, solid waste planning, and solid waste facility and landfill compliance. The Town operates the waste collection and recycling program in accordance with AB 939, but the Town does not currently comply with AB 939 in terms of achieving a 50 percent diversion

10iu

<sup>30</sup> Ibid.

rate for solid waste. However, the project would comply with applicable federal, state, and local statutes and regulations regarding solid waste. In addition, recycling collection facilities for visitors would be included as part of the project. The amount of waste generated by the project would be reduced through the implementation of an organized recycling program targeting a variety of material types, which is discussed above. In addition, the recycling efforts would being with construction debris, which would be separated by material type for recycling at Benton Crossing Landfill. All facilities would have public and back of house collection of plastic, glass, aluminum, mixed paper and cardboard. Universal and hazardous wastes generated by routine maintenance operations would also be collected for recycling as required by law. Lastly, all rooms would contain marketing messages asking guests to recycle in the provided containers and all staff would be educated on recycling operations. The project would comply with federal, state, and local regulations related to solid waste. Therefore, no additional analysis is required.

#### XVII. MANDATORY FINDINGS OF SIGNIFICANCE

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

Potentially Significant Impact. Based on the analysis contained in this Initial Study, the project has the potential to result in significant impacts with regard to aesthetics, air quality, biological and cultural resources, hydrology/water quality, land use, noise, population/housing, transportation/traffic, and utilities. As a portion of the project is located in the Inyo National Forest, managed by the US Forest Service, a joint EIR/EA will be prepared to analyze these potentially significant impacts.

b) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of an individual project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects).

Potentially Significant Impact. The potential for cumulative impacts occurs when the independent impacts of the project are combined with the impacts of related projects in proximity to the project site resulting in impacts that are greater than the impacts of the project

alone. Located within the vicinity of the project site are other past, current and/or probable future projects, whose development, in conjunction with that of the proposed project, may contribute to potential significant cumulative impacts. In evaluating the potential for cumulative impacts, environmental issues can be grouped together, to a certain extent, based on the nature of the potential impacts as analyzed in this Initial Study. Some aspects of the proposed project have been identified as having the potential for significant environmental impacts and will be analyzed and documented in an EIR. Therefore, the potential for cumulative impacts related to aesthetics, air quality, biological resources, cultural resources, hydrology, land use and planning, noise, transportation and circulation, and utilities and service systems (water supply, wastewater, and stormwater), resulting from the project in conjunction with related projects cannot be fully determined in this Initial Study and must also be analyzed and documented in the EIR.

Cumulative impacts are concluded to be less than significant for those issues for which it has been determined that the project would have no contributory impact.

Cumulative development in the area could increase the potential for certain environmental impacts by potentially increasing the number of people exposed to such impacts. For example, cumulative development in the area would increase the overall potential for exposure to seismic hazards by potentially increasing the number of people exposed to seismic hazards. Even so, impacts associated with geologic and seismic issues are typically confined to a project site or a very localized area and do not affect off-site areas associated with the related projects or ambient growth. In addition, all projects are subject to established guidelines and regulations pertaining to seismic hazards. As such, compliance with applicable state and Town regulations would preclude significant cumulative impacts with regard to geology and soils.

Similarly, cumulative development could increase the overall potential for exposure to hazards and hazardous materials by changing site operations. However, projects are subject to established guidelines and regulations pertaining to hazards and hazardous materials. As such, compliance with applicable regulations would preclude significant cumulative impacts from hazards and hazardous materials. In summary, environmental issues meeting the criterion of less than significant and resulting in no cumulative contributory impact include agricultural resources, geology/soils, hazards and hazardous materials, mineral resources, public services and recreation.

Some aspects of the project have been identified as having the potential for significant environmental impacts and their associated potential cumulative impacts will be analyzed and documented in a draft EIR/EA. Therefore, the potential for cumulative impacts related to aesthetics, air quality, hydrology/water quality, land use, noise, population/housing, transportation/traffic, and public utilities resulting from the project in conjunction with related projects will be analyzed in the Draft EIR/EA.

c) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

Potentially Significant Impact. Based on the above discussion, construction and operation of the proposed project could potentially result in environmental impacts, which may cause adverse effects on human beings, either directly or indirectly. Further evaluation of potential impacts associated with environmental effects on human beings, including impacts related to aesthetics, air quality, biological and cultural resources, hydrology/water quality, land use, noise, population/housing, transportation and utilities/service systems, will be included in the Draft EIR/EA.



#### Arnold Schwarzenegger Governor

## STATE OF CALIFORNIA Governor's Office of Planning and Research



Sean Walsh Director

TOWN OF MAMMOTH
GOMMUNITY DEVELOPMENT DEPARTMENT

#### Notice of Preparation

State Clearinghouse and Planning Unit

January 11, 2006

To:

Reviewing Agencies

Re:

Eagle Lodge Base Area Development Project

SCH# 2006012041

Attached for your review and comment is the Notice of Preparation (NOP) for the Eagle Lodge Base Area Development Project draft Environmental Impact Report (EIR).

Responsible agencies must transmit their comments on the scope and content of the NOP, focusing on specific information related to their own statutory responsibility, within 30 days of receipt of the NOP from the Lead Agency. This is a courtesy notice provided by the State Clearinghouse with a reminder for you to comment in a timely manner. We encourage other agencies to also respond to this notice and express their concerns early in the environmental review process.

Please direct your comments to:

Sonja Porter City of Mammoth Lakes P.O. Box 1609 437 Old Mammoth Road Mammoth Lakes, CA 93546

with a copy to the State Clearinghouse in the Office of Planning and Research. Please refer to the SCH number noted above in all correspondence concerning this project.

If you have any questions about the environmental document review process, please call the State Clearinghouse at (916) 445-0613.

Sincerely,

N Scott Morgan

Project Analyst, State Clearinghouse

Attachments cc: Lead Agency

#### Document Details Report State Clearinghouse Data Base

SCH# 2006012041

Project Title Eagle Lodge Base Area Development Project

Lead Agency Mammoth Lakes, City of

Type NOP Notice of Preparation

visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would

include a convenience market, restaurant, day spa and locker club.

**Lead Agency Contact** 

Name Sonja Porter

Agency City of Mammoth Lakes

Phone 760.934-8989 ext. 286

email

Address P.O. Box 1609

437 Old Mammoth Road

City Mammoth Lakes

State CA Zip 93546

Fax

**Project Location** 

County Mono

City Mammoth Lakes

Region

Cross Streets Meridian Boulevard and Majestic Pines Road

Parcel No. 32-040-12, 32-040-08

Township Range Section Base

**Proximity to:** 

Highways U.S. Hwy. 395, State Route 203

Airports Railways

Waterways

Schools

Land Use GPD: Resort, Lot 87 is designated Low Density Residential; Z: Resort

Project Issues Aesthetic/Visual; Biological Resources; Archaeologic-Historic; Public Services; Noise; Water Quality;

Air Quality; Landuse; Population/Housing Balance; Traffic/Circulation

Reviewing Resources Agency; Department of Conservation; Office of Historic Preservation; Department of Parks

Agencies and Recreation; Department of Water Resources; Native American Heritage Commission; Department

and Recreation; Department of Water Resources; Native American Heritage Commission; Department of Health Services; Department of Fish and Game, Region 6 (Inyo & Mono Region); California Highway

Patrol; Caltrans, District 9; Regional Water Quality Control Bd., Region 6 (Victorville)

Date Received 01/11/2006 Start of Review 01/11/2006 End of Review 02/09/2006

| NOP Distribution List                                                                                              | Fish & Game Region 3 Robert Floerke                                                                                                         | County: Mono Public Utilities Commission Ken Lewis                                                   | Caltrans, District 8 Dan Köpulsky                                                                                                                      | A U U U U L ム U 4 法<br>Regional Water Quality Control<br>Board (RWQCB)                                                 |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Resources Agency<br>Nadell Gayou<br>Dept. of Boating & Waterways<br>David Johnson                                  | Fish & Game Region 4 Mike Muligan Fish & Game Region 5 Don Chadwick Hakital Conservation Program                                            | State Lands Commission Jean Sarino Tahoe Regional Planning Agency (TRPA)                             | Caltrans, District 9 Gayle Rosander Caltrans, District 10 Tom Dumas                                                                                    | EWGCB 1 Cathleen Hudson North Coast Region (1)                                                                         |
| California Coastal Commission Elizabeth A. Fuchs Colorado River Board                                              | Fish & Game Region 6 Gabrina Gatchel Habitat Conservation Program Fish & Game Region 6 VM                                                   | Business, Trans & Housing Caltrans - Division of Aeronautics                                         | Caltrans, District 11 Mario Orso Caltrans, District 12 Bob Joseph                                                                                      | RWOCB 2 Environmental Document Coordinator San Francisco Bay Region (2) RWQCB 3                                        |
| Gerald K. Zimmerman Dept. of Conservation Roseanne Taylor California Energy Commission                             | Tammy Allen Inyo/Mono, Habitat Conservation Program  Dept. of Fish & Game M George Isaac Marine Region                                      | Sandy Hesnard  Caltrans - Planning  Terri Pencovic  California Highway Patrol John Olejnik           | Cal EPA  Air Resources Board  Airport Projects Jim Lerner                                                                                              | Central Coast Region (3)  RWQCB 4  Jonathan Bishop Los Angeles Region (4)  RWQCB 55                                    |
| Dept. of Forestry & Fire<br>Protection<br>Alien Robertson<br>Office of Historic<br>Preservation<br>Wayne Donaldson | Other Departments  Food & Agriculture Steve Shaffer Dept. of Food and Agriculture                                                           | Housing & Community Development Lise Nichels Housing Policy Division                                 | Transportation Projects     Kurt Karperos     Industrial Projects     Mike Tollstrup     California integrated Waste                                   | Central Valley Region (5)  RwacB 5F Central Valley Region (5) Fresno Branch Office  RwacB 5R Central Valley Region (5) |
| Dept of Parks & Recreation<br>Environmental Stewardship.<br>Section<br>Reclamation Board<br>DeeDee Jones           | Public School Construction  Dept. of General Services Robert Sleppy Environmental Services Section Dept. of Health Services Vermics Ramertz | Dept. of Transportation  Caltrans, District 1  Rex Jackman  Caltrans, District 2  Marceline Gorzalez | Sue O'Leary Sue O'Leary State Water Resources Control Beard Jim Hockenberry Division of Pinancia! Assistance                                           | RWQCB 6 Lahoritan Region (6) Lahoritan Region (6) Lahoritan Begion (6) Victorville Branch Office                       |
| S.F. Bay Conservation & Dev't. Comm. Steve McAdam Dept. of Water Resources Resources Agency                        | Dept. of Health/Drinking Water Independent Commissions, Boards Delta Protection Commission Debby Eddy                                       | Caltrans, District 3 Katherine Eastham Caltrans, District 4 Tim Sable                                | State Water Resources Control Board Student Intern, 401 Water Quality Certification Unit Division of Water Quality State Water Resources Control Board | RWQCB 7 Colorado River Basin Region (7) RWQCB 8 Santa Ana Region (8) RWQCB 9                                           |
| Conservancy -ish and Game Depart. of Fish & Game Scott Flint                                                       | Office of Emergency Services Denris Castrilio Governor's Office of Planning & Research State Clearinghouse Native American Heritage         | David Murray Cattrans, District 6 Marc Birnbaum Cattrans, District 7 Cheryl J. Powell                | Sleven Herrera Division of Water Rights Dept. of Toxic Substances Control CEQA Tracking Center Department of Pesticide Regulation                      | Other                                                                                                                  |
| Environmental Services Division<br>Fish & Game Region 1<br>Donald Koch<br>Fish & Game Region 2<br>Banky Curtis     | Comm.<br>Debbie Treadway                                                                                                                    |                                                                                                      |                                                                                                                                                        | Last Updated on 08/10/05                                                                                               |

#### DEPARTMENT OF TRANSPORTATION

District 9 500 South Main Street Bishop, California 93514 PHONE (760) 872-0785 FAX (760) 872-0754 TTY (760) 872-9043



Flex your power!
Be energy efficient!

January 18, 2006

Ms. Sonja Porter Senior Planner Town of Mammoth Lakes P.O. Box 1609 Mammoth Lakes, California 93546 File: 09-MNO NOI/NOP SCH #: 2006012

01204] [

TOWN OF MAMMOTH
COMMUNITY DEVELOPMENT DEPARTMENT

Dear Ms. Porter:

Eagle Lodge Base Area Development Notice of Intent/Notice of Preparation for Joint Environmental Assessment/Draft Environmental Impact Report (January 2006)

Thank you for giving the California Department of Transportation (Caltrans) the opportunity to review and comment during the NOI/NOP phase for the Eagle Lodge Base Development Project adjacent to Meridian Boulevard in southwest Mammoth. We appreciate that both traffic and parking are slated for study. In the Traffic Study, please address/consider the following:

- The three probable State Route 203 access points need to be analyzed: Main Street/Lake Mary Road/Minaret Road, Old Mammoth Road/Main Street, and Meridian Boulevard/Main Street. If the use of any one is discovered to be an improvement in overall traffic flow, directional signage for the project could be implemented along with any other recommended mitigation.
- In general, collection of Traffic Impact Fees could be a method for the project to mitigate impacts to both the State and local transportation system.

If you have any questions, I may be contacted at (760) 872-0785. We value a cooperative working relationship in transportation and development matters with the Town of Mammoth Lakes.

Sincerely,

GAYLE J. ROSANDER IGR/CEQA Coordinator

Sayle J Rosander

c State Clearinghouse Terry Gess, Caltrans

"Caltrans improves mobility across California"



### California Regional Water Quality Control Board Lahontan Region



Alan C. Lloyd Ph.D. Agency Secretary Victorville Office

14440 Civic Drive, Suite 200, Victorville, California 92392 (760) 241-6583 • Fax (760) 241-7308 http://www.waterboards.ca.gov/lahontan

Arnold Schwarzenegger
Governor

File: Environmental Doc Review Mono County

Sonja Porter City of Mammoth Lakes P.O. Box 1609 437 Old Mammoth Road Mammoth Lakes, CA 93546

February 3, 2006

# COMMENTS ON NOTICE OF PREPARATION (NOP) FOR THE EAGLE LODGE BASE AREA DEVELOPMENT PROJECT DRAFT ENVIRONMENTAL IMPACT REPORT (EIR). SCH# 2006012041

Please refer to the items checked for staff comments on the above-referenced project:

- [X] Please specifically identify features for the post-construction period that will control stormwater on-site or prevent pollutants from non-point sources from entering and degrading surface or ground waters. The foremost method of reducing impacts to watersheds from urban development is "Low Impact Development" (LID), the goals of which are maintaining a landscape functionally equivalent to predevelopment hydrologic conditions and minimal generation of nonpoint source pollutants. LID results in less surface runoff and less pollution routed receiving waters. Principles of LID include:
  - Maintaining natural drainage paths and landscape features to slow and filter runoff and maximize groundwater recharge,
  - Reducing the impervious cover created by development and the associated transportation network, and
  - Managing runoff as close to the source as possible.

We understand that LID development practices that would maintain aquatic values could also reduce local infrastructure requirements and could benefit energy conservation, air quality, open space, and habitat. Many planning tools exist to implement the above principles, and a number of recent reports and manuals provide specific guidance regarding LID. We request you require these principles to be incorporated into the proposed project design. We request natural drainage patterns be maintained to the extent feasible.

[ ] The proposal does not provide enough information to determine the type of wastewater disposal system that will be used (i.e. septic system, sewer, etc.).

| []    | Discharge of any material other than domestic wastewater to an onsite septic tank wastewater disposal system is prohibited unless a Report of Waste Discharge is filed with the Regional Board.                                                                                                                                                                                                                                                                                                                                                                          |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| []    | The proposed project deals with a non-sewage discharge to land and may need to be regulated by the Lahontan Regional Water Quality Control Board. Therefore, the County must require the proponents to contact the Regional Board for filing of a complete report of waste discharge.                                                                                                                                                                                                                                                                                    |
| []    | The proposed project appears to exceed the Regional Board's 500 gallon per acre per day limitation on the discharge to septic tank disposal systems. Please address how this requirement will be met in the document and proposed project design.                                                                                                                                                                                                                                                                                                                        |
| []    | The proposal does not provide enough information to determine if the Regional Board's 500 gallon per acre per day limitation of the discharge to septic tank disposal systems is exceeded. Please address in the document how this requirement will be met.                                                                                                                                                                                                                                                                                                              |
| []    | The proposed project is located in an area where septic tank disposal systems are prohibited unless an exemption is requested and granted by the Regional Board. If the project proponent intends to request an exemption, the environmental document must contain the information necessary to make the findings for an exemption (Please review the exemption criteria contained in the Water Quality Control Plan for the Lahontan Region (Basin Plan) accessible on the Regional Board's homepage ( <a href="www.swrcb.ca.gov/rwqcb6">www.swrcb.ca.gov/rwqcb6</a> ). |
| [ X ] | The project will require development of a Stormwater Pollution Prevention Plan and a NPDES General Construction Stormwater Permit. This permit is accessible on the State Board's Homepage (www.swrcb.ca.gov). Best Management Practices must be used to mitigate project impacts. The environmental document must describe the mitigation measures or Best Management Practices.                                                                                                                                                                                        |
| []    | The project may require development of a Stormwater Pollution Prevention Plan and a NPDES General Industrial Stormwater Permit. This permit is accessible on the State Board's Homepage (www.swrcb.ca.gov). Best Management Practices must be used to mitigate project impacts. The environmental document must describe the mitigation measures or Best Management Practices.                                                                                                                                                                                           |
| []    | The project appears to propose a discharge of waste to surface water. Therefore an NPDES permit for the project may be necessary. Describe potential impacts to surface water quality and beneficial uses of water. Also describe measures to be taken to reduce pollutant loading to surface waters to meet numerical and narrative water quality objectives contained in the Water Quality Control Plan for the Lahontan Region (www.swrcb.ca.gov/rwqcb6).                                                                                                             |
| [ X ] | The proposed project may result in discharges of waste that may need to be regulated by the Regional Board. Please review the general permits and the Water Quality Control Plan for                                                                                                                                                                                                                                                                                                                                                                                     |

the Lahontan Region (Basin Plan) accessible on the Regional Board's homepage

|     | (www.swrcb.ca.gov/rwqcb6).  (provide more specific information here on the type of waste or form of regulation)                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| []  | Please require written confirmation from the project proponent that they obtain Regional Board concurrence before approving this project.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [X] | The project may require a Federal Clean Water Act Section 401 Water Quality Certification from the Regional Board. Application forms can be found at our web site (www.swrcb.ca.gov/rwqcb6)                                                                                                                                                                                                                                                                                                                                                                            |
| [X] | Please include specific information on impacts to flood plains or wetlands (or in the Lake Tahoe Basin, Stream Environment Zones). The Environmental Document needs to quantify these impacts. Discuss purpose of project, need for stream channel or wetland disturbance, and alternatives (avoidance, minimize disturbances and mitigation). Mitigation must be identified in environmental document including timing of construction. Mitigation must replace functions and values of wetlands lost (at a minimum, 1.5 times the area disturbed should be restored) |
| []  | Regional Board staff has determined that this project will not have a significant effect on water quality as proposed.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| []  | Regional Board staff will make additional comments after a more detailed review is complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| []  | Project may result in spills that will adversely impact ground and surface waters. Include spill contingency measures in the environmental document.                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### [X] Other:

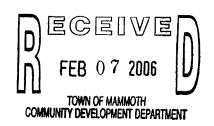
- We encourage the developer to implement "Low Impact Development" (LID) principles in the design of the project.
- Please include detailed information on the dewatering of groundwater at the site, and the use or discharge of extracted water. If extracted water will be discharged to surface water or groundwater, the project should be evaluated for impacts to water quality at the discharge location.

Please note that obtaining a permit and conducting monitoring does not constitute adequate mitigation. Development and implementation of acceptable mitigation is required.

Thank you for your attention to these comments. If you have any questions, please contact Mary Dellavalle, Environmental Scientist, at (760) 241-3523.



Sincerely


Cindi Mitton Print Name

Senior Engineer Title (760) 241-7413 Phone No.

E-Mail cmitton@waterboards.ca.gov

\\Cactus\vol2\Shared\Units\Mojave\Mary\DRAFTS\Eagle Lodge Base Area Development Project.doc





Mammoth Community Water District P.O. Box 597, Mammoth Lakes, CA 93546 (760) 934-2596; fax (760) 934-4080

February 3, 2006

Sonja Porter Senior Planner Town of Mammoth Lakes P.O. Box 1609 Mammoth Lakes, CA 93546

Re: Notice of Intent/Notice of Preparation of a Joint Environmental Assessment/Draft Environmental Impact Report for the Eagle Lodge Base Area Development Project

Dear Ms. Porter,

The District has reviewed the Initial Study for the Eagle Lodge Base Area Development Project. We appreciate the opportunity to comment on the scope of the Draft EA/EIR.

After reviewing the project description in the initial study, it appears that the project is proposing an increase of 84 dwelling units from the original Juniper Ridge Master Plan. In order to compare the changes from the original master plan, the District would like to request a description of the number and types of units (condominium, hotel, etc.) in the original master plan compared to the proposed amendments. The District would also like to confirm that the total square feet for commercial uses in the master plan are remaining consistent with the original master plan.

At the request of PCR Services Corp., who will be preparing the Draft EA/EIS, the District will be developing a water assessment for the project. This assessment will be completed before the end of February. Although there is generally enough information in the initial study to prepare a water assessment, this assessment, as well as wastewater flow analysis, would benefit from additional detail regarding proposed water-oriented facilities that may be contained in amenities such as the day spa, locker club, and on-site hotel laundry facilities. In

addition, a comparison of current facilities (commercial and restaurant square footage, laundry, restroom facilities, etc.) at the existing Little Eagle Lodge versus the proposed Eagle Lodge would be useful. Any level of detail available on types of commercial uses beyond that which is shown in Table 1 on page A-8 of the initial study would further the reliability of the District's water and wastewater needs analyses.

Projected wastewater flows from the project have not yet been estimated, but the District anticipates the need for improvements in the wastewater collection system due to increased wastewater flows resulting from this project. The main collection line at Old Mammoth Road and Meridian Boulevard is already at capacity and the additional wastewater flows that will result from the project will require a new main line to be constructed from the intersection of Old Mammoth Road down Meridian Boulevard to the wastewater treatment plant at the corner of Meridian Boulevard and SR 203.

District production well 16 is located within the entryway of the proposed project in an underground vault. The District has a 50x55 foot easement for the well 16 site that District personnel will be accessing on a monthly basis, at minimum, for regular water quality testing. In addition, the well pump and about 550 feet of discharge piping may need to be pulled from the vault periodically for pump maintenance and repairs. This will involve the utilization of a well drilling rig and storage of discharge piping in 21 foot sections, which may require a work area of at least 40 square feet. In addition, an 8-inch raw water line and a 12-inch distribution line are located underneath several of the proposed Eagle Lodge facilities and will need to be realigned.

The District encourages a thorough analysis of water quality in the Draft EA/EIR, but doubts that impacts to well 16 will occur. Since this well is constructed with an annular cement seal to 60 feet, the District does not anticipate impacts from shallow groundwater disturbance. However, if the project proposes an on-site geothermal heating well, the District's production well could be effected. A study would be necessary to evaluate for potential pressure changes from pumping in the deep geothermal zone that could draw water from the cold water aquifer.

The maximum proposed building height for associated with the proposed Eagle Lodge development is 77 feet. Water pressure necessary to supply such heights may require a booster pump. The District can assist in the analysis of water pressure needs for the proposed project.

Finally, the District would also like to encourage full compliance with best management practices to control runoff and erosion during construction of the project. Such practices are essential to ensuring high water quality in the Mammoth Basin watershed.

Thank you again for the opportunity to comment on this document. The District is willing to provide any information necessary to assist in the completion of a comprehensive Draft EA/EIR. Please feel free to contact the District if you have any questions.

Sincerely,

Gary Sisson, General Manager

Ericka Hegeman, Environmental Specialist



## POLICE DEPARTMENT

568 Old Mammoth Road • P. O. Box 2799 Mammoth Lakes, California 93546 760-934-2011 • fax: 760-934-2490

COMMUNITY DEVELOPMENT DEPARTMENT

January 24, 2006

Town of Mammoth Lakes Community Development Department 437 Old Mammoth Road, Suite R
P.O. Box 1609
Mammoth Lakes, CA 93546

To Whom It May Concern:

In reviewing the initial study prepared by PCR Services Corporation surrounding the proposed development of the Eagle Lodge Base Development Project dated January 2006, there are some concerns that should be addressed surrounding the project. These concerns regard overall police response to the project and the anticipated impact such a project will have on police service levels, for this project in particular, and the community as a whole.

With the opening of the Village, it has become clear that projects of this size have an impact on the police department and place demands on our operations. Not only do the commercial businesses, typically bars/restaurants, impact our officers, but facilities associated with Mammoth Mountain Ski Area also place a higher demand on our officers as they respond to calls for service.

A primary concern from the Police Department perspective is officers responding the Eagle Lodge Base Facility for police related calls during the winter months. Currently, officers spend considerable time responding to the Mammoth Mountain Main Lodge to handle ticket fraud cite and release reports. Typically, officers respond three to four times a week, however can be requested to respond several times a day depending on the number of persons that are detained by MMSA security personnel for ticket fraud. Occasionally, we are requested to respond to the Main Lodge area for other investigations, however ticket fraud is our primary call for service. When officers respond to the Main Lodge it typically takes close to an hour by the time the officer receives the call, responds to the ski area, handles the call and is back in the center of town available for service. This response time can be dramatically increased during stormy conditions or during peak holidays. During this time the remainder of the town is usually staffed by one other patrol

officer who may be required to respond to emergency calls for service with no back-up immediately available.

While the Police Department also responds the Canyon Lodge for similar calls, the proximity to Town creates fewer concerns.

Therefore, the Police Department would like this development to include a storefront type office space for police personnel in this development plan. This would allow officers to respond to calls for service and have an office to process reports and effectively deal with the public and MMSA security personnel. With the proposed gondola development that will lead to Eagle Lodge Base Facility, security department detainees could be transported via the gondola to this facility for processing by the police department, thus leaving our patrol staff closer to the center of town for emergency calls for service. Additionally, guests could access the storefront space to file other criminal reports or to have police related concerns addressed. This space could be a shared space with MMSA security personnel, as necessary.

Finally, two 'police vehicles only' parking spaces should be designated adjacent to the lodge, for convenience and emergency access for MLPD officers.

Randy Schienle
Police Lieutenant

(760) 934-2011 ext. 16

#### Gregory R. Applegate, MD

632 Hanley Ave
Los Angeles, Ca
90049
818-908-4937-direct
818-261-1569-cell
818-997-2895 -fax
gapplegate@insighthealth.com
local address: 507 Monterey Pine Drive



January 26, 2006

Sonya Porter Senior Planner

Town of Mammoth Lakes, PO box 1609 Mammoth Lakes, California 935 4 6

Dear Ms. Porter

I am writing in response to your notice of intent/notice of preparation regarding the proposed Eagle Lodge Base Area Development. Almost two years ago, my wife and I purchased a single-family home at 507 Monterey Pine Drive. We love the family neighborhood atmosphere in the quiet, beautiful mountain setting. The clean-air and beautiful views of the mountains drew us to this neighborhood. We felt confident that these attributes would be preserved based on the town's height limitations, setbacks and density limitations. We are also in possession of an agreement made between Mammoth Mountain Ski Area and the homeowners on our street assigned and executed on November 15,1994 by Rusty Gregory of Mammoth Mountain Ski Area, recorded with the Mono County recorder volume 0700 Page 401. This agreement sets a limit on the proposed parking structure "not to exceed eight feet above finished grade". The current proposed base lodge facility including hotel/lodging and retail space rises 75 feet above This will completely eliminate our mountain view and our neighbors view. Instead of a pristine mountain range will see the back of a tall aesthetically unappealing looming structure. The quiet surroundings and air quality will be severely compromised. The added congestion and pollution will certainly spoil the quiet neighborhood. A turnout for eighteen wheel diesel delivery trucks is planned for the back of the building necessitating moving the town bike path closer to the homes on our street. The diesel fumes and noise generated in such close proximity to residential homes is unacceptable. We currently get a lot of trash blowing to into to our backyard from the current parking lot and small base lodge/igloo. Imagine the volume of trash and water runoff flowing into the wetlands adjacent to our home. The woodpeckers, coyotes and deer that frequent the Greenbelt will be adversely affected by this proposal.

In summary, we are vehemently opposed to the Eagle Lodge Base Area Development proposal. The proposed 75 foot structure is will aesthetically ruin the neighborhood. The additional traffic will further stretch the access and egress roads, putting additional traffic path through the Mammoth Vistas I neighborhood along

Kelly Road. The proposed diagonal parking will further narrow and limit access. The diesel eighteen-wheel delivery vehicles will negatively affect the air quality and add additional noise, and necessitate moving the bike path. Can the utilities and service systems handle the additional wastewater, storm water and snow storage? The **wetlands** adjacent to our home and behind the water district building may be compromised. The local wildlife will be displaced from the Greenbelt area. While we are unable to make the scoping meeting, I'd be happy to discuss our concerns further with members of the planning committee or Forest Service.

Respectfully Submitted,

Gregory R. Applegate MD

Stephen C. Jones
Sharon August Jones
520 West Main Street

Tustin, CA 92780

January 23, 2006



Sonja Porter, Senior Planner Town of Mammoth Lakes P.O. Box 1609 Mammoth Lakes, CA 93566

RE: Initial Study Eagle Lodge Base Area Development

Dear Ms. Porter:

It was disappointing to see the results of your January EIR Study. Here is my perspective on the plans for the Eagle Base area.

We are original owners of Juniper Springs Lodge. Development of a ski lodge at that site was promised when we purchased. It has not happened. I have followed the issues and understand the obstacles, but the bottom line is that the lodge has not happened. That is despite ticket sales at Eagle Lodge which are among the highest in the Mammoth Mountain Ski Area.

In the meantime, the City has approved countless other residences and developments. I think that despite the obstacles, the City and Forest Service has an obligation to finish this project.

I would suggest a moratorium on all development until the City finishes Eagle Lodge, the very first project area in the wave of development since Intrawest's arrival in Mammoth. It's only fair.

Yours truly,

Sharon August Jones

CC: Mike Schlafmann, U.S. Forest Service, Mammoth Ranger District Office



#### Eagle Lodge Base Area Development Project Environmental Impact Report – Scoping Meeting

3256 Meridian Boulevard January 31, 2006

#### Written Comment Form

The purpose of the public scoping meeting is to identify the range of actions, alternatives, and significant effects to be analyzed in the Draft EIR for the Eagle Lodge Base Area Development Project. The approximately 5.85-acre project site is located just west of the intersection of Meridian Boulevard and Majestic Pines Road. A portion of the site, approximately 2.39 acres, is located within the Inyo National Forest. The area is locally referred to as the Juniper Springs area, or more recently the Eagle Base Area. The project would include visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa and locker club. Development is anticipated to be in one phase over a two-year timeframe beginning in Spring 2007 and ending in Spring 2009.

Comments can be provided verbally at the scoping meeting or in written form. In addition, written comments can be forwarded to the Town. Written comment must be received by February 10, 2006.

In the space below (and on additional pages, if necessary), please provide any written comments you may have concerning the scope of the Draft EIR/EA for the proposed project. Your comments will then be considered during preparation of the Draft EIR/EA.

| Alue is a great need for a lodge in this area.      |
|-----------------------------------------------------|
|                                                     |
| I think you have addressed must of the needs of the |
| led seedents but must add space for seesmil         |
| lakes into the finalized Plan.                      |
| The 77' height of the bidding is a concern, human   |
| If built in a congrtable articles with the area     |
| well beene part of the viste and welle acceptable   |
| Name: JOHN J KELLY                                  |
| Address: 170 Holisay Vista SR. Po Box 100 PMB 393   |
| MAMMOTH LAKES, CA 93546                             |

Please leave this form in the box provided or deliver or mail it to the Town of Mammoth Lakes, Attn: Sonja Porter, P.O. Box 1609, Mammoth Lakes, CA 93566. This form can simply be folded and placed in a mailbox. Please remember to add postage.



#### Eagle Lodge Base Area Development Project Environmental Impact Report – Scoping Meeting

3256 Meridian Boulevard January 31, 2006

#### Written Comment Form

The purpose of the public scoping meeting is to identify the range of actions, alternatives, and significant effects to be analyzed in the Draft EIR for the Eagle Lodge Base Area Development Project. The approximately 5.85-acre project site is located just west of the intersection of Meridian Boulevard and Majestic Pines Road. A portion of the site, approximately 2.39 acres, is located within the Inyo National Forest. The area is locally referred to as the Juniper Springs area, or more recently the Eagle Base Area. The project would include visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa and locker club. Development is anticipated to be in one phase over a two-year timeframe beginning in Spring 2007 and ending in Spring 2009.

Comments can be provided verbally at the scoping meeting or in written form. In addition, written comments can be forwarded to the Town. Written comment must be received by February 10, 2006.

In the space below (and on additional pages, if necessary), please provide any written comments you may have concerning the scope of the Draft EIR/EA for the proposed project. Your comments will then be considered during preparation of the Draft EIR/EA.

\*\*ATTIMETALL\*\*

Please leave this form in the box provided or deliver or mail it to the Town of Mammoth Lakes, Attn: Sonja Porter, P.O. Box 1609, Mammoth Lakes, CA 93566. This form can simply be folded and placed in a mailbox. Please remember to add postage.

Name: Address:

#### Eagle Lodge Base Area Development Project Environmental Impact Report-Scoping Meeting Written Comments prepared by: Dennis W. and Deanna Lamb

On January 31<sup>st</sup> we attended the "Scoping Meeting" held at Little Eagle. We have been property owners at Aspen Creek Condos for ten years. We spend significant time both winter and summer in Mammoth Lakes and are very familiar with the location under discussion. We are very frequent skiers, bicyclists, and hikers. In addition to attending the meeting we have downloaded and reviewed the 52 page information package from the Mammoth Mountain web site. We also have examined in detail the handout titled "Initial Study for Eagle Lodge Base Area Development Project". My personal background includes professional expertise in the area of air and ground quality issues and project development and mitigation issues. We would like to provide the following comments:

- · We enthusiastically support the Project as presented.
- We find that the Checklist and <u>classification</u> of environmental issues has been appropriately completed.
- Even though we have limited expertise in some areas and professional expertise
  in others it appears that every issue can be resolved in analysis or mitigation
  without any significant change in project scope.
- In our opinion many of the issues would be dramatically <u>improved</u> with the project including Issues 1.(c), VIII.(c) and (d), and XV.(a)(d) and (f).
- Based on our personal experience our vehicle trips will be reduced year round
  with the potential provision for groceries, ski school, ice rink, restaurants, and
  renewed bicycle access to the mountain bike park.

Out of empathy for the visual impacts expressed by one of the homeowners to the North in attendance at the Scoping meeting, we examined the impact from his viewpoint. We were surprised to find that his location has no view. The home has no second story windows facing south and the first floor windows are blocked behind the berm (without snow) on the north side of the loop trail. We also examined the view from the east along Meridian and suggest that the project would be a big improvement over the existing view of Utility building, parking lot, and tent.

Thank you for the consideration of our comments.

Dennis and Deanna Lamb 865 Majestic Pines Rd #120 Mammoth Lakes, CA 93546

#### Sonja Porter

From: Bill Moody [batley@nethere.com]

Sent: Monday, January 23, 2006 7:14 AM

To: Sonja Porter

Subject: Eagle Lodge Base

I am very supportive of Eagle Lodge. It is long over due for this to be built. Bill Moody I own a condo at 104 Mammoth Greens and my mailing address is 418 La Crescentia Dr., San Diego, Ca. 92106

From: Watson, Noel [mailto:Noel.Watson@Jacobs.com]

Sent: Tuesday, January 31, 2006 5:30 PM

To: Sonja Porter

Subject: permanent base lodge facility at 3256 Meridian Blvd{AAAPN #'s32-040-12 & 32-040-08}

I am in receipt of your notice of intent. We live at 546 Monterey Pines, about 500 feet from the proposed facility. We are generally in support of a permanent facility at chair 15, but would offer the following comments.

- The environmental impact report needs to look carefully at the traffic on Majestic pines road. There is a lot of foot traffic and an increase in traffic will probably get someone killed.
- The report needs to look carefully at the parking situation. 2.
- Our biggest concern is the height of the facility. The 77 foot high facility will dwarf every other building and ruin the neighborhood. It will probably destroy local property values. We believe you need to stay with current building height limitations. Anything else will be disastrous. We would prefer no new building if it is 77 feet high.

Thanks for listening.

**Noel Watson** 

e-mail Noel.watson@Jacobs.com



#### Eagle Lodge Base Area Development Project Environmental Impact Report – Scoping Meeting

3256 Meridian Boulevard January 31, 2006

#### Written Comment Form

The purpose of the public scoping meeting is to identify the range of actions, alternatives, and significant effects to be analyzed in the Draft EIR for the Eagle Lodge Base Area Development Project. The approximately 5.85-acre project site is located just west of the intersection of Meridian Boulevard and Majestic Pines Road. A portion of the site, approximately 2.39 acres, is located within the Inyo National Forest. The area is locally referred to as the Juniper Springs area, or more recently the Eagle Base Area. The project would include visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa and locker club. Development is anticipated to be in one phase over a two-year timeframe beginning in Spring 2007 and ending in Spring 2009.

Comments can be provided verbally at the scoping meeting or in written form. In addition, written comments can be forwarded to the Town. Written comment must be received by February 10, 2006.

In the space below (and on additional pages, if necessary), please provide any written comments you may have concerning the scope of the Draft EIR/EA for the proposed project. Your comments will then be considered during preparation of the Draft EIR/EA.

| Dage 1            | B-12(a)                                |
|-------------------|----------------------------------------|
| 0                 | how do you know there is               |
| 1200              | impact? What showed up                 |
| belo              | so the construction of current         |
| parki             | ne lot & Sittle Cagle:                 |
|                   |                                        |
| This              | area has many archeological            |
| resou             | uses and some propell the under        |
| the               | parking lot, Part(b) is well           |
| juri              | then but you connot say                |
| Ther              | ewill be no impact!                    |
|                   |                                        |
| 21                | takes + 40 buries to de                |
| a                 | Cemoloni,                              |
| Nama              | Inflark Basque                         |
| Name:<br>Address: | Dr. Nancy Peterson Walter              |
| Auuress.          | PO Box 2383 — 1                        |
|                   | Mammoth Lakes, CA 93546 — archeologist |
|                   |                                        |

Please leave this form in the box provided or deliver or mail it to the Town of Mammoth Lakes, Attn: Sonja Porter, P.O. Box 1609, Mammoth Lakes, CA 93566. This form can simply be folded and placed in a mailbox. Please remember to add postage.

#### **Sonja Porter**

From: Sent:

Robert Woods [RWOODS@co.kern.ca.us] Wednesday, February 01, 2006 9:57 AM

To:

Sonia Porter

Subject:

Little Eagle & Golf Course

Good morning,

I am sorry I was not able to attend the recent meeting, as I wish to share some thoughts with you. I have owned a unit at The Summit for quite some time (currently Pres., Summit Owners Assoc.) hence I am impacted by the current project(s).

First, I am delighted there will be no diagonal parking. As a County employee I have first-hand knowledge of the dangers presented, as well as an appreciation of the traffic and pedestrian conflict potentials along Meridian. I understand however there is a proposal to expand the Little Eagle base lodge by adding another 84 dwelling units. the elimination of diagonal parking will decrease the available parking and, from a look at the plans, it appears the parking at the project was pretty tight even without more units, I think traffic nightmares are foreseeable, and need to be mitigated. The project simply needs to find a way to create more parking, not only for tenants but for day (and evening) guests who are likely to visit the new facilities, restaurants and so on.

I have also been told there is a proposal for a high rise project at the Sierra Star golf course, allegedly in the range of 200 feet tall. Most projects in Mammoth, historically, have been held below tree height and ridge lines, to preserve the natural

beauty and appeal.

I am old enough to have seen other venues (especially Park City) in large measure destroyed by over-building, leading to visual obstruction of the scenery, appalling traffic and overcrowded recreational areas - Too many skiers, mountain bikes and even hikers. This is especially true in Park City (& Deer Valley etc) which is now reminiscent of driving into, and skiing close by the likes of Chicago.

Mammoth is one of the few big hills that still has an open feel, and reasonable levels of people on the hill and environs (winter or summer) to allow for a relaxing and conflict-free vacation experience. That is an aspect I feel will become more precious as other areas succumb to the monetary lure of over-development: This becomes from a business perspective (let alone an individual enjoyment perspective) a matter of weighing short-term gain against long-term value. I vote for the latter. We should not allow Mammoth to become "just another ski/mountain bike area."

--Bob Woods (Rwoods@co.kern.ca.us)



## COMMUNITY DEVELOPMENT P.O. Box 1609, Mammoth Lakes, CA 93546 (760) 934-8989 ext. 286, fax (760) 934-8608

## <u>REVISED</u> NOTICE OF INTENT /NOTICE OF PREPARATION (NOI/NOP) JOINT ENVIRONMENTAL ASSESSMENT/DRAFT ENVIRONMENTAL IMPACT REPORT

Date: March 2, 2006

To: Office of Planning and Research (State Clearinghouse) and Affected Resource Agencies

From: Town of Mammoth Lakes and U.S. Forest Service

#### The proposed project has been revised since the NOI/NOP dated January 6, 2006.

**PROJECT LOCATION:** The Town of Mammoth Lakes is a destination resort community located in southwestern Mono County on the eastern side of the Sierra Nevada mountain range. The Town lies approximately three miles west of U.S. Highway 395, along State Route 203. The approximately 5.85-acre project site is located in the southwestern side of the developed part of Town, west of the intersection of Meridian Boulevard and Majestic Pines Road. A portion of the site, approximately 2.39 acres, is located within the Inyo National Forest. The area is locally referred to as the Juniper Springs area, or more recently the Eagle Base Area.

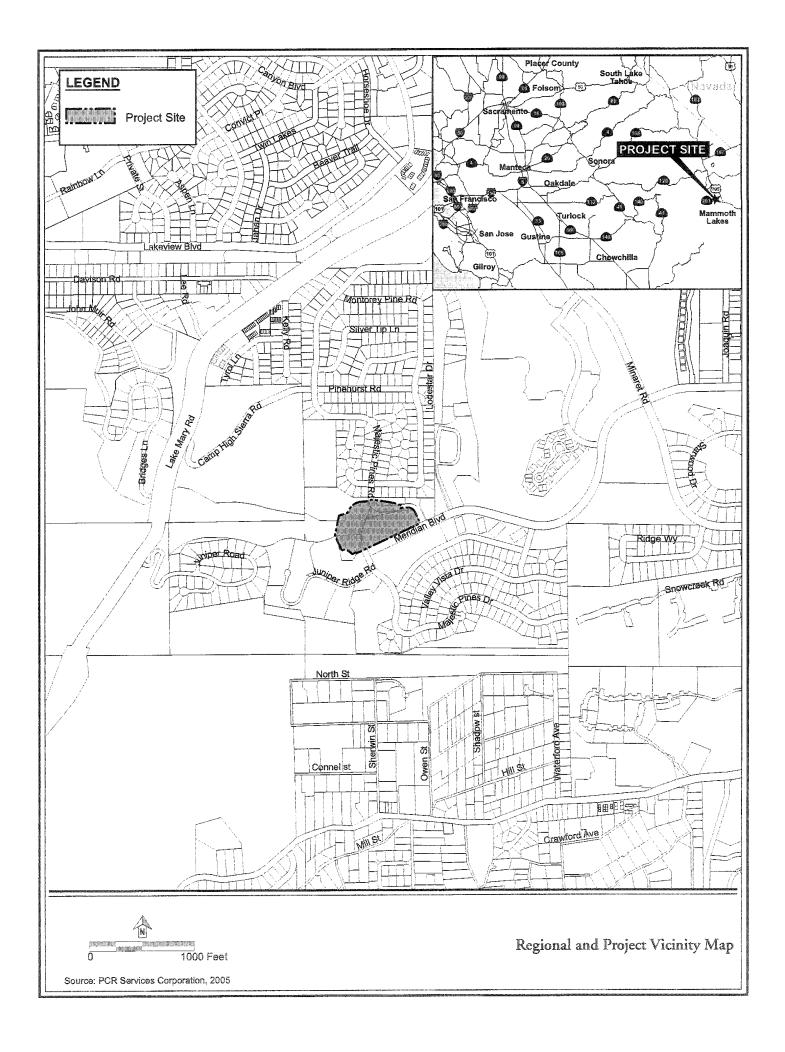
**DESCRIPTION OF THE PROJECT:** Mammoth Mountain Ski Area (MMSA) proposes to construct a permanent base lodge facility at 3256 Meridian Blvd (APN #'s 32-040-12 & 32-040-08) that would include visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa and locker club. Development is anticipated to be in one phase over a two-year timeframe beginning in Spring 2007 and ending in Spring 2009.

The project site is subject to the existing Juniper Ridge Master Plan "The Master Plan," the Mammoth Mountain Ski Area Master Development Plan "The MMSA Development Plan," and the Inyo National Forest Land and Resource Management Plan "The Inyo Forest Plan." The project would require amendments to both Plans in the areas of parking, height, density, setbacks, visual quality and land use. In addition, the project would require a General Plan amendment to rezone Lot 87 from Residential Single Family to Resort, with the majority of the lot being utilized for circulation and open space. Development of the project would be subject to further discretionary reviews that would include Use Permit, Tentative Map and Design Review Approvals. The project will be subject to environmental review and analysis under Forest Service Agency guidance and the National Environmental Policy Act. The project may require a non-significant amendment of the Inyo Forest Plan.

The revisions to the site plan are with regard to the orientation of the facility and the placement of uses on the site. The main entrance to the facility would be from Majestic Pines Road rather than Meridian Boulevard. The revisions do not alter the site boundary, the size of the structures or the uses within the facility.

The location and revised site plan are attached. A copy of the Initial Study (□ is ☒ is not) attached. The Town of Mammoth Lakes has determined that an Environmental Impact Report will be required to analyze the environmental effects of the proposed lodge. Environmental factors that would be potentially affected by the project include Aesthetics, Air Quality, Biological Resources, Cultural Resources, Hydrology/Water Quality, Land Use and Planning, Noise, Population and Housing, Transportation and Circulation, Utilities and Service Systems (Water, Wastewater, and Stormwater), and Mandatory Findings of Significance. The Initial Study that was previously prepared for the project has not been revised as the revision would not result in a change in the scope of the environmental document. The previously prepared Initial available for review on the revised site plan are Town's (www.townofmammothlakes.org), at Town Offices (Suite R, 437 Old Mammoth Rd, Mammoth Lakes, CA), and at the Mono County Library (960 Forest Trail, Mammoth Lakes, CA).

The Forest Service has determined that an Environmental Assessment will be required to analyze the effects of the proposed lodge and ancillary facilities on National Forest System Lands. Environmental factors that would be potentially affected by the project include those described above.


#### FOR FURTHER INFORMATION CONTACT:

Sonja Porter, Senior Planner with the Town of Mammoth Lakes at (760) 934-8989 **OR** Mike Schlafmann with the U.S. Forest Service at (760) 924-5503

HOW TO COMMENT ON THE NOTICE OF INTENT/NOTICE OF PREPARATION: Due to the time limits mandated by State law, your response must be sent at the earliest possible date but not later than 30 days after receipt of this notice. Therefore, written comments must be submitted by 5:00 p.m. on Monday, April 3, 2006.

Please send your comments to: Sonja Porter, Senior Planner, Town of Mammoth Lakes, P.O. Box 1609, Mammoth Lakes, CA 93566 or to Mike Schlafmann, U.S. Forest Service, Mammoth Ranger District Office, P.O. Box 148, Mammoth Lakes, CA 93546. Comments can also be submitted by FAX to the Town of Mammoth Lakes at (760) 934-8608 or the U.S. Forest Service at (760) 924-5537. In addition, comments can be submitted electronically to: <a href="mailto:sporter@ci.mammoth-lakes.ca.us">sporter@ci.mammoth-lakes.ca.us</a>. We will need the name of a contact person in your agency.

| Project | Title:        | Eagle Lodge Base Area | a Development                 |
|---------|---------------|-----------------------|-------------------------------|
| Project | Applicant:    | Mammoth Mountain S    | ki Area                       |
|         |               |                       |                               |
|         |               |                       |                               |
| Date:   | March 2, 2006 |                       | Signature                     |
|         |               |                       | Title Senior Planner          |
|         |               |                       | Telephone (760) 934-8989 x286 |
|         |               |                       |                               |





ENVIRONMENTAL OVERLAY





Wammoth Lakes, CA

Site Plan

EAGLE LODGE BASE AREA

SPA + MOTEL FOOL

APPROX. PROJECT BOUNDARY

LOCKER CLUB

APPROX. PROJECT BOUNDARY

PEDESTRIAN LINKAGE TO NEIGHBORHOOD

2007

February, 2006

STATE OF CALIFORNIA

Amold Schwarzengger, Governor

#### **NATIVE AMERICAN HERITAGE COMMISSION**

915 CAPITOL MALL, ROOM 364 SACRAMENTO, CA 95814 (916) 653-4082 (916) 657-5390 - Fax

March 16, 2006

Ms. Sonja Porter City of Mammoth Lakes P.O. Box 1609 Mammoth Lakes, Ca 93546

Re: Eagle Lodge Base Area Development Project

SCH# 2006012041

Dear Ms. Porter.

Thank you for the opportunity to comment on the above-referenced document. In order to adequately identify and mitigate project-related impacts on cultural resources in accordance with the CEQA Guidelines (15063 (d) (3), the Commission recommends that you provide evidence that all of the following actions be taken:

- Contact the appropriate California Historic Resources Information Center for a record search. The record search will determine:
  - If a part or all of the area of project effect (APE) has been previously surveyed for cultural resources.
  - If the probability is low, moderate, or high that cultural resources are located in the APE.
  - If a survey is required to determine whether previously unrecorded cultural resources are present.
- If an archaeological inventory survey is required, the final stage is the preparation of a professional report detailing the findings and recommendations of the records search and field survey.
  - The final report containing site forms, site significance, and mitigation measurers should be submitted immediately to the planning department. All information regarding site locations, Native American human remains, and associated funerary objects should be in a separate confidential addendum, and not be made available for pubic disclosure.
  - The final written report should be submitted within 3 months after work has been completed to the appropriate regional archaeological Information Center.
- Contact the Native American Heritage Commission (NAHC) for a Sacred Lands File search of the project area and information on tribal contacts in the project vicinity who may have additional cultural resource information.
  - Please provide U.S.G.S. location information for the project site, including Quadrangle, Township, Section, and Flange.
  - We recommend that you contact all tribes listed on the contact list to avoid the unanticipated discovery of sensitive Native American resources after the project has begun.
- If the Initial Study identifies the presence, or the likely presence, of Native American Human remains at a project site, Section 15064.5 (d) of the CEQA Guidelines requires the lead agency to work with the Native Americans Identified by the Native American Heritage Commission. The Guidelines provide for the developer and appropriate Native Americans to develop a treatment agreement in advance of such discoveries in order to assure the appropriate and dignified treatment of Native American human remains.
- Lack of surface evidence of archeological resources does not preclude their subsurface existence.
  - Lead agencies should include in their mitigation plan provisions for the Identification and evaluation of accidentally discovered archeological resources, per California Environmental Quality Act (CEQA) §15064.5 (f). In areas of identified archaeological sensitivity, a certified archaeologist and a culturally affiliated Native American, with knowledge in cultural resources, should monitor all ground-disturbing activities.
  - Lead agencies should include in their mitigation plan provisions for the disposition of recovered artifacts, in consultation with culturally affiliated Native Americans.
- Lead agencies should include provisions for discovery of Native American human remains or unmarked cemeteries in their mitigation plans. Health and Safety Code §7050.5, Public Resources Code §5097.98 and Sec. §15064.5 (e) of the CEQA Guidelines mandate procedures to be followed in the event of an accidental discovery of any human remains in a location other than a dedicated cemetery.
- Lead agencies should consider avoidance, as defined in Section 15370 of the CEOA Guidelines, when significant cultural resources are discovered during the course of project planning.

Please feel free to contact me at (916) 653-6251 If you have any questions.

Sincerely,

Carol Gaubatz

THE CONTRACTOR OF THE PARTY OF

Mammoth Community Water District P.O. Box 597 Mammoth Lakes, CA 93546 (760) 934-2596; fax (760) 934-2143

April 3, 2006

Sonja Porter Senior Planner Town of Mammoth Lakes P.O. Box 1609 Mammoth Lakes, CA 93546

Re: Revised Notice of Intent/Notice of Preparation of a Joint Environmental Assessment/Draft Environmental Impact Report for the Eagle Lodge Base Area Development Project

Dear Ms. Porter.

The District has reviewed the revised Notice of Intent/Notice of Preparation for the Eagle Lodge Base Area Development Project. We appreciate the opportunity to provide comments on the scope of the Draft EA/EIR.

The District supports the revised site plan which relocates the main lodge entrance away from the District's production well #16, located on Meridian Boulevard. This change will simplify access needs that the District may have in the future when performing maintenance and repairs to the well facility.

As a follow up from the District's previous letter on the project dated March 10, 2006, the District has collected sewer flow data from pipelines located downstream from the proposed project. Preliminary flow data collected in March 2006 showed that sewer collection pipelines in the vicinity of the project are at capacity. It is unclear at this point whether this preliminary data is the result of blockage in the collection system, infiltration, or simply the result of actual flows being much higher than the sewer flow model predicted. This data will need to be confirmed through more investigation to determine the cause. The District will stay in contact with the

Town, MMSA, and PCR regarding these investigations and results can be expected within a month.

Thank you again for the opportunity to comment on this document. The District appreciates the high level of communication that has been associated with this project. Please feel free to contact the District if you have any questions.

Sincerely,

Gary Sisson, General Manager

Ericka Hegeman, Environmental Specialist

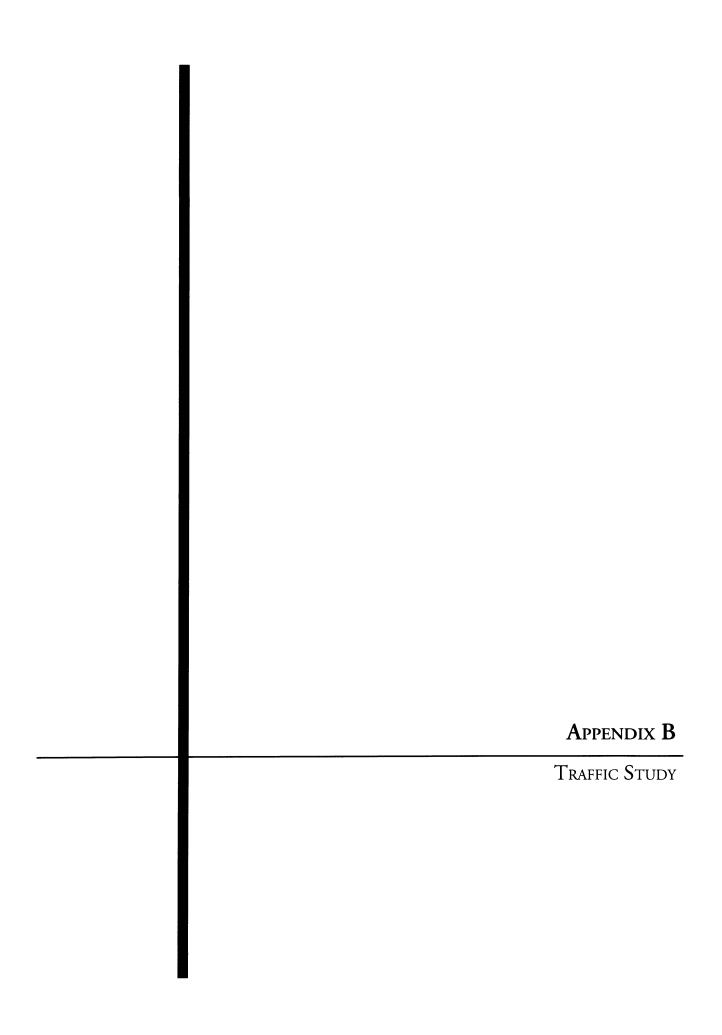
832 Hanley Ave Los Angeles, Ca 90049 818-908-4937-direct 818-261-1569-cell 818-997-2895-fax gapplegate@insighthealth.com local address: 507 Monterey Pine Drive

April 3, 2006

Sonya Porter Senior Planner

Town of Mammoth Lakes, PO box 1609 Mammoth Lakes. California 935 4 6

Dear Ms. Porter


I am writing in response to your notice of intent/notice of preparation regarding the proposed Eagle Lodge Base Area Development. Almost two years ago, my wife and I purchased a single-family home at 507 Monterey Pine Drive. We love the family neighborhood atmosphere in the quiet, beautiful mountain setting. The clean-air and beautiful views of the mountains drew us to this neighborhood. We felt confident that these attributes would be preserved based on the town's height limitations, setbacks and density limitations. We are also in possession of an agreement made between Mammoth Mountain Ski Area and the homeowners on our street assigned and executed on November 15,1994 by Rusty Gregory of Mammoth Mountain Ski Area, recorded with the Mono County recorder volume 0700 Page 401. This agreement sets a limit on the proposed parking structure "not to exceed eight feet above finished grade". The current proposed base lodge facility including hotel/lodging and retail space rises 75 feet above This will completely eliminate our mountain view and our neighbors view. Instead of a pristine mountain range will see the back of a tall aesthetically unappealing looming structure. The quiet surroundings and air quality will be severely compromised. The added congestion and pollution will certainly spoil the quiet neighborhood. turnout for eighteen wheel diesel delivery trucks is planned for the back of the building necessitating moving the town bike path closer to the homes on our street. The diesel fumes and noise generated in such close proximity to residential homes is unacceptable. We currently get a lot of trash blowing to into to our backyard from the current parking lot and small base lodge/igloo. Imagine the volume of trash and water runoff flowing into the wetlands adjacent to our home. The woodpeckers, coyotes and deer that frequent the Greenbelt will be adversely affected by this proposal.

In summary, we are vehemently opposed to the Eagle Lodge Base Area Development proposal. The proposed 75 foot structure is will aesthetically ruin the neighborhood. The additional traffic will further stretch the access and egress roads, putting additional traffic path through the Mammoth Vistas I neighborhood along

Kelly Road. The proposed diagonal parking will further narrow and limit access. The diesel eighteen-wheel delivery vehicles will negatively affect the air quality and add additional noise, and necessitate moving the bike path. Can the utilities and service systems handle the additional wastewater, storm water and snow storage? The **wetlands** adjacent to our home and behind the water district building may be compromised. The local wildlife will be displaced from the Greenbelt area. While we are unable to make the scoping meeting, I'd be happy to discuss our concerns further with members of the planning committee or Forest Service.

Respectfully Submitted,

Gregory R. Applegate MD



# MAMMOTH LAKES EAGLE LODGE TRAFFIC IMPACT ANALYSIS

#### Prepared for the

Town of Mammoth Lakes P.O. Box 1609 Mammoth Lakes, CA 93546 (760) 934-8989

Prepared by

LSC Transportation Consultants, Inc. 2690 Lake Forest Road, Suite 2C P.O. Box 5875 Tahoe City, CA 96145 (530) 583-4053

August 31, 2006

LSC # 057630

#### **EXECUTIVE SUMMARY**

#### **PURPOSE**

The Eagle Lodge project proposes to construct a permanent base lodge facility at 3256 Meridian Boulevard on the north side of Meridian Boulevard between its eastern and western intersections with Majestic Pines Drive. The project would include visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa, and locker club. Access to the commercial uses would be provided at two locations on Meridian Boulevard, while access to the lodging and service uses would be provided along Majestic Pines Drive (one entrance-only drive to the west and one exitonly drive to the east). The purpose of this report is to analyze potential traffic, parking, and transit impacts associated with the development.

#### **CONCLUSIONS**

The findings of the Traffic Impact Analysis are as follows:

- 1. Upon project build out during a typical winter Saturday, the project would generate a total of 914 PM peak-hour vehicle-trips (320 entering and 594 exiting). The project's net impact on the site's winter trip generation is 509 PM peak-hour trips (219 entering and 290 exiting).
- 2. The project is expected to generate 556 PM peak-hour vehicle-trips on a summer Saturday (259 entering, 297 exiting), which is roughly 39 percent less than the levels generated in the winter.
- 3. The project is expected to generate 1,438 PM peak-hour VMT and 8,035 daily VMT on a typical winter Saturday.
- 4. The Meridian Boulevard/Minaret Road intersection will operate at LOS E in 2024 with the project.
- 5. The Majestic Pine Drive East/Meridian Boulevard (east) intersection will operate with a worst approach LOS of LOS F with or without the project in 2024.
- 6. Without mitigation, the project will result in a parking shortfall of 311 parking spaces.

#### RECOMMENDATIONS

The following recommendations are proposed to mitigate traffic impacts:

 The Minaret Road/Meridian Boulevard intersection is forecast to operate at LOS E exceeding LOS thresholds with or without the project under 2024 plus project conditions. However, construction of a separate eastbound right-turn lane at this location would mitigate LOS to an acceptable LOS D.

- 2. The Majestic Pines Drive/Meridian Boulevard (east) intersection is forecast to operate at worst approach and total intersection LOS F with the project under 2024 plus project conditions. However, a single-lane roundabout with a 100-foot inscribed diameter would operate at worst approach LOS B and total intersection LOS A.
- 3. The following improvements should be provided in order to improve internal site circulation:
  - a. The distance between sawtooth bus bays should be increased to 15 feet in order to provide adequate maneuvering space for buses exiting the bays.
  - b. A sign with an arrow posted along the north side of Meridian Boulevard to direct skiers to the "Skier Drop-Off" zone is recommended. In addition, "Bus Only" signage should be posted at the entrance to the bus drop zone to discourage autos from entering the bus drop zone. "No Parking" signs should be posted along Meridian Boulevard adjacent to the auto drop zone, and "Do Not Enter" signs are needed at the west end of the auto and bus drop zones.
  - c. A "No Left Turn" sign is recommended to be placed at the hotel exit. In addition, it is recommended that a "Do Not Enter," "No Left Turn," and "No Right Turn" signs be posted at the appropriate hotel access approaches.
  - d. In order to decrease the potential for vehicular conflict in the ski school drop zone, the circulating area should be striped for one lane of traffic circulation and one-way operation.
  - e. It is recommended that the curbs at the west end of the auto drop zone be modified to move the intersection of the drop zone and the main parking garage access further north.
- 4. The project has an overall parking shortfall of 311 parking spaces. The following are potential mitigation measures to this parking shortfall.
  - a. Mitigation Option A: Transit service to the site could be expanded such that an additional 950 skiers per day would use transit to access the site on a typical winter Saturday. In addition, the project would be required to provide parking monitoring and enforcement.
  - b. Mitigation Option B: To mitigate potential parking impacts, the project could also provide off-site employee parking for all employees, increased transit service to provide transit for 750 additional skiers, and provide parking monitoring and enforcement.
  - c. Mitigation Option C: The project could request a zone code amendment from the Town to develop an in lieu of parking fee program. This would allow the project to pay a fee that would go towards the construction of off-site parking lots. The fee owed by the project would be calculated based upon the additional number of spaces that are required.
    - If the parking structures are not provided within a reasonable 1,000-foot walking distance, a parking shuttle to provide access between the project site and the parking lots would need to be provided.

## TABLE OF CONTENTS

| SECTION |                                                | PAGE |
|---------|------------------------------------------------|------|
| 1       | Introduction                                   |      |
|         | Scope of Study                                 |      |
| 2       | Existing Conditions                            |      |
|         | Existing Setting                               |      |
|         | Existing Traffic Volumes                       |      |
|         | 2009 No Project Traffic Volumes                |      |
|         | 2024 No Project Traffic Volumes                |      |
|         | Existing Transit Service                       |      |
|         | Existing Parking Conditions                    |      |
| 3       | Proposed Conditions                            | 12   |
| _       | Project Description                            |      |
|         | Project Access                                 |      |
|         | Trip Generation and Distribution               |      |
|         | Trip Distribution and Assignment               |      |
|         | Vehicle Miles of Travel                        |      |
| 4       | Level of Service Analysis                      | 20   |
| ·       | Level of Service Description                   |      |
|         | Level of Service Standards                     |      |
|         | Analysis Methodology                           |      |
|         | Level of Service and Roadway Capacity Analysis |      |
| 5       | Parking Analysis                               | 32   |
| -       | Parking Demand                                 |      |
| 6       | Transportation Impacts                         | 38   |
|         | Impacts on Study Intersections                 |      |
|         | Internal Site Circulation                      |      |
|         | Corner Sight Distance                          |      |
|         | Potential to Narrow Meridian Boulevard         | 42   |
|         | Left-Turn Lane Warrants                        |      |
|         | Parking Facilities                             |      |
|         | Transit Services                               |      |
|         | Pedestrian and Bicycle Facilities.             |      |
|         | Emergency Access                               |      |

Appendix A - Trip Generation, Parking Counts, LOS Interpretation

Appendix B – LOS Calculations

Appendix C – LOS Descriptions

Appendix D – Truck Circulation

Appendix E – Modify Curb Improvement

## LIST OF TABLES

| <b>TABLE</b> |                                                                         | PAGE |
|--------------|-------------------------------------------------------------------------|------|
| 1            | External Auto Trip Generation Winter                                    | 13   |
| 2            | External Auto Trip Generation Summer                                    |      |
| 3            | Trip Distribution                                                       |      |
| 4            | Project-Generated Vehicle Miles of Travel (VMT)                         |      |
| 5            | Level of Service Criteria for Unsignalized and Signalized Intersections |      |
| 6            | Roadway Capacity Summary                                                |      |
| 7            | 2005 Typical Winter Saturday Intersection LOS                           | 25   |
| 8            | 2005 Roadway Capacity Summary                                           |      |
| 9            | 2009 Typical Winter Saturday Intersection LOS                           |      |
| 10           | 2009 Roadway Capacity Summary                                           | 28   |
| 11           | 2024 Typical Winter Saturday Intersection LOS                           | 29   |
| 12           | 2024 Roadway Capacity Summary                                           | 31   |
| 13           | Base Parking Demand                                                     | 34   |
| 14           | Cumulative Parking Demand                                               |      |
| 15           | Left-Turn Lane Warrant Analysis                                         |      |

## LIST OF FIGURES

| FIGURE |                                                                             | PAGE |
|--------|-----------------------------------------------------------------------------|------|
| 1      | Existing Lane Configuration and Traffic Control                             | 3    |
| 2      | 2005 Typical Winter Saturday PM Peak-Hour Traffic Volumes                   |      |
| 3      | 2009 No Project Typical Winter Saturday PM Peak-Hour Traffic Volumes        |      |
| 4      | 2024 No Project Typical Winter Saturday PM Peak-Hour Traffic Volumes        |      |
| 5      | Projects Net Impact on Typical Winter Saturday PM Peak-Hour Traffic Volumes |      |
| 6      | 2009 Plus Project Typical Winter Saturday PM Peak-Hour Traffic Volumes      |      |
| 7      | 2024 Plus Project Typical Winter Saturday PM Peak-Hour Traffic Volumes      |      |

#### Section 1

#### INTRODUCTION

This engineering report documents the findings and conclusions of a Traffic Impact Analysis (TIA) for the Eagle Lodge project proposed to be located in Mammoth Lakes, California. The Eagle Lodge project proposes to construct a permanent base lodge facility at 3256 Meridian Boulevard on the north side of Meridian Boulevard between its eastern and western intersections with Majestic Pines Drive. The project would include visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa, and locker club. Access to the commercial uses would be provided at two locations on Meridian Boulevard, while access to the lodging and service uses would be provided along Majestic Pines Drive (one entrance-only drive to the west and one exitonly drive to the east).

The study examines the site-generated traffic volumes for build out of the project only. This study also provides the technical basis for the Eagle Lodge EIR Traffic Section.

#### SCOPE OF STUDY

This traffic engineering study analyzes traffic data, intersection capacity and level of service, and traffic impacts of the proposed project in accordance with the requirements of the Town of Mammoth Lakes and Caltrans standards. Based upon input provided by the Town of Mammoth Lakes, the following intersections were identified for analysis:

- Old Mammoth Road/Main Street
- Old Mammoth Road/Meridian Boulevard
- Minaret Road/Meridian Boulevard
- Minaret Road/Main Street
- · Lake Mary Road/Kelly Road
- Meridian Boulevard/Majestic Pines Drive (East)
- Meridian Boulevard/Majestic Pines Drive (West)
- Meridian Boulevard/Drop Off Area
- Maiestic Pines Drive/Hotel Exit
- Majestic Pines Drive/Hotel Entrance

In order to accommodate two phases of development, this analysis considers the following five scenarios:

- Existing (2005) no project
- Future (2009) no project
- Future (2009) plus proposed project
- Future (2024) no project
- Future (2024) plus proposed project

The results of this traffic study are used to develop recommendations to mitigate project traffic impacts.

Mammoth Lakes Eagle Lodge

## Section 2 EXISTING CONDITIONS

This section documents the existing setting and operational traffic conditions in the vicinity of the site, providing a foundation for comparison to future conditions. Existing roadway conditions were studied to identify if the roadways are currently operating in a safe and efficient manner. The study area and the intersections evaluated are shown in Figure 1.

#### EXISTING SETTING

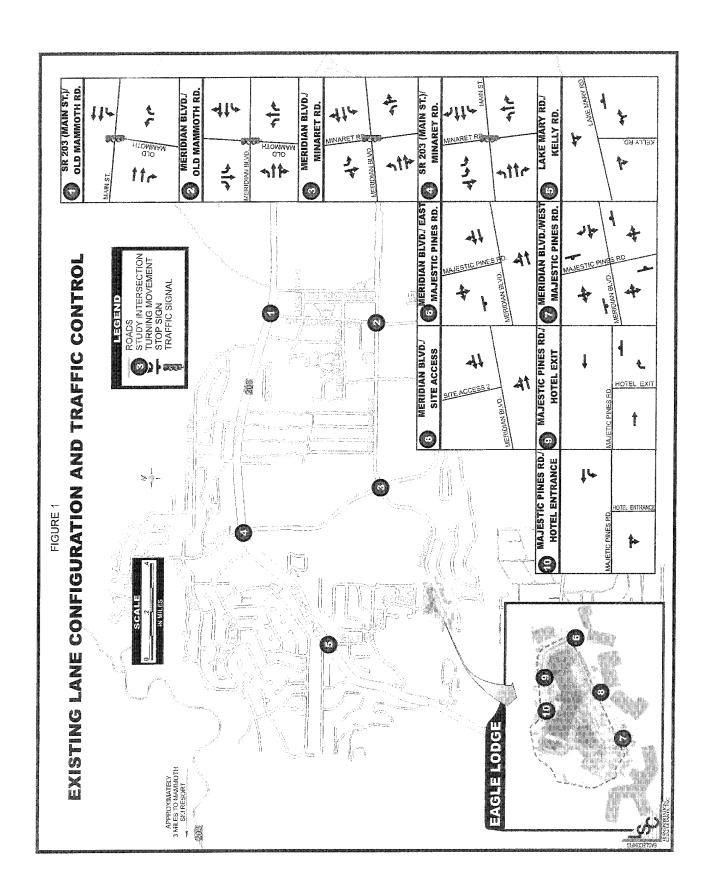
#### **Existing Roadways**

The roadways within the study area are described below.

SR 203 (Main Street)

The major access into the Town of Mammoth Lakes is provided by State Route 203, which intersects with US Highway 395 just to the east of the Town limits. SR 203 (also named Main Street through the center of Town) is a four-lane road from US 395 through the majority of the developed portion of the Town. SR 203 returns to two lanes north of the intersection of Main Street and Minaret Road. The highway continues from the developed area of the Town to the Mammoth Mountain Ski Area Main Lodge, and terminates at the Mono-Madera county line. Portions of SR 203 are augmented by frontage roads. According to Caltrans' classification system, State Route 203 is a minor arterial for the first 8.5 miles from US 395 eastward through the Town, and a minor collector for the westernmost 0.7 miles. Mammoth Scenic Loop, a two-lane road off of SR 203, provides secondary access from the Town to US 395 to the north.

#### Meridian Boulevard


Meridian Boulevard is an arterial with an east-west alignment. The roadway contains a four-lane cross section west of Sierra Park Road and a two-lane cross section east of Sierra Park Road. This roadway provides access to the Cerro Coso College, commercial uses near Old Mammoth Road, residential uses, and lodging uses.

#### Minaret Road

Minaret Road is a two-lane arterial with a north-south alignment. It provides access to the Village area, as well as residential areas to the south. Its intersections with both Main Street and Meridian Boulevard are signalized.

#### Old Mammoth Road

Old Mammoth Road serves as a north-south arterial in the eastern portion of Mammoth Lakes, as well as an east-west arterial in the southern portion of Mammoth Lakes. East of Minaret Road, Old Mammoth Road is an arterial roadway that provides access to commercial, residential, and



lodging facilities. Within the study area, the roadway is a three-lane roadway with two travel lanes and a center two-way left-turn lane.

#### Lake Mary Road

Lake Mary Road is a collector roadway which connects Main Street (SR 203) with the western portion of town, including the Tamarack Lodge and Twin Lakes. Within the past five years, a traffic signal was installed at its intersection with realigned Canyon Boulevard, which provides access to residential uses and a skier portal.

#### Majestic Pines Drive

Majestic Pines Drive is a two-lane collector roadway which connects residential uses with Meridian Boulevard. Along with Kelly Road, it provides an alternate north-south through route between Meridian Boulevard and Lake Mary Road.

#### Kelly Road

Kelly Road is a two-lane collector roadway connecting residential uses to Lake Mary Road. Along with Majestic Pines Drive, it provides an alternate north-south through route between Meridian Boulevard and Lake Mary Road.

#### **Major Intersections**

The major existing or proposed intersections in the study area requiring analysis are:

- Old Mammoth Road/Main Street
- Old Mammoth Road/Meridian Boulevard
- Minaret Road/Meridian Boulevard
- Minaret Road/Main Street
- Lake Mary Road/Kelly Road
- Meridian Boulevard/Majestic Pines Drive (East)
- Meridian Boulevard/Majestic Pines Drive (West)
- Meridian Boulevard/Drop Off Area
- Majestic Pines Drive/Hotel Exit
- Majestic Pines Drive/Hotel Entrance

The lane configuration of the study intersections are depicted in Figure 1.

#### **EXISTING TRAFFIC VOLUMES**

The traffic volumes throughout the Town of Mammoth Lakes vary greatly by time of day, day of week and, more importantly, by season. Particularly in areas with these high variations in traffic levels, it is important to decide what hourly traffic volumes should be used as the basis of design. To avoid the development of facilities that are only needed a relatively few days per year, the traffic engineering profession has adopted a standard procedure of basing roadway design on volumes slightly below the absolute peak volumes.

For this reason the Town of Mammoth Lakes, for example, has focused its design policies on a typical winter Saturday peak hour, rather than the highest winter peak hour. A Policy on Geometric Design of Highways and Streets (American Association of State Highway and Transportation Officials, 2001) indicates "the design hourly volume for rural highways should generally be the 30th highest volume of the future year chosen for design." (page 61). It is true that during winter peak periods, traffic volumes occasionally exceed the resulting intersection and roadway capacity. However, to avoid the development of facilities that are only needed during peak periods on a relatively few days per year, the typical winter Saturday peak hour was analyzed, which is consistent with standard engineering design practice.

The 2005 existing winter weekday PM peak-hour traffic volumes were estimated as follows:

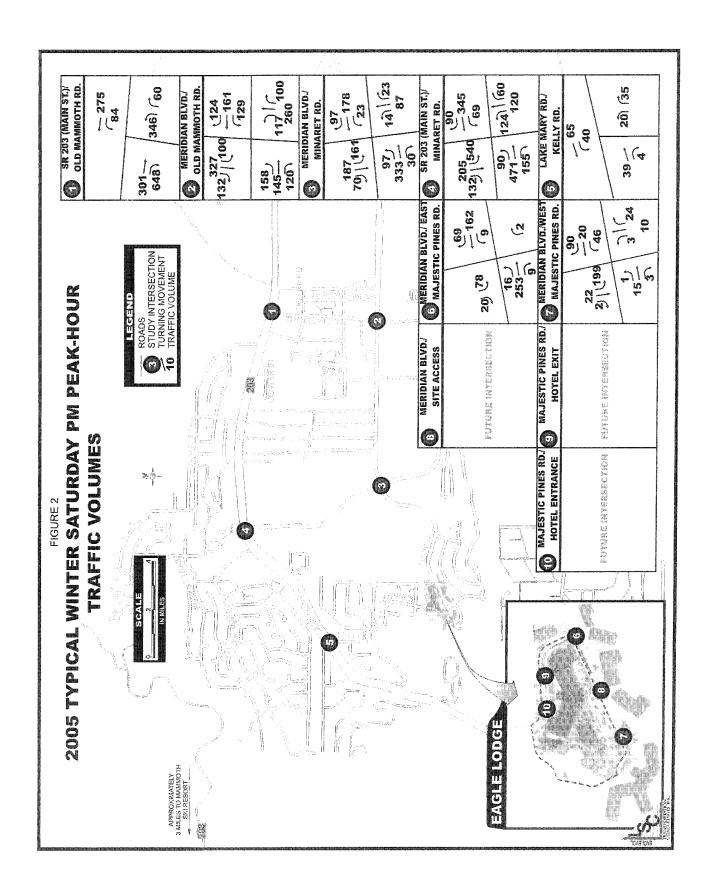
- 1. Traffic turning-movement counts were conducted at the following intersections on the following dates:
  - Old Mammoth Road/SR 203 (Main Street) (December 17, 2005)
  - Old Mammoth Road/Meridian Boulevard (December 17, 2005 and January 14, 2006)
  - Old Minaret Road/Meridian Boulevard (December 17, 2005)
  - Minaret Road/SR 203 (Main Street) (December 17, 2005 and January 14, 2006)
  - Kelly Road/Lake Mary Road (December 17, 2005)
  - Majestic Pines Drive (East)/Meridian Boulevard (December 17, 2005)
  - Majestic Pines Drive (West)/Meridian Boulevard (December 17, 2005 and January 14, 2006)
- 2. Next, the estimated number of skiers visiting Mammoth Mountain Ski Area (MMSA) at the Eagle Lodge portal and all other portals throughout December 2005 and January 2006 was provided by MMSA. The number of skiers accessing the mountain during the January 14, 2006 counts was slightly lower than the number that visit the mountain on a typical Saturday, and during the December 17, 2006 traffic counts, skier numbers were relatively low. Therefore, the design volumes were estimated by starting with the January 14, 2006 counts, while the December counts were used to fill in the gaps in data.
- 3. Typical Saturday PM peak-hour traffic volumes were estimated based upon the January 14, 2006 traffic counts by applying an adjustment to account for the additional skiers that would be on the roadway on a typical Saturday versus on January 17, 2006.
- 4. Next, a comparison of roadway link data for the adjusted January counts to the unadjusted December counts was made at the intersections for which count data for both days was available. A December count to typical Saturday count adjustment factor for each roadway link was then calculated in order to estimate typical Saturday traffic volumes at the remaining intersections.
- 5. The resulting traffic volumes were checked to make sure they reasonably balance along roadway links.

6. The traffic volumes were also compared to traffic volume counts collected as a part of the Mammoth Lakes General Plan Update, to verify that they reasonably represent typical Saturday PM peak-hour traffic volumes.

The resulting 2005 no project traffic volumes are shown in Figure 2.

#### 2009 NO PROJECT TRAFFIC VOLUMES

The 2009 no project traffic volumes were forecasted as follows:


- 1. A list of projects assumed to be built by 2009 was provided by the Town of Mammoth Lakes, as described in Chapter 4 (Cumulative Effects) of the EIR.
- 2. These projects were added to the existing land uses defined in the Mammoth Lakes Transportation Demand Model.
- 3. The growth at the external nodes was estimated by straight line interpolation between the volumes at each node in the 2004 and 2024 traffic models.
- 4. The Mammoth Lakes Transportation Demand Model was run to estimate a set of 2009 traffic volumes, assuming development on the Eagle Lodge site.
- 5. The traffic volumes generated by the Eagle Lodge Transportation Analysis Zone (TAZ) in the model were then subtracted from the model-generated traffic volumes.
- 6. The traffic currently generated by the site (from the 2005 counts) was then added to the traffic volumes, as the no project condition assumes no change in traffic from today's current condition.

The resulting 2009 no project traffic volumes are shown in Figure 3.

#### 2024 NO PROJECT TRAFFIC VOLUMES

The 2024 no project traffic volumes were forecasted as follows:

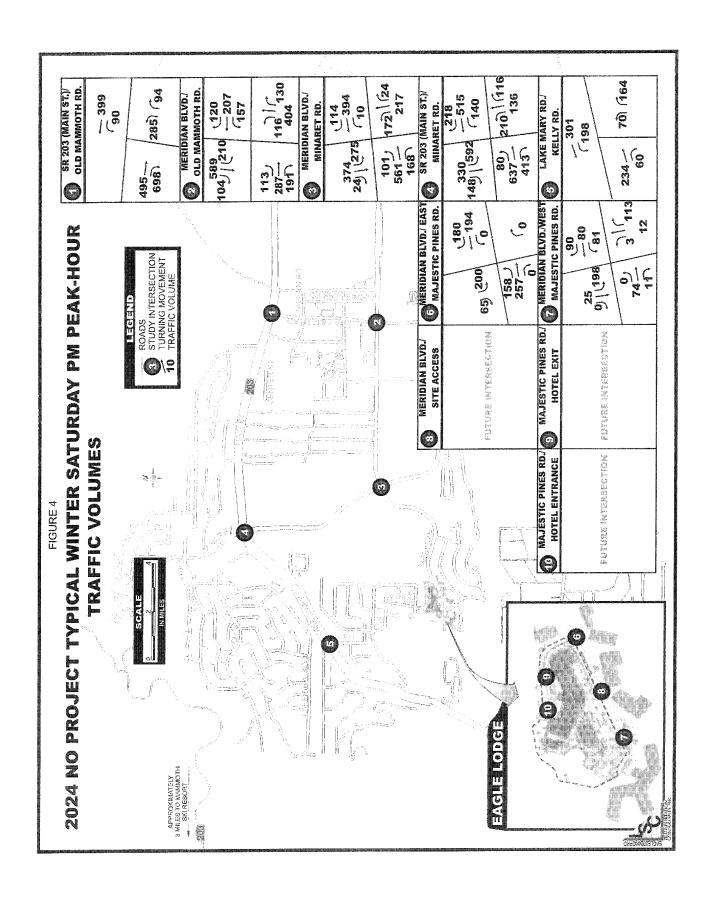
- 1. The land uses contained in the 2024 Existing General Plan Mammoth Lakes Transportation Demand Model were updated to better represent the current development proposals for the Cerro Coso College site. The need for this update was generated based upon comments received as a part of the General Plan Update process.
- 2. The 2024 Mammoth Lakes Transportation Demand Model was then re-run to develop a set of 2024 traffic volumes that assume development on the Eagle Lodge site consistent with the model assumptions.
- 3. The traffic volumes generated by the Eagle Lodge TAZ were then subtracted from the model traffic volumes.





4. The traffic currently generated by the site was then added to the traffic volumes.

The resulting 2024 no project traffic volumes are shown in Figure 4.


#### **EXISTING TRANSIT SERVICE**

Mammoth Area Shuttle (MAS) offers several free shuttles available to anyone in the Town of Mammoth Lakes during the winter season. The following five routes operate during daytime hours:

- The Main Lodge/Snow Creek Line (Red Line) provides service to and from the Main Lodge and Snowcreek Athletic Club, traveling along Minaret Road, Main Street, Old Mammoth Road, and Chateau Road. At Gondola Village riders can transfer to all other lines. The Red Line service begins daily at 7:00 AM at the Snowcreek Athletic Club and ends at 5:30 PM, with 15-minute headways.
- The Canyon Lodge Line (Blue Line) provides service to and from Gondola Village and Canyon Lodge, traveling along Lakeview Boulevard, Canyon Boulevard, and Forest Trail. Riders can transfer to all other lines at Gondola Village. Service begins daily at Gondola Village at 7:00 AM and ends at 5:30 PM, with half-hour headways.
- The Juniper Springs Line (Green Line) provides service to and from Eagle Lodge and Old Mammoth Road, traveling along Azimuth, Meridian, and Sierra Nevada Boulevards. Riders can transfer to all other lines at stop #32 (the intersection of Sierra Nevada Boulevard and Old Mammoth Road). The Green Line operates daily beginning at 7:30 AM and ends at 5:30 PM, providing half-hour headways.
- The Canyon Lodge/Juniper Springs Line (Yellow Line) provides service to and from Canyon Lodge and Chair 15 Outpost (Juniper Springs), traveling along Canyon Boulevard, Lake Mary Road, Kelly Road, and Majestic Pines Drive. Riders can transfer to all other lines at Gondola Village. Providing up to half-hour headways, the Yellow Line operates daily from 7:30 AM to 5:30 PM.
- The Tamarack Lodge/Gondola Village Line (Orange Line) provides service to and from Tamarack Lodge and Gondola Village, traveling along Lake Mary Road. Riders can transfer to all other lines at Gondola Village. The bus departs from Tamarack Lodge three times a day (9:00 AM, noon, and 4 PM).

There are also three "Nightline" routes which provide service during evening hours. Riders can transfer between the following four Nightlines at Gondola Village:

• The Gondola Village/Snowcreek Nightline (Red Line) provides service to and from Gondola Village and Snowcreek Athletic Club. The Red Line services Main Street, Old Mammoth Road, Chateau Road, and Minaret Road. Beginning at Gondola Village, the bus departs every half-hour from 5:00 PM to Midnight.



- The Canyon Lodge Nightline (Blue Line) provides service to and from Gondola Village and Canyon Lodge. The Green Line night service operates on Friday and Saturday nights only, every half hour from 5:00 PM to Midnight.
- The Juniper Springs Line (Green Line) provides night service to and from Eagle Lodge and Old Mammoth Road, traveling along Azimuth, Meridian, and Sierra Nevada Boulevards. The Green Line night service operates on Friday and Saturday nights only, every half hour from 5:00 PM to Midnight.
- The Canyon Lodge/Juniper Springs Line (Yellow Line) provides service to and from Canyon Lodge and Chair 15 Outpost (Juniper Springs), traveling along Canyon Boulevard, Lake Mary Road, Kelly Road, and Majestic Pines Drive. The Yellow Line night service operates on Friday and Saturday nights only, every half hour from 5:00 PM to Midnight.

In addition, the Town of Mammoth Lakes, through Inyo-Mono Transit, operates "The Lift" bus service during the non-winter seasons as well as a summer-only rubber-tired Trolley program. These services do not serve the Eagle Lodge site. The entire town (including the Eagle Lodge site) is served by a Dial-A-Ride program.

#### EXISTING PARKING CONDITIONS

Due to snow storage and parking efficiency variations from day-to-day, the Eagle Lodge site currently contains roughly 220 to 240 parking spaces, 26 of which are designated for Juniper Springs. In addition, skiers park vehicles in parallel parking spaces along Meridian Boulevard. Parking is allowed along Meridian Boulevard from the west Majestic Pines Drive/Meridian Boulevard intersection eastward to Sierra Star Parkway. However, on most ski weekends, vehicles are parked along Meridian Boulevard from the west Majestic Pines Drive/Meridian Boulevard intersection all the way to Minaret Road. In fact, on very busy days vehicles sometimes are parked in the area that begins to widen to provide an eastbound left-turn lane at the Meridian Boulevard/Minaret Road intersection.

# Section 3 PROPOSED CONDITIONS

The project location, the size of the project, and the time of the project completion are all important elements that need to be considered to determine the safety and capacity impacts of the development. It is also important to examine how the project will operate with the existing transportation system, estimate how much new traffic it will generate, and identify how traffic generated by the site will be distributed.

#### PROJECT DESCRIPTION

The Eagle Lodge project proposes to construct a permanent base lodge facility at 3256 Meridian Boulevard on the north side of Meridian Boulevard between its eastern and western intersection with Majestic Pines Drive. The project would include visitor lodging and a mix of ski-related uses, including food service, rental/demo/repair shop, retail, ski school and day care, ticketing/lobby, administrative space, and restrooms. In addition, the lodge would include a convenience market, restaurant, day spa, and locker club. Access to the commercial and skier uses would be provided at two locations on Meridian Boulevard, while access to the lodging and service uses would be provided along Majestic Pines Drive.

A peak maintain design capacity of 5,000-5,960 skiers per day has been estimated for the site. The traffic analysis contained in this report is based upon a maximum of 6,000 skiers per day in order to analyze the worst case scenario.

#### PROJECT ACCESS

Properly located access points are essential to allow for the safe and orderly movement of traffic in and out of a site. Access to the commercial and skier uses would be provided at two locations on Meridian Boulevard, while access to the lodging and service uses would be provided along Majestic Pines Drive.

### TRIP GENERATION AND DISTRIBUTION

Because of the unique transportation factors impacting ski area access and the need to consider the interaction between the various uses proposed for the site, as well as the interaction with other nearby land uses, the evaluation of trip generation for the Eagle Lodge project is a relatively complicated process.

#### Winter Trip Generation

The vehicle trip generation associated with the project is summarized in Table 1. Details regarding the trip generation assumptions are summarized in Appendix A. As the table indicates, upon project build out during a typical winter Saturday, the project would generate a total of 914 PM peak-hour trips (320 entering and 594 exiting). However, note that this does not account for the fact that the project site already generates traffic. The project's net impact on traffic is 509 PM peak-hour trips (219 entering and 290 exiting).

|                        |                  | l Peak-l<br>ternal T |       | Reductions<br>for<br>External<br>Walking |     | Peak-l<br>ternal A<br>Trips |       | Percent | Ne  | Peak-<br>w Exte | rnal  |
|------------------------|------------------|----------------------|-------|------------------------------------------|-----|-----------------------------|-------|---------|-----|-----------------|-------|
| Use                    | In               | Out                  | Total | Trips                                    | In  | Out                         | Total | Pass-By | ln  | Out             | Total |
| Skiers 1               | 213              | 415                  | 628   |                                          | 213 | 415                         | 628   | 0%      | 213 | 415             | 628   |
| Base Lodge             | 0                | 43                   | 43    | 0%                                       | 0   | 43                          | 43    | 0%      | 0   | 43              | 43    |
| Ice Rink               | 3                | 3                    | 6     | 5%                                       | 3   | 3                           | 6     | 0%      | 3   | 3               | 6     |
| Commercial             | 175              | 172                  | 347   | 42%                                      | 102 | 100                         | 202   | 25%     | 77  | 75              | 152   |
| Lodging                | 20               | 51                   | 71    | 0%                                       | 20  | 51                          | 71    | 0%      | 20  | 51              | 71    |
| Buses                  | 2                | 2                    | 4     | 0%                                       | 2   | 2                           | 4     | 0%      | 2   | 2               | 4     |
| Trucks                 | 5                | 5                    | 10    | 0%                                       | 5   | 5                           | 10    | 0%      | 5   | 5               | 10    |
| Total                  | 418              | 691                  | 1,109 |                                          | 345 | 619                         | 964   |         | 320 | 594             | 914   |
| Existing Traffic Gener | ated by Site     |                      |       |                                          |     |                             |       |         | 101 | 304             | 405   |
| Project's Net Impact o | n Trip Generatio | n                    |       |                                          |     |                             |       |         | 219 | 290             | 509   |

#### **Summer Trip Generation**

While the traffic analysis focuses on typical winter Saturday conditions to represent the worst case, a summer trip generation analysis is also provided in this report. A portion of the summer trip generation will consist of mountain bikers. According to Dave Geirman (MMSA), approximately 25,000 bikers per year visit the mountain, a number which has been growing at a rate of 5 to 8 percent per year. The mountain bike park hopes to increase this number to 40,000 bikers per year in the next five years, which represents an annual growth rate of 9.9 percent per year. Currently, approximately 600 bikers per day visit the mountain on a typical summer weekend day. Approximately half of these bikers are downhill bikers, while the other half are cross-country bikers.

According to the existing Town of Mammoth Lakes General Plan, the number of people at one time the Town can accommodate is expected to grow at a rate of 2.6 percent a year over the next 20 years. Applying this growth rate indicates that by 2024 approximately 977 bikers per day will visit the mountain. Assuming that the number of downhill bikers will grow at twice the rate as the cross-country bikers, a total of 426 cross-country bikers and 551 downhill bikers per day will be on the mountain by 2024. As Eagle Lodge provides primary access to cross-country bikers, approximately 426 bikers will access the Eagle Lodge lift on a summer weekend day by 2024. It is also assumed that 50 percent of the bikers will bike to the site, while the remaining 50 percent will drive.

The summer trip rates for the Day Care, Mountain Biking Employees, Day Spa, Convenience Market, Sit-Down Restaurant, and Hotel land uses were assumed to equal the winter trip rates. In the off season, the community room/conference room can be rented out and used by people not residing at the lodge. The trip generation of this facility is estimated assuming a 200 person-at-

one-time capacity, a maximum of two events occurring on one day, an average vehicle occupancy of 2.5 persons per vehicle, and as a worst-case one event ending and one event starting during the PM peak hour.

Without reductions for internal and walking trips and as shown in Table 2, the project is expected to generate 757 PM peak-hour trips on a summer Saturday (360 entering, 397 exiting). With reductions for internal and walking trips, the site is expected to generate 556 PM peak-hour trips on a summer Saturday (259 entering, 297 exiting), which is roughly 39 percent less than the levels generated in the winter. The project's net impact on summer PM peak-hour traffic is 523 trips, which is 3 percent higher than the winter net impact. However, as traffic volumes are greater during the winter and because the site generates 40 percent less traffic during the summer than the winter, the winter condition is analyzed in this document as the worst case.

| Existing Traffic Generated b | y Site |         |       |                |     |         |             |         | 0   | 33      | 33   |
|------------------------------|--------|---------|-------|----------------|-----|---------|-------------|---------|-----|---------|------|
| Total                        | 360    | 397     | 757   |                | 278 | 316     | 594         |         | 259 | 297     | 556  |
| Trucks                       | 5      | 5       | 10    | 0%             | 5   | 5       | 10          | 0%      | 5   | 5       | 10   |
| Buses                        | 2      | 2       | 4     | 0%             | 2   | 2       | 4           | 0%      | 2   | 2       | 4    |
| Lodging                      | 70     | 71      | 141   | 0%             | 70  | 71      | 141         | 0%      | 70  | 71      | 141  |
| Conference Facilities        | 80     | 80      | 160   | 0%             | 80  | 80      | 160         | 0%      | 80  | 80      | 160  |
| Sit-Down Restaurant          | 38     | 28      | 66    | 10%            | 34  | 25      | 59          | 0%      | 34  | 25      | 59   |
| Convenience Market           | 154    | 154     | 308   | 50%            | 77  | 77      | 154         | 25%     | 58  | 58      | 116  |
| Day Spa                      | 11     | 10      | 21    | 10%            | 10  | 9       | 19          | 0%      | 10  | 9       | 19   |
| Mountain Biking Employees    | 0      | 9       | 9     | 0%             | 0   | 9       | 9           | 0%      | 0   | 9       | 9    |
| Mountain Bikers              | 0      | 38      | 38    |                | 0   | 38      | 38          | 0%      | 0   | 38      | 38   |
| Use                          | In     | Out     | Total | _ ~            | ln  | Out     | <del></del> | Pass-By | In  | Out     | Tota |
|                              |        | ernal T |       | Walking        |     |         | Trips       | Percent |     | Trips   |      |
|                              | I PM   | Peak-   | Hour  | External       | РМ  | . Peak- | Hour        |         |     | Externa |      |
|                              | 1      |         |       | Reductions for |     | •       | ı           |         | P.M | Peak-   | Hour |

## TRIP DISTRIBUTION AND ASSIGNMENT

The distribution of the site-generated traffic was estimated as follows:

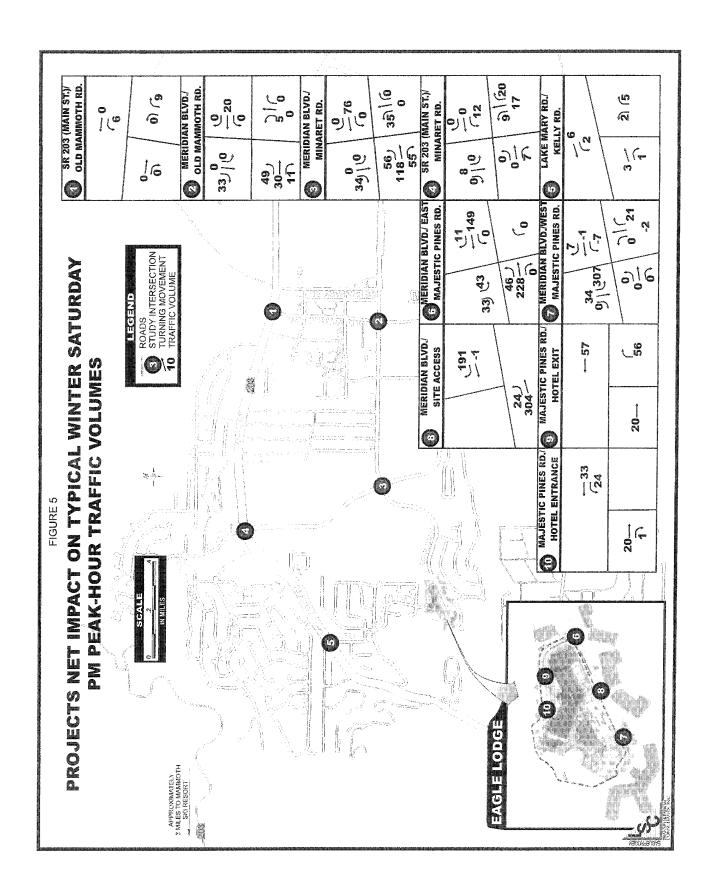
- 1. The distribution of commercial trips was estimated based upon the location of nearby residential areas, considering the "market area" of competing convenience retail in the downtown and Village areas.
- 2. The distribution of lodging trips was estimated based upon the location of commercial areas and recreational areas throughout the town, as well as to regional access (SR 203 to the east).

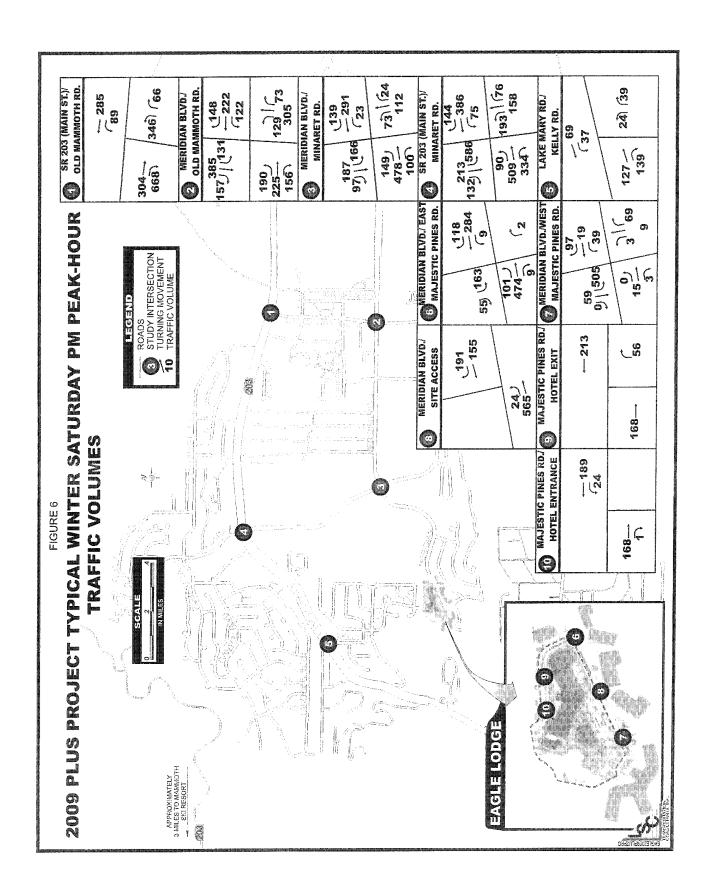
- 3. The distribution of skier trips was estimated based upon the location of residential/lodging areas and the assumptions identified in Appendix A regarding percentage of people in nearby residential/lodging areas that walk or travel to other ski portals.
- 4. The distribution of truck traffic was based upon the location of regional access (SR 203) as well as other commercial areas in Mammoth Lakes that may also be serviced by larger delivery trucks as part of combined routes.

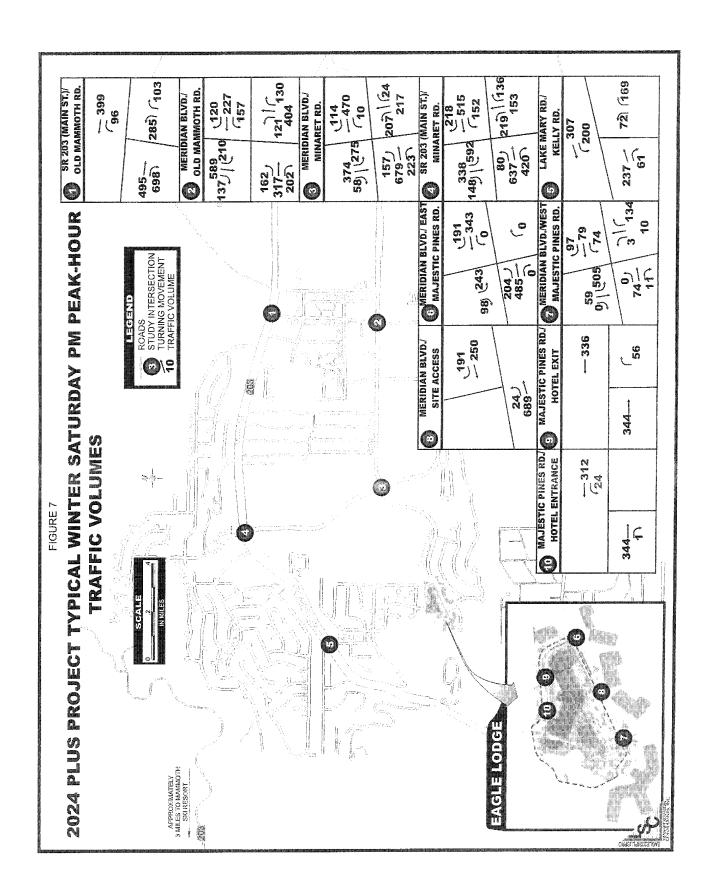
The project-generated traffic distribution is shown in Table 3.

| Area                                                                     | Commercial | Lodging | Skiers | Trucks |
|--------------------------------------------------------------------------|------------|---------|--------|--------|
| Main to the East of Old Mammoth                                          | 1%         | 3%      | 5%     | 0%     |
| Meridian to the East of Old Mammoth                                      | 4%         | 14%     | 12%    | 25%    |
| Old Mammoth South of Meridian                                            | 1%         | 10%     | 2%     | 0%     |
| Old Mammoth Between Main and Meridian                                    | 3%         | 15%     | 17%    | 25%    |
| Main Between Minaret and Old Mammoth<br>Meridian Between Minaret and Old | 3%         | 17%     | 6%     | 25%    |
| Mammoth                                                                  | 8%         | 3%      | 12%    | 0%     |
| Minaret Between Main and Meridian                                        | 5%         | 3%      | 4%     | 0%     |
| Minaret South of Meridian                                                | 7%         | 2%      | 21%    | 0%     |
| Minaret North of Main                                                    | 2%         | 22%     | 2%     | 10%    |
| Canyon Boulevard North of Lake Mary                                      | 1%         | 1%      | 1%     | 15%    |
| _akeview Northwest of Lake Mary                                          | 5%         | 5%      | 1%     | 0%     |
| _ake Mary West of Kelly Road<br>Meridian Between Majestic Pines and      | 2%         | 5%      | 2%     | 0%     |
| Minaret                                                                  | 15%        | 0%      | 2%     | 0%     |
| Majestic Pines North Neighborhood                                        | 23%        | 0%      | 5%     | 0%     |
| Majestic Pines to the South                                              | 20%        | 0%      | 8%     | 0%     |

Using the trip generation estimates and traffic distribution pattern, traffic assignments are estimated for the winter PM peak hour of traffic activity. The impact of the project on winter traffic volumes is shown in Figure 5, while the 2009 and 2024 plus project turning-movement volumes are shown in Figures 6 and 7, respectively.


#### VEHICLE MILES OF TRAVEL


The PM peak-hour Vehicle Miles of Travel (VMT) generated by the project was calculated based upon the PM peak-hour trip generation, daily trip generation, and estimated trip length to distribution area. As Table 4 indicates, the project is expected to generate 1,438 PM peak-hour VMT and 8,035 daily VMT on a typical winter Saturday.


| TABLE 4:            | Project-Genera                             | ted Vehicle Mi                 | iles of Travel (V   | MT)       |
|---------------------|--------------------------------------------|--------------------------------|---------------------|-----------|
| Use                 | PM Peak-Hour<br>New External<br>Auto Trips | Average Trip<br>Length (miles) | PM Peak-Hour<br>VMT | Daily VMT |
| Skiers <sup>1</sup> | 223                                        | 4.56                           | 1,017               | 3,606     |
| Base Lodge          | 43                                         | 1.63                           | 70                  | 355       |
| Ice Rink            | 6                                          | 1.67                           | 10                  | 154       |
| Commercial          | 152                                        | 1.28                           | 195                 | 2,064     |
| Lodging             | 71                                         | 1.73                           | 123                 | 1,626     |
| Buses               | 4                                          | 1.75                           | 7                   | 70        |
| Trucks              | 10                                         | 1.6                            | 16                  | 160       |
| Total               | 509                                        |                                | 1,438               | 8,035     |

Note 1: Excludes existing skier trips to the site.

Note 2: Based upon trip distribution and distance of distribution point to site.







# Section 4 LEVEL OF SERVICE ANALYSIS

## LEVEL OF SERVICE DESCRIPTION

The concept of level of service is defined as a qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers. A level of service definition generally describes these conditions in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety. Six levels of service are defined for each type of roadway facility. They are given letter designations, from A to F, with Level of Service A representing the best operating conditions and Level of Service F the worst.

In general, the various levels of service are defined as follows for roadways (away from intersections):

Level of Service A represents free flow. Individual drivers are virtually unaffected by the presence of others in the traffic stream. Freedom to select desired speeds and to maneuver within the traffic stream is extremely high. The general level of comfort and convenience provided to the motorist, passenger, or pedestrian is excellent.

**Level of Service B** is in the range of stable flow, but the presence of other users in the traffic stream begins to be noticeable. Freedom to select desired speeds is relatively unaffected, but there is a slight decline in the freedom to maneuver within the traffic stream from LOS A. The level of comfort and convenience provided is somewhat less than at LOS A, because the presence of others in the traffic stream begins to affect individual behavior.

**Level of Service C** is in the range of stable flow, but marks the beginning of the range of flow in which the operation of individual drivers becomes significantly affected by interactions with others in the traffic stream. The selection of speed is now affected by the presence of others, and maneuvering within the traffic stream requires substantial vigilance on the part of the user. The general level of comfort and convenience declines noticeably at this level.

Level of Service D represents high density, but stable flow. Speed and freedom to maneuver are severely restricted, and the driver experiences a generally poor level of comfort and convenience. Small increases in traffic flow will generally cause operational problems at this level.

Level of Service E represents operating conditions at or near the capacity level. All speeds are reduced to a low, but relatively uniform value. Freedom to maneuver within the traffic stream is extremely difficult, and it is generally accomplished by forcing a vehicle or pedestrian to "give way" to accommodate such maneuvers. Comfort and convenience levels are extremely poor, and driver or pedestrian frustration is generally high. Operations at this level are usually unstable, because small increases in flow or minor perturbations within the traffic stream will cause breakdowns.

Level of Service F is used to define forced or breakdown flow. This condition exists wherever the amount of traffic approaching a point exceeds the amount which can traverse the point. Queues form behind such locations. Operations within the queue are characterized by stop-andgo waves, and they are extremely unstable. Vehicles may progress at reasonable speeds for several hundred feet or more, and then be required to stop in a cyclic fashion. Level of Service F is used to describe the operating conditions within the queue, as well as the point of the breakdown. It should be noted, however, that in many cases operating conditions of vehicles or pedestrians discharged from the queue may be quite good. Nevertheless, it is the point at which arrival flow exceeds discharge flow which causes the queue to form, and Level of Service F is an appropriate designation for such points.

Level of Service at signalized and unsignalized intersections in terms of delay is summarized in Table 5.

| Signal | ized Intersections                                           |                                                            |
|--------|--------------------------------------------------------------|------------------------------------------------------------|
| LOS    | Unsignalized Intersection<br>Average Delay per Vehicle (sec) | Signalized Intersection<br>Average Delay per Vehicle (sec) |
| Α      | ≤ 10                                                         | <u>≤</u> 10                                                |
| В      | >10 and <u>&lt;</u> 15                                       | >10 and <u>&lt;</u> 20                                     |
| С      | >15 and <u>&lt;</u> 25                                       | >20 and <u>&lt;</u> 35                                     |
| D      | >25 and ≤ 35                                                 | >35 and <u>&lt;</u> 55                                     |
| Ε      | >35 and ≤ 50                                                 | >55 and <u>&lt;</u> 80                                     |
| F      | > 50                                                         | > 80                                                       |

#### LEVEL OF SERVICE STANDARDS

The Town of Mammoth Lakes General Plan Transportation Element, adopted in 2001, currently contains the following Policy:

Policy 1.7: Establish and maintain a Level of Service D or better on a typical winter Saturday peak hour for signalized intersections and for primary through movements for unsignalized intersections along arterial and collector roads. This standard is expressly not applied to absolute peak conditions, as it would result in construction of roadway improvements that are warranted only a limited number of days per year and that would unduly impact pedestrian and visual conditions.

Therefore, the following LOS thresholds were applied in the General Plan traffic analysis (as described in the memo contained in Appendix A):

- For Signalized Intersections: Total intersection LOS D or better must be maintained. Therefore, if a signalized intersection is found to operate at a total intersection LOS E or F, mitigation is required. It is assumed that this same threshold applies to roundabouts.
- For Unsignalized Intersections: In order to avoid the identification of a LOS failure for intersections that result in only a few vehicles experiencing a delay greater than 50 seconds (such as at a driveway serving a few homes that accesses onto a busy street), a LOS deficiency is not identified for all intersections with approach LOS E or F. Instead, a LOS deficiency is assumed to occur at an unsignalized intersection only if an individual minor street movement operates at LOS E or F and total minor approach delay exceeds four vehicle hours for a single lane approach and five vehicle hours for a multi-lane approach. In other words, a deficiency is found to occur if the average number of vehicles queued over the peak-hour exceeds four at a single-lane approach, or exceeds five at a multi-lane approach. Traffic operations at the study intersections were assessed in terms of Level of Service (LOS) and delay. LOS is a concept that was developed by transportation engineers to quantify the level of operation of intersections and roadways (*Highway Capacity Manual*, TRB, 2000). LOS measures are classified in grades "A" through "F," indicating the range of operation. LOS "A" signifies the best level of operation, while "F" represents the worst.

For signalized intersections, LOS is primarily measured in terms of average delay per vehicle entering the intersection. LOS at unsignalized intersections is quantified in terms of delay per vehicle for each approach/movement. The unsignalized intersection LOS is based upon the theory of gap acceptance for side-street stop sign-controlled approaches, while signalized intersection LOS is based upon the assessment of volume-to-capacity ratios and control delay.

## ANALYSIS METHODOLOGY

#### Level of Service

Signalized and two-way stop-controlled intersection LOS was evaluated using Traffix software (Version 7.7, Trafficware 2004) based on the 2000 Highway Capacity Manual methodologies at all study intersections. LOS at roundabouts was analyzed using the aaSIDRA software.

#### Roadway Capacity

The capacity of the roadways within Mammoth Lakes were estimated as follows:

1. A base saturation flow rate of 1,600 vehicles per hour per directions was assumed. This figure is slightly lower than is typically observed in urban areas, representing the reduction in effective capacity that results from both visitor drivers that are unfamiliar with the area, as well as the impacts of winter driving conditions. It is consistent with observed capacity in the Tahoe Region, which is similarly affected by visitor drivers.

- 2. According to Chapter 10 (Urban Street Concepts) of the *Highway Capacity Manual*, the default directional lane split for roadways with two lanes per direction is 52.5 percent in one lane and 47.5 percent in the other. Therefore, as no recent count data was available to determine the actual lane split, for roadways with two lanes in each direction, it was assumed that one lane would carry 52.5 percent of the directional traffic, while the second lane would carry 47.5 percent.
- 3. Reductions to roadway capacity were made, as required on individual segments, to account for the presence of pedestrian crossings, on-street parking maneuvers, vehicles searching for parking spaces, and conflicting driveway turning movements.
- 4. The resulting roadway capacities are shown in Table 6. Please note, however, that the roadway capacities applied in this study are for planning purposes only and are only based upon estimated effects of pedestrians, parking maneuvers, and driveway turning-movement conflicts.

| Table 6: Roadway Capacity Summary                                |                                        |
|------------------------------------------------------------------|----------------------------------------|
|                                                                  | Capacity                               |
| Roadway Segment                                                  | (Vehicles per Hour per Peak Direction) |
| Main Street East of Old Mammoth Road                             | 2,600                                  |
| Main Street West of Old Mammoth Road                             | 2,600                                  |
| Main Street East of Minaret Road                                 | 2,600                                  |
| Lake Mary Road West of Minaret Road                              | 1,600                                  |
| Lake Mary Road West of Kelly Road                                | 1,600                                  |
| Old Mammoth Road South of Main Street                            | 1,600                                  |
| Old Mammoth Road North of Meridian Boulevard                     | 1,600                                  |
| Old Mammoth Road South of Meridian Boulevard                     | 1,600                                  |
| Meridian Boulevard East of Old Mammoth Road                      | 1,600                                  |
| Meridian Boulevard West of Old Mammoth Road                      | 2,600                                  |
| Meridian Boulevard East of Minaret Boulevard                     | 2,600                                  |
| Meridian Boulevard West of Minaret Road                          | 2,600                                  |
| Meridian Boulevard East of Majestic Pines Road North             | 2,600                                  |
| Meridian Boulevard West of Majestic Pines Road North             | 2,600                                  |
| Minaret Road Main Street to Forest Trail                         | 1,300                                  |
| Minaret Road South of Main                                       | 1,600                                  |
| Majestic Pines Drive North of Meridian                           | 1,600                                  |
| Majestic Pines Drive South of Meridian Boulevard                 | 800                                    |
| Kelly Road South of Lake Mary Road                               | 800                                    |
| Note: Roadway capacity for 2005 and 2024 assumed to be the same. |                                        |

## LEVEL OF SERVICE AND ROADWAY CAPACITY ANALYSIS

#### **2005 No Project Conditions**

2005 Intersection LOS

Study intersections were evaluated to determine existing operational conditions during the typical Saturday winter PM peak hour. Using the traffic volumes presented as part of this study, it is possible to evaluate the LOS provided during peak periods at the intersections serving the study area. Appendix B presents the actual output from each of the LOS calculations for the study intersections, and Table 7 summarizes the results for existing (2005) no project conditions. As the table indicates, the LOS at all the study intersections are within the Town of Mammoth Lakes Level of Service standards without project implementation.

2005 Roadway Capacity Analysis

As Table 8 indicates, under 2005 no project conditions, the study roadways are operating below capacity.

### 2009 No Project and Plus Project Conditions

2009 Intersection LOS

The study intersections were evaluated to determine existing operational conditions during the 2009 typical Saturday winter PM peak hour both with and without the project. As Table 9 indicates, intersection LOS standards are not exceeded at any of the study intersections in 2009 even after project implementation. However, it should be noted that the proposed project worsens LOS on the southbound approach to the Majestic Pine Drive East/Meridian Boulevard intersection from a LOS C to a LOS F.

2009 Roadway Capacity Analysis

As Table 10 indicates, under 2009 no project and plus project conditions, the study roadways are operating below capacity, and therefore at acceptable levels of service.

## 2024 No Project and Plus Project Conditions

2024 Intersection LOS

The study intersections were evaluated to determine existing operational conditions during the 2024 typical Saturday winter PM peak hour both with and without the project. As Table 11 indicates, intersection LOS standards are not exceeded at any of the study intersections in 2024, with the following exceptions:

• The Meridian Boulevard/Minaret Road intersection would operate at LOS E with the project. However, the provision of an eastbound right-turn lane at this location would mitigate LOS to an acceptable LOS D condition.

| Table 7: 2005 Typical Winter Saturday Intersection LOS | Intersection LOS            |              |                |             |
|--------------------------------------------------------|-----------------------------|--------------|----------------|-------------|
|                                                        |                             | -            | Delay (seconds | (<br>(<br>- |
|                                                        | Unmitigated Traffic Control | Approach     | per venicle)   | LOS         |
| Old Mammoth Road/Main Street                           | Traffic Signal              | Total        | 22.9           | ပ           |
| Old Mammoth Road/Meridian Boulevard                    | Traffic Signal              | Total        | 21.4           | O           |
|                                                        |                             | Intersection |                |             |
| Minaret Road/Meridian Boulevard                        | Traffic Signal              | Total        | 20.5           | ပ           |
|                                                        |                             | Intersection |                |             |
| Minaret Road/Main Street                               | Traffic Signal              | Total        | 20.8           | O           |
|                                                        |                             | Intersection |                |             |
| Lake Mary Road/Kelly Road (North)                      | Two-Way Stop Controlled     | Worst        | 3.5            | ∢           |
|                                                        |                             | Approach     |                |             |
|                                                        |                             | Total        | 1.5            | ⋖           |
|                                                        |                             | Intersection |                |             |
| Meridian Boulevard/Majestic Pines Drive (East)         | Two-Way Stop Controlled     | Worst        | 8.3            | ۷           |
|                                                        |                             | Approach     |                |             |
|                                                        |                             | Total        | 1.6            | ∢           |
|                                                        |                             | Intersection |                |             |
| Meridian Boulevard/Majestic Pines Drive (West)         | All-Way Stop Controlled     | Worst        | 2.6            | ∢           |
|                                                        |                             | Approach     |                |             |
|                                                        |                             | Total        | 8.9            | ∢           |
|                                                        |                             | Intersection |                |             |
|                                                        |                             |              |                |             |

| Table 8: 2005 Roadway Capacity Summary               |               |                   |                      |           |
|------------------------------------------------------|---------------|-------------------|----------------------|-----------|
|                                                      | Capacity      | No Proje          | No Project Condition | _         |
|                                                      | (Vehicles per | Maximum Vehicles  |                      |           |
|                                                      | Hour per Peak | per Direction per | Volume/              | Capacity  |
| Roadway Segment                                      | Direction)    | Hour              | Capacity             | Exceeded? |
| Main Street East of Old Mammoth Road                 | 2,600         | 361               | 0.14                 | ON<br>ON  |
| Main Street West of Old Mammoth Road                 | 2,600         | 949               | 0.37                 | 9         |
| Main Street East of Minaret Road                     | 2,600         | 1,071             | 0.41                 | ON<br>ON  |
| Lake Mary Road West of Minaret Road                  | 1,600         | 716               | 0.45                 | Q.        |
| Lake Mary Road West of Kelly Road                    | 1,600         | 85                | 0.05                 | ON.       |
| Old Mammoth Road South of Main Street                | 1,600         | 732               | 0.46                 | <u>Q</u>  |
| Old Mammoth Road North of Meridian Boulevard         | 1,600         | 559               | 0.35                 | 9         |
| Old Mammoth Road South of Meridian Boulevard         | 1,600         | 576               | 0.36                 | 9         |
| Meridian Boulevard East of Old Mammoth Road          | 1,600         | 414               | 0.26                 | 2         |
| Meridian Boulevard West of Old Mammoth Road          | 2,600         | 423               | 0.16                 | 9         |
| Meridian Boulevard East of Minaret Boulevard         | 2,600         | 517               | 0.20                 | <b>S</b>  |
| Meridian Boulevard West of Minaret Road              | 2,600         | 460               | 0.18                 | <u>8</u>  |
| Meridian Boulevard East of Majestic Pines Road North | 2,600         | 333               | 0.13                 | Q.        |
| Meridian Boulevard West of Majestic Pines Road North | 2,600         | 278               | 0.11                 | <b>S</b>  |
| Minaret Road Main Street to Forest Trail             | 1,300         | 877               | 0.67                 | 9         |
| Minaret Road South of Main                           | 1,600         | 429               | 0.27                 | ON.       |
| Majestic Pines Drive North of Meridian               | 1,600         | 98                | 90.0                 | 9         |
| Majestic Pines Drive South of Meridian Boulevard     | 800           | 71                | 0.09                 | <b>Q</b>  |
| Kelly Road South of Lake Mary Road                   | 800           | 55                | 0.07                 | 2         |

| Table 9: 2009 Typical Winter Saturday Intersection LOS | itersection LOS             |                                   | No Project                     | **  | a.                             | Plus Project |                                                    |
|--------------------------------------------------------|-----------------------------|-----------------------------------|--------------------------------|-----|--------------------------------|--------------|----------------------------------------------------|
| Intersection                                           | Unmitigated Traffic Control | Approach                          | Delay (seconds<br>per vehicle) | SO7 | Delay (seconds<br>per vehicle) | SOI          | Approach<br>Vehicle Hours of<br>Delay <sup>1</sup> |
| Old Mammoth Road/Main Street                           | Traffic Signal              | Total                             | 20.8                           | ပ   | 21.1                           | ပ            | ·                                                  |
| Old Mammoth Road/Meridian Boulevard                    | Traffic Signal              | Total                             | 23.8                           | ပ   | 25.6                           | O            | 1                                                  |
| Minaret Road/Meridian Boulevard                        | Traffic Signal              | Total                             | 21.3                           | O   | 27.4                           | O            |                                                    |
| Minaret Road/Main Street                               | Traffic Signal              | Total<br>Intersection             | 26.8                           | ပ   | 28.5                           | ပ            |                                                    |
| Lake Mary Road/Kelly Road (North)                      | Two-Way Stop Controlled     | Worst                             | 10.2                           | В   | 10.3                           | В            | 1                                                  |
|                                                        |                             | Approach<br>Total<br>Intersection | 2.0                            | ∢   | 2.2                            | ∢            | ı                                                  |
| Meridian Boulevard/Majestic Pines Drive (East)         | Two-Way Stop Controlled     | Worst<br>Approach                 | 15.1                           | ပ   | 52.0                           | ட            | 3.3                                                |
|                                                        |                             | Total<br>Intersection             | 3.8                            | ∢   | 10.1                           | ω            | :                                                  |
| Meridian Boulevard/Majestic Pines Drive (West)         | All-Way Stop Controlled     | Worst                             | 9.5                            | 4   | 21.6                           | ပ            | ı                                                  |
|                                                        |                             | Approach<br>Total<br>Intersection | 8.7                            | ∢   | 17.7                           | O            | I                                                  |
| Meridian Boulevard/Drop Off Area                       | Two-Way Stop Controlled     | Worst                             | -                              | 1   | 9.0                            | ∢            | -                                                  |
|                                                        |                             | Approach<br>Total<br>Intersection | ı                              | ł   | 0.2                            | ∢            | ţ                                                  |
| Majestic Pines Drive/Hotel Exit                        | Two-Way Stop Controlled     | Worst                             | 1                              | 1   | 9.4                            | 4            | 1                                                  |
|                                                        |                             | Approach<br>Total<br>Intersection | ı                              | ı   | 1.2                            | ∢            | I                                                  |
| Majestic Pines Drive/Hotel Entrance                    | Two-Way Stop Controlled     | Worst                             | 1                              |     | 12.0                           | В            | 1                                                  |
|                                                        |                             | Approach<br>Total<br>Intersection | -                              | :   | 0.5                            | <b>V</b>     | 1                                                  |

Note 1: Worst approach vehicles hours of delay reported only if approach LOS exceeds threshold.

| Per Maximum Vehicles eak per Direction per Volume/ 10 Hour Capacity 1,151 0.44 926 0.37 1,151 0.44 926 0.58 262 0.16 751 0.47 640 0.40 652 0.41 472 0.30 481 0.19 550 0.21 498 0.19 310 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum V per Directive Hour Hour 972 972 926 262 262 2640 640 652 652    |        | Plus Proj<br>Maximum Vehicles<br>per Direction per<br>Hour<br>374<br>972<br>1,171<br>933<br>266 | Plus Project Condition  Cehicles  Ion per Volume/ Cap  Capacity Excet  0.37 N  1 0.45 N | Capacity |                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------|------------------------------------------------------------------|
| Capacity           (Vehicles per Hourings Per Hourings Per Houring Per Peak Per Direction per Capacity Direction)         Maximum Vehicles Per Houring Per Volume/ Capacity           2,600         368         0.14           2,600         972         0.37           2,600         926         0.58           1,600         262         0.16           1,600         262         0.16           ulevard         1,600         640         0.40           ulevard         1,600         640         0.40           ulevard         1,600         640         0.40           Nadd         1,600         652         0.41           Nadd         2,600         472         0.30           Nadd         2,600         550         0.21           Asroal North         2,600         368         0.14           As Road North         2,600         310         0.72           As Road North         2,600         323         0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum Vehicles per Direction per Hour 368 372 1,151 262 262 751 640 652 |        | Maximum Vehicles per Direction per Hour 374 972 1.171 933 266 266                               |                                                                                         | pacity   |                                                                  |
| 2,600 368 0.14 2,600 972 0.37 2,600 1,151 0.44 1,600 926 0.58 1,600 262 0.16 1,600 640 0.40 ulevard 1,600 640 0.40 Noad 1,600 472 0.30 Noad 2,600 481 0.19 s Road North 2,600 358 0.14 s Road North 2,600 323 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 368<br>872<br>1,151<br>926<br>262<br>751<br>640<br>652                    |        | 374<br>972<br>1,171<br>933<br>266                                                               |                                                                                         | ۲.       | Percent Increase in<br>Peak-Hour Traffic<br>Generated by Project |
| 2,600         972         0.37           2,600         1,151         0.44           1,600         926         0.58           1,600         262         0.16           1,600         751         0.47           ulevard         1,600         640         0.40           Road         1,600         652         0.41           Road         1,600         472         0.30           vard         2,600         481         0.19           vard         2,600         481         0.19           s Road North         2,600         368         0.14           s Road North         2,600         310         0.12           s Road North         2,600         323         0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 972<br>1,151<br>926<br>262<br>751<br>640<br>652                           |        | 972<br>1,171<br>933<br>266                                                                      |                                                                                         | ON       | 2%                                                               |
| 2,600         1,151         0,44           1,600         926         0.58           1,600         262         0.16           1,600         751         0.47           ulevard         1,600         640         0.40           ulevard         1,600         652         0.41           Road         1,600         472         0.30           N Road         2,600         481         0.19           vard         2,600         488         0.19           s Road North         2,600         368         0.14           s Road North         2,600         310         0.12           s Road North         2,600         923         0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,151<br>926<br>262<br>751<br>751<br>640                                  |        | 1,171<br>933<br>266                                                                             |                                                                                         | 9        | %0                                                               |
| 1,600   926   0.58   1,600   1,600   262   0.16   1,600   1,600   1,600   640   0.47   0.47   0.45   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40 | 926<br>262<br>751<br>640<br>652                                           |        | 933                                                                                             |                                                                                         | ON<br>ON | 2%                                                               |
| 1,600   262   0.16   1,600   1,600   751   0.47   0.47   0.47   0.47   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   0.40   | 262.<br>751<br>640<br>652                                                 |        | 266                                                                                             |                                                                                         | ON<br>ON | 1%                                                               |
| ulevard         1,600         751         0.47           ulevard         1,600         640         0.40           Road         1,600         652         0.41           Road         1,600         472         0.30           Road         2,600         481         0.19           vard         2,600         498         0.19           s Road North         2,600         358         0.14           s Road North         2,600         923         0.71           4 500         923         0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 751<br>640<br>652                                                         |        |                                                                                                 | 0.17 N                                                                                  | ON       | 2%                                                               |
| 1,600         640         0.40           1,600         652         0.41           1,600         472         0.30           2,600         481         0.19           2,600         550         0.21           2,600         498         0.19           2,600         368         0.14           1,300         923         0.71           4,500         507         0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 640                                                                       |        | 757                                                                                             | 0.47 N                                                                                  | ON<br>ON | 1%                                                               |
| 1,600         652         0.41           1,600         472         0.30           2,600         481         0.19           2,600         488         0.19           2,600         498         0.19           2,600         368         0.14           1,300         923         0.71           4,500         507         677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 652                                                                       | 40 NO  | 673                                                                                             | 0.42 N                                                                                  | Q.       | 2%                                                               |
| 1,600         472         0.30           2,600         481         0.19           2,600         550         0.21           2,600         498         0.19           2,600         368         0.14           1,300         923         0.71           4,500         500         500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           | 41 NO  | 663                                                                                             | 0.41 N                                                                                  | S.       | 2%                                                               |
| 2,600     481     0.19       2,600     550     0.21       2,600     498     0.19       2,600     368     0.14       1,300     923     0.71       4,500     500     500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 472                                                                       | 30 NO  | 492                                                                                             | 0.31 N                                                                                  | ON<br>ON | 4%                                                               |
| 2,600     550     0.21       2,600     498     0.19       2,600     368     0.14       2,600     310     0.12       1,300     923     0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 481                                                                       | 19 NO  | 571                                                                                             | 0.22 N                                                                                  | Q.       | 19%                                                              |
| 2,600         498         0.19           2,600         368         0.14           2,600         310         0.12           1,300         923         0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 550                                                                       | 21 NO  | 668                                                                                             | 0.26 N                                                                                  | Q.       | 21%                                                              |
| 2,600 368 0.14<br>2,600 310 0.12<br>1,300 923 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 498                                                                       | 19 NO  | 727                                                                                             | 0.28 N                                                                                  | Q.       | 46%                                                              |
| rth 2,600 310 0.12<br>1,300 923 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 368                                                                       | 14 NO  | 639                                                                                             | 0.25 N                                                                                  | ON       | 74%                                                              |
| 1,300 923 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 310                                                                       | 12 NO  | 584                                                                                             | 0.22 N                                                                                  | ON.      | 88%                                                              |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 923                                                                       | 71 NO  | 931                                                                                             | 0.72 N                                                                                  | Q.       | 1%                                                               |
| 1,600 595 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,600 595 C                                                               | 37 NO  | 622                                                                                             | N 68.0                                                                                  | Q.       | %9                                                               |
| Majestic Pines Drive North of Meridian 1,600 162 0.10 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 162                                                                       | 10 NO  | 219                                                                                             | 0.14 N                                                                                  | Q.       | 35%                                                              |
| n Boulevard 800 74 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74                                                                        | ON 60  | 101                                                                                             | 0.13 N                                                                                  | ON<br>ON | 36%                                                              |
| Kelly Road South of Lake Mary Road 800 173 0.22 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 173                                                                       | .22 NO | 176                                                                                             | 0.22 N                                                                                  | Q.       | 2%                                                               |

| Boin text maicales LOS (meshoid is exceeded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                       | 1              | No Project |                              | Δ.             | Plus Project |                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|----------------|------------|------------------------------|----------------|--------------|------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                       | Delay (seconds |            | Approach<br>Vehicle Hours of | Delay (seconds |              | Approach<br>Vehicle Hours of |
| Intersection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unmitigated Traffic Control           | Approach              | per vehicle)   | SOT        | Delay 1                      | per vehicle)   | SOI          | Delay                        |
| Old Mammoth Road/Main Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Traffic Signal                        | Total                 | 17.4           | В          | :                            | 7.71           | 8            | 1                            |
| Old Mammoth Road/Meridian Boulevard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Traffic Signal                        | Total                 | 37.8           | C          |                              | 7 36           |              |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Intersection          | 0.             | )          | l                            |                | 2            | I                            |
| Minaret Road/Meridian Boulevard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Traffic Signal                        | Total<br>Intersection | 45.7           | ۵          | 1                            | 9.69           | ш            | <b>:</b>                     |
| Minaret Road/Main Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Traffic Signal                        | Total                 | 49.5           | ۵          | 1                            | 53.1           | ٥            | ,                            |
| Lake Mary Road/Kelly Road (North)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Two May Stop Controlled               | Intersection          |                | (          |                              | , 50           | ,            |                              |
| במיכ יויכול ויספסויכול ויספם (ויסומו)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wo-way stop collitoried               | VVCISI                | 6.27           | د          | :                            | 43.4           | د            | ł                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Approach<br>Total     | 6.7            | ∢          | ŀ                            | 7.0            | ∢            | ı                            |
| Morialist Control of the Control of | i i                                   | Intersection          |                |            |                              |                |              |                              |
| יייניייי בייינייי ביייניייייייייייייייי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Delication dots tay town              | Approach              |                | П          | o.,                          | 0.4            | L            | 2.<br>4.                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Total                 | 12.1           | മ          | 1                            | 87.3           | u.           | !                            |
| Meridian Bouleward/Majortia Dinas Dais (Mast)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | וווכופברווטו          | 1 6            |            |                              |                |              |                              |
| Mendian boulevard/Majestic Pines Urive (west)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | All-Way Stop Controlled               | Worst                 | 10.7           | മ          | ı                            | 34.6           | ۵            | i                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Total                 | 9.7            | ∢          | ı                            | 23.6           | Ų            | ı                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Intersection          |                |            |                              |                |              |                              |
| Meridian Boulevard/Drop Off Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Two-Way Stop Controlled               | Worst                 | 1              | ı          | -                            | 0.6            | 4            |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Apploach              |                |            |                              |                | •            |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Intersection          | l              | 1          | ŀ                            | 7.0            | <            | I                            |
| Majestic Pines Drive/Hotel Exit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Two-Way Stop Controlled               | Worst                 | 1              | ;          |                              | 10.7           | m            | :                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Approach              |                |            |                              |                |              |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Total                 | :              | ı          | ;                            | 0.8            | ∢            | :                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Intersection          |                |            |                              |                |              |                              |
| Majestic Pines Drive/Hotel Entrance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Two-Way Stop Controlled               | Worst                 |                | 1          | :                            | 8.0            | ∢            | 1                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Approach              |                |            |                              | ć              | •            |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Intersection          | l              | ŀ          | I                            | 5.5            | ζ            | ŀ                            |

• The Majestic Pine Drive East/Meridian Boulevard intersection would operate with a worst approach LOS E without the project and LOS F with the project. However, under plus project conditions, the approach delay exceeds 4 vehicle-hours, thereby warranting an improvement such as a roundabout or traffic signal. Provision of additional turn lanes while maintaining the existing Stop sign control would not mitigate this impact. However, provided with a single-lane roundabout, this intersection would operate at worst approach LOS B and total intersection LOS A.

2024 Roadway Capacity Analysis

As Table 12 indicates, under 2024 no project and plus project conditions, the study roadways are operating below capacity and thus providing adequate LOS.

| Table 12: 2024 Roadway Capacity Summary                                   |                                                          |                                                      |                      |                       |                                               |                        | <u>.</u>              |                                                                  |
|---------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|----------------------|-----------------------|-----------------------------------------------|------------------------|-----------------------|------------------------------------------------------------------|
|                                                                           |                                                          | No Proje                                             | No Project Condition |                       | Plus Proj                                     | Plus Project Condition | r.                    |                                                                  |
| Roadway Segment                                                           | Capacity<br>(Vehicles per<br>Hour per Peak<br>Direction) | Maximum Vehicles<br>per Direction per<br>Hour        | Volume/<br>Capacity  | Capacity<br>Exceeded? | Maximum Vehicles<br>per Direction per<br>Hour | Volume/<br>Capacity    | Capacity<br>Exceeded? | Percent Increase in<br>Peak-Hour Traffic<br>Generated by Project |
| Main Street East of Old Mammoth Road                                      | 2,600                                                    | 589                                                  | 0.23                 | NO                    | 598                                           | 0.23                   | ON                    | 2%                                                               |
| Main Street West of Old Mammoth Road                                      | 2,600                                                    | 1,193                                                | 0.46                 | NO                    | 1,193                                         | 0.46                   | ON                    | %0                                                               |
| Main Street East of Minaret Road                                          | 2,600                                                    | 1,345                                                | 0.52                 | NO                    | 1,365                                         | 0.53                   | ON                    | 1%                                                               |
| Lake Mary Road West of Minaret Road                                       | 1,600                                                    | 1,130                                                | 0.71                 | NO                    | 1,137                                         | 0.71                   | ON                    | 1%                                                               |
| Lake Mary Road West of Kelly Road                                         | 1,600                                                    | 371                                                  | 0.23                 | NO                    | 379                                           | 0.24                   | ON                    | 2%                                                               |
| Old Mammoth Road South of Main Street                                     | 1,600                                                    | 788                                                  | 0.49                 | NO                    | 794                                           | 0.50                   | Q.                    | 1%                                                               |
| Old Mammoth Road North of Meridian Boulevard                              | 1,600                                                    | 903                                                  | 0.56                 | NO                    | 936                                           | 0.59                   | ON.                   | 4%                                                               |
| Old Mammoth Road South of Meridian Boulevard                              | 1,600                                                    | 937                                                  | 0.59                 | NO                    | 948                                           | 0.59                   | ON                    | 1%                                                               |
| Meridian Boulevard East of Old Mammoth Road                               | 1,600                                                    | 627                                                  | 0.39                 | ON                    | 657                                           | 0.41                   | ON                    | 2%                                                               |
| Meridian Boulevard West of Old Mammoth Road <sup>1</sup>                  | 2,600                                                    | 591                                                  | 0.23                 | NO                    | 681                                           | 0.26                   | ON                    | 15%                                                              |
| Meridian Boulevard East of Minaret Boulevard 1                            | 2,600                                                    | 860                                                  | 0.33                 | NO                    | 978                                           | 0.38                   | ON                    | 14%                                                              |
| Meridian Boulevard West of Minaret Road                                   | 2,600                                                    | 830                                                  | 0.32                 | NO                    | 1,059                                         | 0.41                   | ON                    | 28%                                                              |
| Meridian Boulevard East of Majestic Pines Road North                      | 2,600                                                    | 457                                                  | 0.18                 | NO                    | 728                                           | 0.28                   | ON                    | 29%                                                              |
| Meridian Boulevard West of Majestic Pines Road North                      | 2,600                                                    | 415                                                  | 0.16                 | NO                    | 689                                           | 0.27                   | ON                    | %99                                                              |
| Minaret Road Main Street to Forest Trail                                  | 1,300                                                    | 1,070                                                | 0.82                 | NO                    | 1,078                                         | 0.83                   | ON                    | 1%                                                               |
| Minaret Road South of Main                                                | 1,600                                                    | 883                                                  | 0.55                 | NO                    | 910                                           | 0.57                   | ON                    | 3%                                                               |
| Majestic Pines Drive North of Meridian                                    | 1,600                                                    | 338                                                  | 0.21                 | ON                    | 395                                           | 0.25                   | ON                    | 17%                                                              |
| Majestic Pines Drive South of Meridian Boulevard                          | 800                                                      | 128                                                  | 0.16                 | ON                    | 147                                           | 0.18                   | ON                    | 15%                                                              |
| Kelly Road South of Lake Mary Road                                        | 800                                                      | 258                                                  | 0.32                 | ON                    | 261                                           | 0.33                   | S<br>S                | 1%                                                               |
| Note 1: As a three-lane roadway, the capacity of Meridian would be reduce | ed to 1,600 vehicles                                     | be reduced to 1,600 vehicles per hour per direction. |                      |                       |                                               |                        |                       |                                                                  |

# Section 5 PARKING ANALYSIS

#### PARKING DEMAND

The purpose of the parking analysis is to evaluate the demand for parking generated by the various elements of the project, assess the potential to reduce parking supply through the shared use of parking, and provide information useful in the development of parking supply strategies. With careful consideration of the individual uses to be accommodated on the site and variation in the need for parking over the day, it is possible to meet all of the parking needs while also minimizing the total amount of parking spaces that must be provided. Existing parking count data is provided in Appendix A.

The following are the primary assumptions that were used to estimate parking demand.

- In general, the Town of Mammoth Lakes parking requirements were applied in this analysis unless the parking requirement rates were found to not be applicable (as discussed below).
- As most of the uses contained in the Base Lodge are skier amenities, no customer parking is required aside from the skier parking. In other words, no additional customers would be generated by these amenities other than persons accessing the ski lifts. However, parking would be required for employees, the ice rink, and day care/ski school drop offs.
- The parking demand for Day Care drop-off was estimated based upon the Day Care AM peak-hour trip generation rate identified in the *ITE Trip Generation Manual*. It was also assumed that 40 percent of the drop off vehicles per hour would enter the site within the peak 15 minutes. Each Day Care parking space was assumed to turn over every 15 minutes. Based upon these assumptions (reflecting the relatively long time needed for the paperwork associated with first-time visitor daycare customers), it is estimated that five day care drop-off spaces are required.
- According to MMSA, the maximum drop-off activity for the ski school would occur at between 9:00 and 10:00 AM, during which time 223 students arrive at the ski school. Assuming half of these students are dropped off, an average student vehicle occupancy of 1.5 (2.5 skiers per vehicle minus the driver), 27 parking spaces would be required for ski school drop off.
- The employee schedule was used to estimate how many employees for the base lodge would park on site at one time. Assuming an average employee vehicle occupancy of 1.2, 0.83 parking spaces would be required per employee of the Base Lodge. This vehicle occupancy is consistent with journey to work vehicle occupancy of 1.14 per the 2001 National Household Travel Survey, factored up slightly to account for the fact that ski area employees are more likely to carpool. In addition, based upon a review of parking permits at the existing employee housing and the Town of Mammoth Lakes Employer/Employee Commute Survey, it was assumed that 25 percent of the employees would take transit to work. Note that this

assumption is reflected in the parking analysis and not the trip generation analysis as it was identified as an appropriate assumption only after the traffic analysis was complete. As this assumption has a negligible impact on trip generation, revision of the traffic analysis was determined to not be necessary.

- As the Town does not have a parking requirement for a day spa, the *ITE Parking Generation Manual* was used to estimate a parking demand rate based upon the Health/Fitness Club land use (5.19 spaces per 1,000 square feet of floor area).
- Similarly, as the Town does not have specific parking demand rates for a convenience market, the ITE Parking Generation rate was used.
- The parking demand for a Hotel Equivalent was based upon the Mammoth parking requirements.

Based upon the base parking demand rates identified above and as shown in Table 13, the total parking demand for the site is 994 parking spaces, without reductions for internal trips, walking trips, transit trips, or shared parking.

Parking Reduction for Internal and Pedestrian/Bicycle Trips

As the Eagle Lodge is a mixed-use development project near other trip generators, there could be internal pedestrian trips that could tend to reduce parking needs as well as pedestrian trips to other nearby land uses. However, the applicable internal reductions for a parking analysis are not the same as a trip generation analysis. If, for example, a person decides to go skiing and then, afterwards, go out to dinner at the ski base, the ski area to dinner trip generates no auto trips. However, the parking demand remains on-site even though the land use generating the parking demand shifts. Therefore, it is only appropriate to make reductions in parking demand for the following two types of trips:

- Trips with one trip end internal to the site and one trip end external to the site that occur via non-auto modes. As skier walking trips between the Base Lodge and residences is already accounted for in the skier parking calculation, this reduction primarily applies to the commercial uses and is consistent with the assumptions identified in the trip generation analysis above.
- Walking trips between the lodging and commercial uses. As 95 percent of the hotel parking
  are assumed to be dedicated for hotel guest use only, an internal reduction is applicable for
  trips between lodging and other uses. A reduction of 4 to 7 percent was applied to the ice
  rink, skier, and commercial uses, based upon the internal trip analysis presented in Appendix
  A.
- Twenty-five percent of the employees are assumed to arrive via transit.

| TABLE 13: Base Parking Demand                                                                                          |          |                  |                               |                   |                   |
|------------------------------------------------------------------------------------------------------------------------|----------|------------------|-------------------------------|-------------------|-------------------|
| Land Use                                                                                                               | Quantity | Unit             | Parking<br>Demand Rate        | Source<br>of Rate | Parking<br>Demand |
| Skiers                                                                                                                 | 6,000    | Skiers per Day   | See Table A in Appendix A     | Appendix A 1      | 497               |
| Base Lodge                                                                                                             |          |                  |                               |                   | -                 |
| Food and Beverage                                                                                                      | 8.74     | KSF <sup>2</sup> | No Incremental Parking Demand | arking Demand     |                   |
| Bar and Coffee Bar                                                                                                     | 0.7      | KSF              | No Incremental Parking Demand | arking Demand     |                   |
| Rental / Demo / Repair Shop / Basket Check                                                                             | 3.7      | KSF              | No Incremental Parking Demand | arking Demand     |                   |
| Retail Shop                                                                                                            | 1.2      | KSF              | No Incremental Parking        | arking Demand     |                   |
| Ski School / Day Care (Drop Off Only) <sup>2</sup>                                                                     | 4.3      | KSF              | 7.44                          | SC                | 32                |
| Ticketing / Lobby                                                                                                      | 2.6      | KSF              | No Incremental Parking Demand | arking Demand     |                   |
| Restrooms                                                                                                              | 4.5      | KSF              | No Incremental Parking        | arking Demand     |                   |
| Administrative                                                                                                         | 1.03     | KSF              | No Incremental Parking        | arking Demand     |                   |
| Employee Break Room                                                                                                    | 1.55     | KSF              | No Incremental Pa             | Parking Demand    |                   |
| Ski Patrol                                                                                                             | 0.46     | KSF              | No Incremental Parking        | arking Demand     |                   |
| Maintenance/Loading Dock                                                                                               | 7.5      | KSF              | No Incremental Parking        |                   |                   |
| Mechanical / Cell Site                                                                                                 | 0.55     | KSF              | No Incremental Parking        | arking Demand     |                   |
| Ice Rink                                                                                                               | 5        | KSF              | 3.60                          | rsc               | 18                |
| Maximum Employees at One Time                                                                                          | 122      | employees        | 0.83                          | ST                | 101               |
| Commercial                                                                                                             |          |                  |                               |                   |                   |
| Day Spa                                                                                                                | 80       | KSF              | 5.19                          | 1                 | 42                |
| Locker Club                                                                                                            | 12       | KSF              | No Incremental Parking Demand | arking Demand     |                   |
| Convenience Market                                                                                                     | 4        | KSF              | 3.4                           | 里                 | 14                |
| Sit-Down Restaurant                                                                                                    | 200      | Seats            | 0.33                          | Town Code         | 99                |
| Lodging<br>Hotel Equivalents                                                                                           | 213      | <b>9</b>         | የር                            | Town Code         | 224               |
|                                                                                                                        | 5        | 2                | 2                             |                   | t 77              |
| TOTAL                                                                                                                  |          |                  |                               |                   | 994               |
| Note 1: Includes reductions for walking, drop-off, an transit trips.<br>Note 2: KSF = 1,000 square feet of floor area. |          |                  |                               |                   |                   |

Note 3: Demand parking is estimated based on the Day Care AM peak hour trip generation rate identified in the Trip Generation Manual (ITE, 2003). While Ski School parking demand is estimated based on the maximum number of Ski School attendees and skier vehicle occupancy. Each drop-off activity is assumed to take 15 minutes.

#### Shared Parking Demand Analysis

A "shared parking" analysis considers how two or more individual land uses can be provided with adequate shared parking, considering the variation in the peak accumulation of parked vehicles for different nearby land uses by time of day. This shared parking analysis is based upon the methodology for assessment of shared parking developed by the Urban Land Institute, as documented in *Shared Parking* (2005, Second Edition). This strategy recognizes the fact that some land uses (such as skiing) have peak parking needs that occur at different times than other land uses (such as lodging). Therefore, the parking supply required to accommodate the needs of both land uses is less than the sum of the peak parking needs for the individual land uses.

The basis for this analysis is an hour-by-hour assessment of parking needs for individual land uses, which can then be added to identify the peak parking needs for the total land uses, and when this peak in demand occurs. Accordingly, parking demand for each individual land use in a development block by time of day is estimated. Based on these estimates, the total number of parking spaces required for all the land uses during a particular hour is calculated by adding the parking requirements for all the land uses within the block for that hour.

The shared parking analysis included the following assumptions:

- Only five percent of the parking for lodging is not considered to be dedicated and therefore can be shared with other uses.
- The parking analysis is prepared for weekend conditions as parking demand will be higher on weekends due to high skier visitor numbers.
- The variation by time of day of skier parking spaces is based upon accumulation counts provided by the Northstar-at-Tahoe and Heavenly Valley ski areas.
- The hourly variation in the parking demand generated by the ice rink was assumed to equal that of a shopping center.
- The hourly variation in parking demand for employees was estimated based upon the employee schedule provided by MMSA.
- The hourly variation in the parking demand generated by the Day Spa was assumed to equal that of a health club.
- It was also assumed that the ski school and day care parking spaces would be available to skiers from 11:00 AM on.
- The parking demand of the restaurant was reduced by 50 percent during the noon peak hours to account for the fact that people will be less likely to travel to the site during this time period due to the fact that the area will be relatively crowded with skiers. It can be assumed that more customers would be skiers during this hour.

Table 14 presents the shared parking analysis for weekend conditions. As shown in Table 13, during the weekend a total of 829 shared parking spaces would be required upon build out of the project, assuming only 5 percent of the hotel spaces are not designated and can be shared. Note that this number does not include the 26 spaces (not including 2 charter bus spaces) required to be reserved for the Juniper Springs project, per a previous agreement. Including these spaces, the project's shared parking demand (not including drop-off zones) is 855 spaces. As the project proposes to provide 544 parking spaces, the project will result in a parking shortfall of 311 parking spaces.

Please note, however, that this assumes the development of 213 hotel units. If the project instead constructs 83 multi-family units (Alternative 1 of the NOP), the total site parking shortfall would be reduced to 263. In addition, please note that the following Town standard is applicable to the Eagle Lodge project:

"Ensure that there is adequate parking space(s) available for transients occupying the transient occupancy facility, pursuant to the requirements of this code. If the transient occupancy facility books rooms with persons who utilize tour bus(es), the operator of the facility shall be required to furnish, or make suitable arrangements for furnishing, adequate parking for the tour bus(es) utilizing either onsite or offsite facilities at locations where tour bus parking is permitted."

As the project provides 4 bus bays, it provides adequate parking for two charter buses and 2 MMSA buses.

| TABLE 14: Cumulative Parking Demand                                                                                                                                                                                                                                                                                                             | ive Parkin                          | g Demand                          |                           |                         |                        |                                       |                           | '                                            |               |                     |                       |                    |               | Parki         | ing Der       | mand b        | y Hour     | Parking Demand by Hour for Shared Parking Analysis | ared P                | arking                                  | Analys      | .sis          |           |           |               |                                                                       |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|---------------------------|-------------------------|------------------------|---------------------------------------|---------------------------|----------------------------------------------|---------------|---------------------|-----------------------|--------------------|---------------|---------------|---------------|---------------|------------|----------------------------------------------------|-----------------------|-----------------------------------------|-------------|---------------|-----------|-----------|---------------|-----------------------------------------------------------------------|-------------------------------------------|
| Land Use                                                                                                                                                                                                                                                                                                                                        | Quantity                            | Unit                              | Parking<br>Demand<br>Rate | Source of<br>Rate       | R<br>Parking<br>Demand | Total Reduction for Non-Auto Access 1 | S<br>Dedicated<br>Parking | Available<br>Spaces for<br>Shared<br>Parking | MA 00:9       | MA 00:7             | MA 00:8<br>MA 00:9    | MA 00:01           | MA 00:11      | 12:00 PM      | M9 00:1       | Z:00 PM       | 3:00 PM    | M9 00:4                                            | MG 00:8               | MR 00:7                                 | M9 00:8     | M9 00:9       | M9 00:01  | M9 00:11  | MA 00:S1      | Max Required<br>Spaces P<br>Without<br>Shared Use                     | Max Required<br>Spaces With<br>Shared Use |
| Skiers                                                                                                                                                                                                                                                                                                                                          | 6,000                               | skiers per day                    | See T                     | See Table A             | 497                    | 5.0%                                  | ٥                         | 472                                          | 0             | 3 8                 | 80 208                | 8 328              | 3 402         | 447           | 472           | 466           | 435 3      | 356 16                                             | 162 3                 | <u>°</u>                                | °           | -             | ] -       | ] 。       | 0             | 472                                                                   | 472                                       |
| Base Lodge<br>Ice Rink<br>Employees<br>Ski School / Day Care <sup>2</sup>                                                                                                                                                                                                                                                                       | 5<br>122<br>4.3                     | KSF<br>employees<br>KSF           | 3.6<br>0.83               | LSC<br>LSC<br>ITE       | 18<br>101<br>32        | 5.0%<br>25.0%<br>0.0%                 | 0 0                       | 17<br>76<br>0                                | 32 4          | 1 :<br>59 7<br>32 3 | 3 7<br>71 73<br>32 32 | 10<br>3 76<br>2 32 | 12<br>76<br>0 | 16<br>74<br>0 | 17<br>72<br>0 | 17<br>72<br>0 | 17 69 6    | 16 1<br>68 3                                       | 15 14<br>36 24<br>0 0 | 4 4 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.<br>1. 0. | в<br>51:<br>О | 9 80 0    | 800       | 000           | 17<br>76<br>32                                                        | 17<br>72<br>0                             |
| Commercial Day Spa Convenience Market Sit-Down Restaurant                                                                                                                                                                                                                                                                                       | 8 4 7 7 7 7 9 9                     | KSF 1<br>KSF<br>Seats             | 5.19<br>3.4<br>0.33       | ITE<br>ITE<br>Town Code | 45<br>14<br>66         | 16.0%<br>54.0%<br>16.0%               | 000                       | 35<br>6<br>55                                | 8 0 4         | 177 1               | 17 18<br>1 2<br>14 20 | 3 25               | 18<br>4<br>25 | 18<br>6<br>28 | 17<br>6<br>24 | 17<br>6<br>19 | 17 6 25    | 26 3<br>6 5<br>27 3                                | 35<br>5<br>36<br>44   | 35 26<br>5 5<br>48 55                   | 7 4 5       | 3 21          | 2 27      | r - 1     | 008           | 35<br>6<br>55                                                         | 17<br>6<br>24                             |
| Lodging<br>Hotel<br>Hotel Parking Available for Shared Use<br>Dedicated Hotel Parking                                                                                                                                                                                                                                                           | 213<br>for Shared L<br>g            | rooms<br>Jse                      | 1.05                      | Town Code               | 224<br>11<br>213       | %0.0                                  | 0                         | 224<br>11<br>0                               | 9 213 2       | 9 1                 | 10 9<br>213 213       | 3 213              | 8 213         | 8<br>213      | 8<br>213      | 8 213         | 8<br>213 2 | 9 6<br>213 2                                       | 9 9<br>213 21         | 9 9<br>213, 213                         | 9<br>3 213  | 10            | 10<br>213 | 10<br>213 | 10<br>213     | 11<br>213                                                             | 8<br>213                                  |
| TOTAL                                                                                                                                                                                                                                                                                                                                           |                                     |                                   |                           |                         | 1,005                  |                                       |                           | 968                                          | 302 3         | 343 4               | 441 582               | 2 712              | 2 758         | 810           | 829           | 818           | 7 06 7     | 721 5                                              | 511 35                | 351 341                                 | 1 318       | 3 278         | 263       | 246       | 231           | 906                                                                   | 829                                       |
|                                                                                                                                                                                                                                                                                                                                                 |                                     |                                   |                           |                         |                        |                                       |                           |                                              |               |                     |                       |                    |               |               |               |               |            |                                                    |                       |                                         |             |               |           |           | , a           | Juniper Springs<br>Total                                              | 26<br>855                                 |
|                                                                                                                                                                                                                                                                                                                                                 |                                     |                                   |                           |                         |                        |                                       |                           |                                              |               |                     |                       |                    |               |               |               |               |            |                                                    |                       | Total F                                 | arkin       | Prop          | osed to   | o Be      | onstru<br>Par | Total Parking Proposed to Be Constructed On Site<br>Parking Shorffall | 544<br>-311                               |
| Note 1. Estimated wakings trips from nearby residences. Note 2. As the Sis School / Day Care parking will be provided as drop off spaces and peak parking demand is assumed to occur during A.N. peak hour of skier traffic, all drop off parking spaces were assumed to be utilized during A.M. peak hour and not available for shared parking | from nearby res.<br>Care parking wi | dences.<br>Il be provided as drop | off spaces an             | d peak parking d        | emand is assu          | imed to occur dui                     | ing A.M. peakl            | hour of skier tra                            | affic, all du | 10 yo-du            | arking spe            | aces were          | e assume      | ed to be u    | ulilizedd     | furing A.i    | M. peak    | hour and                                           | notavai               | able for                                | shared      | parking.      |           | l         |               |                                                                       |                                           |

Manmoth Lakes Eagle Lodge Traffic Impact Analysts

# Section 6 TRANSPORTATION IMPACTS

The following potential areas of transportation impacts are considered in this section:

- Impacts on Intersection LOS
- Internal Site Circulation
- Corner Sight Distance
- Potential to Narrow Meridian Boulevard
- Left-Turn Lane Warrants
- Parking Impacts
- Transit Facilities
- Pedestrian and Bicycle Facilities
- Emergency Access

## IMPACTS ON STUDY INTERSECTIONS

As discussed in Section 4, the following two intersections are forecast to exceed LOS thresholds under 2024 plus project conditions:

- Minaret Road/Meridian Boulevard
- Meridian Boulevard/Majestic Pines Drive (East)

#### **LOS Mitigation Measures**

Minaret Road/Meridian Boulevard

The Minaret Road/Meridian Boulevard intersection is estimated to operate at LOS E and exceed LOS thresholds with the project under 2024 plus project conditions. However, construction of a separate eastbound right-turn lane at this location would mitigate LOS to an adequate LOS D. The Minaret Road/Meridian Boulevard intersection is estimated to operate at LOS E and exceed LOS thresholds with or without the project under 2024 plus project conditions. However, construction of a separate eastbound right-turn lane at this location would mitigate LOS to an adequate LOS D. (However, as the current Development Impact Fee does not include the cost associated with the addition of an eastbound right-turn lane at this intersection, the project should be required to fund and construct the additional turn lane.)

Meridian Boulevard/Majestic Pines Drive (East)

The Majestic Pines Drive/Meridian Boulevard intersection is estimated to operate at worst approach and total intersection LOS F with the project under 2024 plus project conditions. The traffic analysis that was prepared for the Mammoth Lakes Capital Improvement Program indicates that the provision of a two-way left-turn lane along Meridian Boulevard to provide for two-stage southbound left turns out of Majestic Pines onto Meridian Boulevard would mitigate LOS at this intersection. However, this mitigation does not mitigate LOS to an acceptable level

under 2024 plus project conditions. The provision of a separate left-turn lane at this location would reduce the vehicle hours of delay for the southbound approach to 3.9 vehicle hours, which would no longer exceed Town thresholds. However, if Meridian Boulevard is reduced to a three-lane cross section (one lane per direction plus a center turn lane), the addition of these lanes would not provide adequate LOS.

The current Development Impact Fee includes the construction of a two-way left-turn lane along Meridian Boulevard at this intersection. However, it does not include the cost of a separate southbound left-turn lane at this location. Therefore, the project shall be required to pay its fair share toward the cost of constructing this southbound left-turn lane. If a roundabout is determined to be the best traffic mitigation option for this intersection, the Town may use the additional funds (paid by the project for the southbound left-turn lane) towards the construction of a roundabout.

Therefore, the construction of a single-lane roundabout at this location is recommended, which would also allow for the narrowing of Meridian Boulevard from four lanes to three lanes (one lane in each direction plus a center turn lane). As discussed below, adequate roadway capacity along Meridian Boulevard would still be provided with a three-lane configuration. A single-lane roundabout with a 100-foot inscribed diameter would operate at worst approach LOS B and total intersection LOS A.

## INTERNAL SITE CIRCULATION

## Auto and Bus Drop Zones

The proposed auto and bus drop zones were reviewed with respect to drop-off space supply and demand, and the proposed layout and circulation in these areas.

Auto Drop-Off Activity

Approximately 800 skiers per day would be dropped off at the project site. Dividing 800 skiers per day by an average vehicle occupancy of 1.5 skiers per car, about 530 vehicles are expected to use the drop-off zone over the course of a peak day. In order to determine the drop zone parking demand, it is necessary to estimate the highest number of vehicles entering the drop zone at once.

Applicable data regarding use patterns of a ski area drop-off zone are available from the Northstar-at-Tahoe Ski Area. According to the *Northstar Village Drop-Off Area Design Review* (LSC Transportation Consultants, Inc., 2003), the highest number of vehicles entering the drop zone within any 5-minute period was 22 vehicles. However, a maximum of 20 vehicles were observed in the drop zone at any one time. The total number of skiers (paid and ski pass) at Northstar-at-Tahoe on the peak day during the 2002/2003 ski season was approximately 9,732. In comparison, the total number of skiers on the peak day at the proposed Eagle Lodge site is expected to be about 6,000. Dividing this figure (6,000) by the total number of skiers at Northstar-at-Tahoe (9,732) yields a factor of approximately 0.62. This factor can be applied to the Northstar drop zone activity, in order to estimate the Eagle Lodge drop zone activity. The resulting maximum number of vehicles expected in the proposed auto drop zone at any one time

is therefore 20 multiplied by 0.62, or about 12 vehicles. In view of the fact that 18 auto drop-off spaces are shown on the site plan (not including ski school drop-off spaces), the proposed auto drop zone parking supply is more than adequate.

According to the MMSA, the maximum drop off activity for the ski school would occur at 10:00 AM, during which time 223 students arrive at the ski school. Assuming half of these students are dropped off and an average student vehicle occupancy of 1.5 (2.5 people per vehicle minus the driver), 27 parking spaces would be required for ski school drop off. As the project proposes to construct 38 short-term parking spaces at the ski school, adequate ski school parking is provided.

## Bus Drop-Off Activity

The proposed bus drop zone accommodates two MMSA buses and two charter buses. As a maximum of one MMSA bus in each direction (eastbound and westbound) is expected on-site at any one time, the proposed bus drop zone parking supply is adequate, so long as charter bus activity is managed to avoid more than two charter buses on-site at a time.

### Drop-Off Area Layout and Circulation

One-way circulation is proposed throughout the drop zones, and a two-way drive aisle is provided at the western access point. This configuration will allow for safe and efficient operation.

Sawtooth bus bays are proposed for the bus drop zone, which is appropriate in that it reduces the total length of curb required to accommodate the four buses, while allowing buses at all bays to operate without being blocked by buses in adjacent bays. Design standards for off-street bus stations are provided in the *Designing for Transit Manual* (Monterey-Salinas Transit, 1996). The proposed 20-foot wide one-way drive aisle and 48-foot long bus bays are consistent with these standards. However, the standard distance between sawtooth spaces is 15 feet, but the proposed plan only provides 12 feet between spaces. Therefore, it is recommended that the distance between sawtooth bus bays be increased to 15 feet in order to provide adequate maneuvering space for buses exiting the bays.

The proposed auto drop zone provides parallel parking spaces along both sides of a one-way drive aisle. It is recommended that a sign with an arrow be posted along the north side of Meridian Boulevard to direct skiers to the "Skier Drop-Off" zone. In addition, "Bus Only" signage should be posted at the entrance to the bus drop zone to discourage autos from entering the bus drop zone. "No Parking" signs should be posted along Meridian Boulevard adjacent to the auto drop zone, and "Do Not Enter" signs are needed at the west end of the auto and bus drop zones.

It is recommended that the curbs at the west end of the auto drop zone be modified to move the intersection of the drop zone and the main parking garage access further north (see Appendix D). This will increase the stopping sight distance for drivers on the two-way western driveway, increase the corner sight distance for autos exiting the drop zone, and make the right-turn movement easier for drivers going from the auto drop zone to the parking structure. Without this, drivers exiting the auto drop-off zone will not be able to make an adequate left turn to approach

the Meridian Boulevard/Majestic Pines (west) intersection at a right-angle, and instead will often end up at the Stop bar at an angle, potentially blocking the inbound lane to the parking structure.

#### Ski School Drop Zone

The proposed ski school drop-off area is located inside the parking structure at the street level. Two lanes of circulation are proposed through the ski school drop zone, providing access to 38 drop-off spaces. Due to the sharp corners at the north end of the drop zone and the two structural columns shown on the inside of the circulating lanes, it would be impossible for a driver of larger vehicles (such as SUVs) using the inside lane to stay in that lane while circulating through this area. Therefore, in order to decrease the potential for vehicular conflict in the ski school drop zone, the circulating area should be striped for one lane of traffic and one-way operation.

#### **Hotel Access on Meridian**

The hotel is provided primary access via Majestic Pines Drive. Left turns onto Majestic Pines Drive from the hotel will be prohibited. Although a raised median at this location is not recommended (due to the need to use this space for exiting truck movements), the absence of such a raised median will make it difficult to prohibit all left turns. Therefore, a "No Left Turn" sign is recommended to be placed at the hotel exit. In addition, it is recommended that a "Do Not Enter," "No Left Turn," and "No Right Turn" signs be located at the appropriate hotel access approaches.

#### Skier/Public Parking

A three-level parking structure is proposed to provide skier/public parking, as well as parking for hotel guests and residents. The public entrance to the parking structure is located at the western access point along Meridian Boulevard. Public parking is provided in the two subterranean levels. In addition, a keyed parking entry/exit is provided on the northeast side of the structure, with access via Majestic Pines Drive. This access point is designated for hotel guests and residents only. A review of the site plan indicates that the parking space size and aisle widths are consistent with Town standards.

#### **Truck Access**

A service yard is proposed to be located on the north side of the structure, with access provided via Majestic Pines Drive, as shown in Appendix C. The proposed truck turnaround would accommodate a 55-foot long (WB-50) truck.

#### **Emergency Vehicle Access**

An indoor ambulance bay is proposed to be located near the service bay on the north side of the structure, with access provided via Majestic Pines Drive. The Fire Department requires that emergency vehicle access be provided within 150 feet of all exterior surfaces on the project site. This requirement is not met along the northwest side of site (near the ice rink and plaza). However, the Fire Department has indicated that this is acceptable, so long as a standpipe system is provided.

#### **Internal Site Circulation Mitigation Measures**

In summary, the following improvements should be provided in order to improve internal site circulation:

- The distance between sawtooth bus bays should be increased to 15 feet in order to provide adequate maneuvering space for buses exiting the bays.
- A sign with an arrow be posted along the north side of Meridian Boulevard to direct skiers to the "Skier Drop-Off" zone is recommended. In addition, "Bus Only" signage should be posted at the entrance to the bus drop zone to discourage autos from entering the bus drop zone. "No Parking" signs should be posted along Meridian Boulevard adjacent to the auto drop zone, and "Do Not Enter" signs are needed at the west end of the auto and bus drop zones.
- A "No Left Turn" sign is recommended to be placed at the hotel exit. In addition, it is recommended that "Do Not Enter," "No Left Turn," and "No Right Turn" signs be located at the appropriate hotel access approaches.
- In order to decrease the potential for vehicular conflict in the ski school drop zone, the circulating area should be striped for one lane of traffic and one-way operation.
- It is recommended that the curbs at the west end of the auto drop zone be modified to move the intersection of the drop zone and the main parking garage access further north.

## **CORNER SIGHT DISTANCE**

According to the Caltrans *Highway Design Manual*, at a 30 mile per hour design speed, an intersection should provide at least 330 feet of corner sight distance. Corner sight distance is measured from the minor approach at a point 15 feet back from the end of the travel way at a height of 3.5 feet to an object at a height of 4.25 feet in the center of the nearest lane to the left or to the centerline of the road to the right. LSC staff reviewed the site plan and determined that the corner sight distance from all proposed site access locations is adequate. Note that while the sight distance from the hotel exit along Majestic Pines Drive to the east may not be 330 feet or more, the prohibition of left turns at this location mitigates this as there is not a potential for drivers turning left out of the hotel access to pull out in front of westbound traffic along Majestic Pines Drive.

## POTENTIAL TO NARROW MERIDIAN BOULEVARD

For some time, the Town has planned to reduce the existing Meridian Boulevard cross section from four lanes to two lanes and a center turn lane. As shown in Table 11, the volume to capacity ratio along Meridian Boulevard is less than 0.5 under 2024 plus project conditions. Therefore, reducing the capacity of this roadway by one half would not exceed the reduced roadway capacity. Therefore, under 2024 plus project conditions, Meridian Boulevard could operate adequately with a three-lane cross section. In addition, a single-lane roundabout at the Meridian Boulevard/Majestic Pines (east intersection would operate at adequate LOS).

Mammoth Lakes Eagle Lodge

LSC Transportation Consultants, Inc.

## LEFT-TURN LANE WARRANTS

A left-turn lane warrant analysis was performed for the project access point along Meridian Boulevard using the "Guidelines for Left-Turn Lanes" presented in the ITE 1990 Compendium of Technical Papers (1990 Compendium of Technical Papers). The analysis is summarized in Table 15 and indicates that a left-turn lane into the auto and bus drop off area on Meridian Boulevard is not warranted and, therefore, need not be provided. However, if Meridian Boulevard is reduced to one lane per direction, a left-turn lane into the site or a center two-way left-turn lane would be warranted.

| Location                                              | Future (2024) Plus<br>Project PM Peak Hour |
|-------------------------------------------------------|--------------------------------------------|
| On Maridian Paulovard at Auto/Pu                      | s Drop Off Entrance                        |
| On Meridian Boulevard at Auto/Bus<br>Left-Turn Volume | S Drop On Entrance<br>24                   |
| Volume Opposing                                       | 441                                        |
| Volume Advancing                                      | 713                                        |
| Percent Left Turns                                    | 3%                                         |
| Left-Turn Lane Warrant Met?                           | NO                                         |

## **PARKING FACILITIES**

As stated in Section 5, including the 26 spaces for Juniper Springs, the project's shared parking demand (not including the skier drop off zone) is 855 spaces. As the project proposes to construct a total of 544 non-drop-off parking spaces, implementation of the project will result in a parking shortfall of 311 parking spaces.

#### **Potential Parking Mitigation Measures**

The project has an overall parking shortfall of 311 parking spaces. The following are potential mitigation measures to this parking shortfall.

• Mitigation Option A: Based upon the assumptions used in this analysis, an additional 950 skiers per day would be required to use transit on a typical winter Saturday to access the Eagle Lodge base in order to reduce the parking demand of the site to 544. Assuming a bus

standing capacity of 60 passengers, an additional 16 bus trips would be needed to the site during a peak day, and in the afternoon an additional 16 bus trips would be needed from the site. Assuming a half-hour route cycle length and a 2.5-hour-long peak period, 4 additional buses would be needed to provide this capacity. So long as good transit ridership can be maintained on both routes, this would mitigate the parking impact. Therefore, the project applicant should be required to provide for 16 additional bus round trips to the site during each weekend day and holiday from Christmas week to the end of March. The applicant would be responsible for purchasing the additional 4 vehicles, as well as operating the additional vehicles.

In addition, as the project will result in a parking shortfall, it could be expected to increase the occurrence of illegal parking within the project vicinity. Therefore, the project applicant shall be required to provide a monitoring report to the Town of Mammoth Lakes for the first year of operation for the period from the Saturday before Christmas through the end of March. This report will provide monitoring data regarding on-street parking, conducted at a minimum two times per day on all weekends and holidays between 9:00 AM and 3:00 PM. If the report identifies illegal parking is occurring at nearby residential/lodging sites within 1,000 feet of the portal, the project applicant shall be responsible for any incremental cost necessary for enforcement. Beyond the initial monitoring period, if future complaints indicate that a parking problem is occurring generated by Eagle Lodge or ski area activities, the project applicant will be responsible for conducting additional monitoring as identified by the Town of Mammoth Lakes and be responsible for funding the necessary measures to address any identified impact.

• Mitigation Option B: To mitigate potential parking impacts, the project could also provide off-site employee parking, increased transit service, and provide parking monitoring and enforcement. If all Eagle Lodge employees were required to park off site the peak parking demand would be reduced by 76 spaces. The remainder of the parking demand could be reduced by adding more transit such that an additional 750 skiers arrive to the site per day on transit. Assuming a bus standing capacity of 60 passengers, an additional 13 bus trips would be needed to the site during a peak day, and in the afternoon an additional 13 bus trips would be needed from the site. Three additional buses would be needed to provide this capacity. Therefore, the project applicant should be required to provide 13 additional bus round trips to the site during each weekend day and holiday from Christmas week to the end of March. The applicant would be responsible for purchasing the additional three vehicles, as well as operating the additional vehicles.

In addition, the project applicant shall be required to provide a monitoring report to the Town of Mammoth Lakes for the first year of operation for the period from the Saturday before Christmas through the end of March. This report will provide monitoring data regarding onstreet parking, conducted at a minimum two times per day on all weekends and holidays between 9:00 AM and 3:00 PM. If the report identifies illegal parking is occurring at nearby residential/lodging sites within 1,000 feet of the portal, the project applicant shall be responsible for any incremental cost necessary for enforcement. Beyond the initial monitoring period, if future complaints indicate that a parking problem is occurring generated by Eagle Lodge or ski area activities, the project applicant will be responsible for

- conducting additional monitoring as identified by the Town of Mammoth Lakes and be responsible for funding the necessary measures to address any identified impact.
- Mitigation Option C: The project could request a zone code amendment from the Town to develop an in lieu of parking fee program. This would allow the project to pay a fee that would go towards the construction of off-site parking lots. The fee owed by the project would be calculated based upon the additional number of spaces that are required. If the parking structures are not provided within a reasonable 1,000-foot walking distance, a parking shuttle to provide access between the project site and the parking lots would need to be provided.

### TRANSIT SERVICES

The proposed project is located on both the existing Yellow and Green bus routes. The project will improve service to the site with the provision of the bus drop-off area, which provides safe pedestrian access to transit. This is considered a beneficial impact to transit. However, as discussed above, the project would be required to fund additional transit service to the site.

### PEDESTRIAN AND BICYCLE FACILITIES

A total of 1,580 skiers are anticipated to walk to the Eagle Lodge from nearby residences. The pedestrian plan indicates that adequate pedestrian access will be provided throughout the Eagle Lodge, and to/from other sites within the vicinity of the project site. Pedestrian connections are provided to the Mammoth Loop Trail Majestic Pines to the north, Juniper Springs, and sidewalks along Meridian Boulevard. In addition, the project proposes to construct a sidewalk along Meridian Boulevard, which is consistent with the *Sidewalk Master Plan* (Town of Mammoth Lakes, 2003). This plan calls for sidewalks on both sides of Meridian Boulevard. Therefore, the project has a beneficial impact on pedestrian and bicycle facilities.

### **EMERGENCY ACCESS**

The project is provided access via Majestic Pines Drive and via Meridian Boulevard. Therefore, as access is provided by two streets (one being a collector and the other being an arterial), the project provides adequate emergency access.

LSC Transportation Consultants, Inc.

Appendix A
Trip Generation
Parking Counts
LOS Interpretation



# TRANSPORTATION PLANNING & TRAFFIC ENGINEERING CONSULTANTS

2690 Lake Forest Road, Suite C Tahoe City, California 96145 (530) 583-4053 FAX: (530) 583-5966 EMAIL: info@lsctahoe.com www.lsctahoe.com

### **MEMORANDUM**

DATE:

Revised August 30, 2006

TO:

Town of Mammoth Lakes

Mammoth Mountain Ski Area

**PCR** 

FROM:

Rebecca Bucar, PE

SUBJECT:

Eagle Lodge EIR Preliminary Trip Generation Assumptions and Analysis

The purpose of this memorandum is to present LSC's analysis of the traffic and parking generation for use in the Eagle Lodge EIR analysis, including the assumptions and analysis steps. We request that everyone review these materials and indicate whether they are acceptable or provide direction on appropriate changes, as they will be used as the basis for the remainder of the traffic and parking analyses. For ease of reference, assumptions are numbered.

### **Skier Trip Generation**

- 1.Per To wn standards, the traffic analysis focuses on typical winter Saturday conditions. Currently, approximately 3,650 skiers visit the ski area via the Eagle Lodge portal on a typical winter Saturday, based upon skier portal data provided by Mammoth Mountain Ski Area (MMSA). On a peak winter day, 5,280 skiers access the mountain via the Eagle Lodge portal. The peak skier mountain design capacity assumed to access the skier portal on a typical Saturday upon build out of the project is equal to 6,000. (Note this is a conservative assumption as the estimated capacity range is 5,000 to 5,960 skiers per day) A comparison of the trip generation of the existing Eagle Lodge site on a peak day versus a typical Saturday is provided in Table A. The purpose of this table is to "calibrate" our assumptions to actual observed parking counts.
- 2.The number of skiers that are expected to reside within walking distance of the site on a typical winter Saturday is a key question in this analysis and the distance a skier is willing to walk is an important assumption. The standard acceptable walking distance used by the traffic engineering profession is 1,325 feet. In some studies we have conducted in the past, LSC has assumed a 500-foot maximum walk distance in ski area parking facilities. However, this shorter walk distance

was partially used due to the fact the walk from a parking space to a shuttle pick up is only one leg of a longer linked trip (from car to shuttle stop via walk, from shuttle stop to shuttle stop via shuttle, and shuttle stop off to chair lift via walk). It is therefore reasonable to assume that skiers whose entire trip consists of the walk trip would be willing to walk a longer distance. LSC proposes to assume that all skiers residing in units within 1,000 feet of the Eagle Lodge chairlift would potentially walk to the lift. This is a reasonable walk distance, even if done in ski boots, considering the time it takes to load up a vehicle, drive the vehicle, wait in line to park the vehicle, and then walk from the parking structure to the Gondola. This does not infer that no one would walk further, but rather that the typical person would not. This walk distance does not apply to ski in/ski out units.

Applying the 1,000-foot radius for walking distance and not including units proposed by the project or located on the Juniper Springs property, a total of 138 resident single-family units and 487 transient condo units are within walking distance of the site. In addition, there are roughly 22 single-family and 99 condo units with ski in/ski out access to the Eagle Lodge portal.

Per Town direction and based upon data collected as a part of the General Plan Update, it is assumed that there are approximately 2.4 people residing in each resident non-condo unit and 4 people residing in each transient condo unit on a typical winter Saturday. The number of people residing in a resident unit does not change on a peak day versus a typical winter Saturday. However, on a peak day the number of people per transient unit is assumed to equal 4.4, which is based upon a comparison of occupancy data on a typical winter Saturday versus a peak day provided by the Town.

- 3.LSC has used the assumption that approximately 61 percent of the residents ski on a given day, as derived from the Mammoth Lakes General Plan. This assumption is reasonable based on the following available data:
  - A trip generation analysis of the Northstar-At-Tahoe ski area found that roughly 75 percent of the people staying in the condominiums at Northstar-At-Tahoe ski on a given day.
  - A study done by the Jackson Hole Area Chamber of Commerce indicates that roughly 90 percent of the guests in the community are skiers while only 70 percent ski on any given day.

The lower percentage of skiers that ski on a given day here is appropriate as it takes into account the fact that some of the residents that are within walking distance of the site are full-time residents and less likely to ski during busy weekends.

- 4.Tab le A also includes an assumption regarding the percent of skiers that are within walking distance of the portal, but decide to drive to Eagle Lodge or another portal. It was assumed the 40 percent of the skiers that are within walking distance and are not residing in Juniper Springs or the Eagle Lodge site would drive anyway on a peak day, which was estimated based upon the calibration to actual conditions. However, on a typical Saturday it is assumed that 50 percent of these residents will drive to the site, as parking is more readily available.
- 5.T here area also 174 condo units on the Juniper Springs site in addition to the 213 hotel equivalents proposed by the project (one hotel equivalent was assumed to equal 0.5 condo units). It was assumed the 15 percent of the skiers that are residing in Juniper Springs or the Eagle Lodge site

- would drive anyway on a peak day. However, on a typical Saturday it is assumed that 25 percent of these residents will drive to the site, as parking is more readily available.
- 6.LSC has used the assumption provided by MMSA that 700 skiers arrive at this location via drop off on a peak day. This number is assumed to decrease on a typical winter Saturday, proportional to the total number of skiers arriving on a peak day versus a typical winter Saturday.
- 7.Based upon limited ridership data provided by MMSA, LSC estimated typical winter Saturday and peak day transit ridership. The peak day ridership was estimated based upon the transit ridership on December 29, 2005, a day during which more than 24,000 skiers arrived at the ski mountain. The typical Saturday ridership was based upon the level of ridership recorded on January 7, 2006 factored up based upon the number of skiers on that day versus a typical Saturday. Assumptions regarding the percent of riders that are skiers were estimated based upon the Mammoth Lakes Transit Plan (LSC, 2001). It was also assumed that half of the skiers riding the Yellow and Combo Routes access the Eagle Lodge portal on a peak day while 25 percent access Eagle Lodge on a typical Saturday (as parking is more available at Eagle Lodge on off-peak days). As the Eagle Lodge does not specifically propose to expand transit service, it is note appropriate to assume an increase in transit ridership with the project implementation, especially as most routes currently operate at capacity.
- 8.AI Tremaining vehicles arrive via automobile and require a parking space. Assuming a skier vehicle occupancy of 2.5 skiers per vehicle (typical for a ski area), it is estimated that 476 skier vehicles currently access the ski area on a peak day. On a typical Saturday, however, only 472 skier vehicles access the site.
- 9.As suming that 15 percent of the skier parking spaces turn over during a day (based on typical ski area access patterns), 414 parking spaces area needed on a peak day and 410 parking spaces are needed on a typical Saturday. The estimated parking requirements on a peak day and typical winter Saturday can be compared to parking counts provided by MMSA on a peak day, during which time vehicles park in the Eagle Lodge parking lot and along Meridian Boulevard from the Juniper Springs site eastward to Minaret Road. Comparing the estimated parking demand to the actual peak day and typical Saturday parking counts indicates a difference of only 4 percent or less. This verifies the traffic assumptions are reasonable.
- 10. It is also assumed that 40 percent of the skiers exit the ski area during the p.m. peak hour, which is based upon the counts recently collected at the site, the assumption that 15 percent of the skier parking spaces turn over per day, and a review of data from other similar ski areas.
- 11. In addition, it is assumed that 40 percent (the same proportion as that of traffic exiting the area during p.m. peak hour) of the drop-off skiers are picked up during the p.m. peak hour with a vehicle occupancy of 1.5 skiers per vehicle (2.5 vehicle occupancy minus 1 driver).
- 12. Applying the above assumptions to plus project conditions (third column in Table A) indicates the project will generate 415 entering peak-hour skier trips and 213 exiting peak-hour skier trips. This represents an increase of 123 entering peak-hour skier trips and 85 exiting peak-hour skier trips over no project or existing conditions.

An estimate of the total skier trip generation is provided in Table A.

### **Base Lodge Trip Generation**

- 13. The ITE Trip Generation Manual (ITE, 2003) does not provide a Saturday trip rate for Ice Rinks. Therefore, a Saturday trip rate was estimated by comparing the ITE Ice Rink weekday trip rates to ITE weekday and Saturday trips rates for a Multi-Purpose Recreational Facility. Using these rates, it is estimated that the ice rink will generate 13 p.m. peak-hour trips on a Saturday. Approximately half of these trips are expected to be generated by skiers already on site.
- 14. It is assumed that the following uses located in the Base Lodge area do not generate any external trips, except for employee trips, as they are considered to be used as skier amenities:
  - Cafeteria-Type Dining Area
  - Bar and Coffee Bar
  - Rental/Demo/Repair Shop/Basket Check
  - Retail Shop
  - Ski School / Day Care
  - Ticketing/Lobby

- Restrooms
- Administrative
- Employee Break Room
- Ski Patrol
- Maintenance/Loading Dock
- Mechanical/Cell Site

However, it can be assumed that each employee will generate an average of 2.2 person trips per day (assuming 10 percent leave the site once during the day). Assuming a vehicle occupancy of 1.2 employees per vehicle indicates that each employee will generate 1.83 daily vehicle trips, prior to transit reductions. Furthermore, MMSA provided an employee schedule for the above-identified uses, which was used as a basis for estimating the percent of employees that leave or enter the site during the p.m. peak hour.

The trip generation associated with the Base Lodge uses is summarized in Table C. The Base Lodge is expected to generate 57 p.m. peak-hour trips in addition to the skier trips identified in Table A.

### **Commercial Area Trip Generation**

15. The trip generation of the commercial portion of the site is estimated in Table D, applying standard ITE rates. Note that it is assumed that the locker club is a skier amenity and does not generate any external trips. The commercial portion of the project is expected to generate 395 p.m. peak-hour trips (203 entering and 192 exiting).

### **Lodging Trip Generation**

16. The trip generation associated with the lodging portion of the project is shown in Table E. The trip generation associated with the lodging units is based upon the calibrated Town of Mammoth Lakes traffic model daily trip rates. The percent of traffic entering and exiting the site during the Saturday peak-hour is estimated based upon the proportion of daily traffic that occurs during the peak hour, based upon ITE Hotel trip rates. Note that this analysis assumes the conference facilities will be managed such that, during peak ski conditions, the meeting/conference facilities would not generate external traffic before 7:00 p.m. In the off season (including the summer) or after 7:00 p.m. in the winter, the community room could be rented out and used by people not residing at the lodge. However, during the winter the events that occur after 7:00 p.m. would contribute to

the daily trip generation. The daily trip generation assumes one event per day, and a vehicle occupancy of 2.5.

17. The lodging portion of the project is expected to generate 141 p.m. peak-hour trips (70 entering and 71 exiting) during a typical winter Saturday.

### **Summer Trip Generation**

18. While the traffic analysis focuses on typical winter Saturday conditions, although a summer trip generation analysis is also provided. The majority of the summer trip generation will consist of mountain bikers. According to Dave Geirman (MMSA), approximately 25,000 bikers per year visit the mountain, a number which has been growing at a rate of 5 to 8 percent per year. The mountain bike park hopes to increase this number to 40,000 bikers per year in the next five years, which represents an annual growth rate of 9.9 percent per year. Currently approximately 600 bikers per day visit the mountain on a typical summer weekend day. Approximately half of these bikers are downhill bikers, while the other half are cross-country bikers.

According to the current <u>Town of Mammoth Lakes General Plan</u>, the number of people at one time the Town can accommodate is expected to grow at a rate of 2.6 percent a year over the next 20 years. Applying this growth rate indicates that by 2024 approximately 977 bikers per day will visit the mountain, which accounts for the growth projected by David Geirman, in addition to some growth generated by growth in population. Assuming that the number of downhill bikers will grow at twice the rate as the cross-country bikers, a total of 426 cross-country bikers and 551downhill bikers per day will be on the mountain by 2024. As Eagle Lodge provides primary access to cross-country bikers, approximately 426 bikers will access the Eagle Lodge lift on a summer weekend day by 2024. It is also assumed that 50 percent of the bikers will bike to the site.

- 19. The summer trip rates for the Day Care, Mountain Biking Employees, Day Spa, Convenience Market, Sit-Down Restaurant, and Hotel were assumed to equal the winter trip rates.
- 20. In the off season, the community room / conference room can be rented out and used by people not residing at the lodge. The trip generation of this facility is estimated assuming a 200 person-at-one-time capacity, a maximum of two events occurring on one day, 2.5 vehicle occupancy, and as a worst-case one event ending and one event starting during the p.m. peak hour.

Without reductions for internal and walking trips and as shown in Table F, the project is expected to generate 743 p.m. peak-hour trips on a summer Saturday (353 entering, 390 exiting) and 6,421 daily trips, which is roughly 39 percent less than the levels generated in the winter.

### Trips Remaining Internal to the Site

Due to the mix of uses, some person-trips would remain internal to the site. The basic assumptions regarding trip internalization are summarized below and in Figure A.

21. It is assumed that half of the ice rink customers will consist of skiers that are already at the ski area. Therefore, roughly half of the ice rink trips remain internal to the site. These internal trips would be between the ice rink and the Base Lodge or the Lodging and would not result in external trips.

- 22. Based upon the <u>ITE Trip Generation Handbook</u> methodologies, it is assumed that roughly 9 percent of the commercial exiting trips and 5 percent of the commercial entering trips remain internal to the site due to the interaction between the commercial uses and the lodging uses.
- 23. An additional 5 percent of the commercial trips are also expected to occur between the skiers at the base lodge and the commercial and, therefore, remain internal to the site.
- 24. It was assumed that there are two people per hotel equivalent unit, as each hotel equivalent is assumed to equal one half of a transient condo. Assuming 61 percent of the hotel guests ski on a typical winter Saturday indicates that a total of 1.22 skiers per hotel equivalent enter the hotel from the ski area on a typical winter Saturday. Of these, 0.49 per unit enter during the p.m. peak hour, assuming 40 percent exit the ski area during the p.m. peak hour. Assuming that these trips would otherwise occur as vehicle trips with vehicle occupancies of 2.5 people per vehicle, 0.20 internal p.m. peak-hour trips are generated by each hotel unit. As stated above, it is assumed that 15 percent of skiers staying at the Eagle Lodge access the ski area via other portals.

### Walking Trips

- 25. All internal trips are assumed to be walking trips, in addition to the skier-generated walking trips between residences and the ski portal. In addition, it was assumed that the majority of the customers to the convenience market would be residents in the residential areas located east of Minaret Road, south of Lake Mary Road, and north of Mammoth Creek, as residents of other areas would likely do most shopping at other commercial centers more convenient to their residences. Of these residences, roughly 65 percent are within walking distance (1,000 feet) of the proposed market. However, to provide a reasonably conservative analysis, it has been assumed that 50 percent of the convenience store customers will walk to the market, and the remaining half drive.
- 26. It is also assumed that approximately 10 percent of the Day Spa and Restaurant trips consist of walking trips to nearby residences.
- 27. Finally, it was assumed that 5 percent of the Ice Rink trips would be made as external walking trips to nearby residences.

The reductions for winter external walking trips are shown in Table G. The reductions for summer external walking trips are shown in Table H.

### **Pass-By Trips**

28. A proportion of the commercial trips would consist of pass-by trips, or trips that are made by drivers that are already on the adjacent roadways prior to the development of the site, which (with the development of the site) can be expected to make intermediate stops at project land uses on the way from an origin to a primary trip destination. Pass-by trips are included in the site driveway movements, but are reflected as reductions in the through volumes passing the site driveway locations.

Data regarding appropriate pass-by percentages for various land uses are available in the *Institute* of *Transportation Engineers Trip Generation Handbook*. Based upon the typical pass-by percentages contained in the ITE Trip Generation Handbook and considering regional access patterns, the percentage of pass-by trips generated by the convenience market is assumed to be

25 percent of the vehicle trips. This percentage is less than half of the average pass-by rate identified in the Institute of Transportation Engineers Trip Generation Handbook because the potential for pass-by trips along the low traffic volume Meridian Boulevard is less. Applying this assumption indicates that roughly 8 percent of the existing vehicles on Meridian Boulevard would divert into the market during the p.m. peak hour.

The total external auto and pass-by trip generation of the project is shown in Table G. As the table indicates, based upon the assumptions identified above the project is expected to generate 914 p.m. peak-hour trips (320 entering and 594 exiting). However, this does not take into account the existing trip generation of the project site, although the EIR analysis will.

### **Parking Analysis**

NOTE: The following two changes of assumptions were made in the parking analysis that were not made in the trip generation analysis, as follows:

- 25 percent of the employees are assumed to use transit to travel to/from work.
- The 22-unit Altis project was assumed to be built in the project build out condition.

These changes are not reflect ed in the trip generation analysis as it was determined that the changes in assumptions had a negligible impact on trip generation (less than two percent). However, these changes were reflected in the parking demand analysis.

The purpose of the parking analysis is to evaluate the demand for parking generated by the various elements of the project, assess the potential to reduce parking supply through the shared use of parking, and provide information useful in the development of parking supply strategies. With careful consideration of the individual uses to be accommodated on the site and variation in the need for parking over the day, it is possible to meet all of the parking needs while also minimizing the total amount of parking spaces that must be provided.

The following are the primary assumptions that were used to estimate parking demand.

- 29. In general, the Town of Mammoth Lakes parking requirements were applied in this analysis unless the parking requirement rates were found to not be applicable (as discussed below).
- 30. As most of the uses contained in the Base Lodge are skier amenities, no customer parking is required aside from the skier parking. However, parking would be required for employees, the ice rink, and day care/ski school drop offs.
- 31. The parking demand for Day Care drop-off was estimated based upon the Day Care a.m. peak-hour trip generation rate identified in *ITE Trip Generation Manual*. It was also assumed that 40 percent of the drop off vehicles per hour could enter the site within the peak 15 minutes. Each Day Care parking space was assumed to turn over every 15 minutes. Based upon these assumptions, it is estimated that 5 day care drop off spaces are required.
- 32. According to MMSA, the maximum drop off activity for the ski school would occur at 10:00 a.m., during which time 223 students arrive at the ski school. Assuming half of these students are dropped off, an average student vehicle occupancy of 1.5 (2.5 skiers per vehicle minus the driver), 27 parking spaces would be required for ski school drop off.

- 33. The employee schedule was used to estimate how many employees for the base lodge would park on site at one time. Assuming an average employee vehicle occupancy of 1.2, 0.83 parking spaces would be required per employee of the Base Lodge.
- 34. As the Town does not have a parking requirement for a day spa, ITE Parking Generation was used to estimate a parking demand rate based upon the Health/Fitness Club land use (5.19 spaces per 1,000 square feet of floor area).
- 35. Similarly, as the Town does not have specific parking demand rates for a convenience market, the *ITE Parking Generation* rate was used.
- 36. The parking demand for a Hotel Equivalent was based upon the Mammoth parking requirements.

Based upon the base parking demand rates identified above and as shown in Table I, the total parking demand for the site is 994 parking spaces, without reductions for internal trips, walking trips, or shared parking.

Parking Reduction for Internal and Pedestrian/Bicycle Trips

- 37. As the Eagle Lodge is a mixed use development project near other trip generators, there could be internal pedestrian trips that could tend to reduce parking needs. However, the applicable internal reductions for a parking analysis are not the same as a trip generation analysis. If, for example, a person decides to go skiing and then, afterwards, go out to dinner at the ski base, the ski area to dinner trip generates no auto trips. However, the parking demand remains on site even though the land use the parking demand is associated with shifts. Therefore, it is only appropriate to make reductions in parking demand for the following two types of trips:
  - Trips with one trip end internal to the site and one trip end external to the site that occur via non-auto modes. As skier walking trips between the Base Lodge and residences is already accounted for in the skier parking calculation, this reduction primarily applies to the commercial uses and is consistent with the assumptions identified in the trip generation analysis above.
  - Walking trips between the lodging and commercial uses. As 95 percent of the hotel parking is
    assumed to be dedicated for hotel guest use only, an internal reduction is applicable for trips
    between lodging and other uses. A reduction of 4 to 7 percent was applied to the ice rink, skier,
    and commercial uses based upon the internal trip analysis.
  - 25 percent of the employees are expected to take transit to/from work, based upon a review
    of parking permits at employee housing sites and the Mammoth Lakes Employee/Employer
    Commute Survey.

### **Shared Parking Demand Analysis**

A "shared parking" analysis considers how two or more individual land uses can be provided with adequate shared parking, considering the variation in the peak accumulation of parked vehicles for different nearby land uses by time of day. This shared parking analysis is based upon the methodology

for assessment of shared parking developed by the Urban Land Institute, as documented in *Shared Parking* (2005, Second Edition). This strategy recognizes the fact that some land uses (such as skiing) have peak parking needs that occur at different times than other land uses (such as lodging). Therefore, the parking supply required to accommodate the needs of both land uses is less than the sum of the peak parking needs for the individual land uses.

The basis for this analysis is an hour-by-hour assessment of parking needs for individual land uses, which can then be added to identify the peak parking needs for the total land uses, and when this peak in demand occurs. Accordingly, parking demand for each individual land use in a development block by time of day is estimated. Based on these estimates, the total number of parking spaces required for all the land uses during a particular hour is calculated by adding the parking requirements for all the land uses within the block for that hour.

The shared parking analysis included the following assumptions:

- 38. Only five percent of the parking for lodging is not considered to be dedicated and therefore can be shared with other uses.
- 39. The parking analysis is prepared for weekend conditions. as parking demand will be higher on weekends due to high skier visitor numbers.
- 40. The variation by time of day of skier parking spaces is based upon accumulation counts provided by the Northstar-At-Tahoe and Heavenly Valley ski areas.
- 41. The hourly variation in the parking demand generated by the ice rink was assumed to equal that of a shopping center.
- 42. The hourly variation in parking demand for employees was estimated based upon the employee schedule provided by MMSA.
- 43. The hourly variation in the parking demand generated by the Day Spa was assumed to equal that of a health club.
- 44. It was also assumed that the ski school and day care parking spaces would be available to skiers from 11:00 AM on.
- 45. The parking demand of the restaurant was reduced by 50 percent during the noon peak hours to account for the fact that people will be less likely to travel to the site during this time period due to the fact that the area will be relatively crowded with skiers. It can be assumed that more customers would be skiers during this hour.

Table J presents the shared parking analysis for weekend conditions. As shown in Table J, during the weekend a total of 829 shared parking spaces would be required upon build out of the project, assuming hotel spaces are not designated and can be shared. Note that this number does not include the 26 spaces required to be reserved for the Juniper Springs project, per previous agreement.

| State part Day   Stat   | 138     138       138     138       22     22       487     487       99     99       108     24       44     4.0       61%     61%       61%     61%       61%     61%       1,080     830       1,080     830       1,080     830       1,080     830       1,080     830       1,080     1,100       61%     61%       44     4.0     61%       40     61%     61%       40     61%     61%       40     1,150     1,580       1,190     1,180     1,480       1,190     1,180     1,480       1,190     1,180     1,480       1,190     1,180     1,480       1,190     1,180     1,480       40%     40%     40%       40%     40%     40%       416     1,180     1,180       195     183        187     128     213       187     128     213       187     128     213       187     128     213       187     128     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 138 138 138 138 138 138 138 22 22 22 22 22 22 22 22 22 22 22 22 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 5.280 1, 3.650 6,000  the coll Lint <sup>2</sup> the co |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Existing Peak Saturday Conditions (for Assumption Validation) | Existing Typical<br>Saturday<br>Conditions | Plus Project<br>Conditions on a<br>Typical Saturday | Estimated Impact of<br>Project on Skier<br>Traffic and Other<br>Variables |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|
| 138 138 138 138 138 138 138 22 22 487 99 99 99 99 99 99 99 99 99 99 99 99 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138 138 138 138 138 22 22 22 22 22 22 22 22 23 24 4.0 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 138 138 138 138 138 22 22 22 22 22 22 22 24 44 4 4 6 40 99 99 99 99 99 99 99 99 99 99 99 99 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 138 138 138 138 138 22 22 22 22 22 487 487 487 487 487 487 487 99 99 24 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | skiers per Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               | 3,650                                      | 6,000                                               | 2,350                                                                     |
| Eagle Lodge Portal 487 22 22 22 487 99 99 99 99 99 99 99 99 99 99 99 99 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22 22 22 22 22 487 487 487 487 487 487 487 487 487 487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22 22 22 22 22 22 22 22 22 22 22 22 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000 feet of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 138                                                           | 138                                        | ć                                                   |                                                                           |
| 487     487     487       99     99     99       99     99     99       44     4.0     4.0       61%     61%     4.0       61%     61%     40%       1,080     830     1,000       1,080     830     1,000       1,080     830     1,000       61%     61%     61%       15%     25%     15%       400     320     580       1,910     840     2,170       700     1,180     1,480       1,190     1,180     1,450       1,190     1,180     1,450       2,5     2.5     2.5       1,50     1,450     1,500       1,190     1,180     1,450       1,190     1,180     1,450       1,190     1,180     1,160       476     40%     40%       40%     40%     40%       40%     40%     40%       414     410     504       237     183     118       166     164     202       187     128     213       187     128     213       118     118     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 487     487     487       99     99     99       99     99     99       4,4     4,0     4,0       61%     61%     61%       61%     61%     61%       1,080     830     1,000       1,080     830     1,000       1,080     830     1,000       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       61%     61%     61%       62%     62%     62%       64%     61%     61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 487 487 487 487 487 99 99 99 99 99 99 99 99 99 99 99 99 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 487 487 487 487 99 99 99 99 99 99 99 99 99 99 99 99 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number of Ski In / Ski Out Non-Condos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                            | 22                                         | 22                                                  | 1 1                                                                       |
| 2.4 2.4 2.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4 2.4 2.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4 2.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4 2.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Condo Units within 1000 feet of Lift <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 487                                                           | 487                                        | 487                                                 | ;                                                                         |
| 2.4 4.0 4.0 4.4 4.0 4.0 61% 61% 61% 1,080 830 1,000 1,080 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 15% 25% 25% 400 700 480 840 1,190 1,180 1,450 1,190 1,180 1,450 2,170 480 800 1,190 1,180 1,450 2,5 15% 40% 40% 40% 40% 40% 410 504 237 195 183 195 183 187 128 213 353 292 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4 2.4 4.0 61% 61% 61% 61% 61% 61% 50% 40% 1,080 830 1,000  17.4 17.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% | 2.4 2.4 4.0 4.4 4.0 61% 61% 61% 61% 61% 661% 61% 1,080 830 1,000 1,080 830 1,000 1,480 1,150 1,580 1,910 840 2,170 700 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,150 1,190 1,180 1,150 1,190 1,180 1,150 1,190 1,180 1,160 1,190 1,180 1,160 1,180 1,160 1,180 1,160 1,180 1,160 1,180 1,160 1,180 1,160 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1 | 2.4 4.4 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of Ski In / Ski Out Condos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66                                                            | 66                                         | 66                                                  | i                                                                         |
| Fagle Lodge Portal 4.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fagle Lodge Portal 4.4 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fagle Lodge Portal 4,4 4,0 61% 61% 61% 61% 61% 61% 61% 61% 40% 40% 1,080 830 1,000 1,080 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fagle Lodge Portal 4,4 4,0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Estimated Number of People per Non-Condo Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4                                                           | 2 6                                        | 7.0                                                 |                                                                           |
| Eagle Lodge Portal     61%     61%     61%       1,080     830     1,000       1,080     830     1,000       1,080     830     1,000       174     174     281       4,4     4,0     61%       61%     61%     61%       61%     61%     61%       15%     25%     15%       400     1,150     1,150       1,190     1,180     1,180       1,190     1,180     1,450       1,190     1,180     1,450       2,5     2,5     2,5       15%     40%     40%       40%     40%     40%       40%     40%     40%       40%     420%     1,160       166     164     202       187     128     213       187     128     213       187     128     213       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fagle Lodge Portal   40%   61%   61%   61%   61%   61%   61%   60%   40%   1,000     1,080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fagle Lodge Portal   61% 61% 61% 61% 61% 61% 60% 40% 1,080 830 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eagle Lodge Portal 40% 50% 61% 61% 61% 61% 700% 1,080 830 1,080 1,080 1,080 830 1,090 1,080 830 1,090 1,090 1,140 1,144 4.0 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Estimated Number of People per Condo Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 4<br>1 4                                                    | 4.0                                        | <b>4.7</b>                                          | : 1                                                                       |
| Fagle Lodge Portal 40% 50% 40% 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1480 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1880 1,1 | Fagle Lodge Portal 40% 50% 40% 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,100 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 1,150 | Fagle Lodge Portal 40% 50% 40% 1,000 1,000 830 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1,140 1 | Fagle Lodge Portal 40% 50% 40% 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,100 1,450 1,000 1,100 1,450 1,000 1,100 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Percentage of People per Unit Skiing per Day <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61%                                                           | 61%                                        | 61%                                                 | t                                                                         |
| 1,080     830     1,000       174     174     4.0     61%       61%     61%     61%     61%       15%     25%     15%       400     320     580       1,480     1,150     1,580       1,910     480     2,170       700     480     800       1,190     1,180     1,450       2,5     2.5     2.5       15%     40%     40%       40%     40%     40%       40%     40%     40%       40%     420        432     237        432     420        432     420        432     420        432     420        187     128     213       353     292     415       137     213       137     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,080     830     1,000       174     174     4.0     4,0       61%     61%     61%     61%       15%     25%     15%       400     320     580       1,480     1,150     1,580       1,480     1,150     1,580       1,910     480     800       2,5     15%     400       40%     40%     40%       40%     40%     40%       414     410     504       237     12%     15%       432     420        166     164     202       187     128     213       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,080     830     1,000       174     174     4.0     4,0       61%     61%     61%     61%       16%     25%     15%       400     320     580       1,480     1,150     1,580       1,480     1,150     1,580       1,910     480     800       2,5     2.5     2.5       15%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       41     410     504       42     420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,080     830     1,000       174     174     281       4.4     4.0     61%       61%     61%     61%       15%     25%     15%       400     320     580       1,310     840     2,170       700     480     800       1,190     1,180     1,450       2.5     2.5     2.5       15%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       416     410     504       432     420        432     420        166     164     202       187     128     213       353     292     415       187     128     213       188      213       189     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Percentage Skiers Within 1,000-Foot Walk Distance Accessing Other Portals or Driving to Eagle Lodge Portal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40%                                                           | 20%                                        | 40%                                                 | : 1                                                                       |
| re and Proposed Project) 4 174 174 174 281 40 40 40 61% 61% 61% 61% 700 840 320 580 11,910 840 2,170 700 840 2,170 1,190 1,180 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 1,480 | se and Proposed Project) 4 174 174 281 40 40 61% 61% 61% 61% 61% 61% 61% 15% 25% 15% 680 1,910 840 2,170 1,910 1,910 840 2,170 1,910 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 | Project  * 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Project  * 174   174   281     4.4   4.0   61%     61%   61%     15%   25%   15%     1,480   1,150   1,580     1,910   440   2,170     1,910   1,180   1,450     1,190   1,180   1,450     1,190   1,180   1,450     1,190   1,180   1,450     1,190   1,180   1,450     1,190   1,180   1,450     1,180   1,450     1,180   1,450     1,180   1,450     1,180   1,160     1,180   1,160     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180   1,180     1,180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Skiers Walking to Lift from Areas Other Than Juniper Springs and Proposed Project Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,080                                                         | 830                                        | 1,000                                               | 170                                                                       |
| Is and Proposed Project) 4 174 174 281 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Is and Proposed Project) 1 174 174 281 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project) 4 174 174 281 4.0 4.0 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                            |                                                     |                                                                           |
| 1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 4,4 6 4,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14,0 6 14 | 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of Condo Units on Site (Juniper Springs and Proposed Project) *<br>Estimated Number of People and Condo Init                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 174                                                           | 174                                        | 281                                                 | 107                                                                       |
| 15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%    | 15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%   15%    | 61%   61%   61%     15%   25%   15%     14%   1,150   1,580     1,480   1,150   1,580     1,910   480   2,170     1,910   480   800     1,190   1,180   1,450     1,190   1,180   1,450     1,190   1,180   1,450     1,190   1,180   1,450     1,190   1,180   1,450     1,190   1,180   1,450     1,190   1,180   1,160     1,190   1,183       1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160   1,160     1,160     1,160   1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160     1,160            | 61% 61% 61% 61% 61% 61% 400 320 400 320 580 158% 61% 61% 400 320 1,480 1,480 1,180 1,580 1,190 1,190 1,180 1,450 1,190 1,180 1,180 1,450 1,190 1,180 1,450 1,18% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Parameter A final control of the con | 4.4                                                           | 4.0                                        | 0.4                                                 | ı                                                                         |
| 1976 22% 15% 15% 15% 15% 15% 15% 15% 15% 15% 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9% 2.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1.9% 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1976 22% 15% 15% 15% 15% 15% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1976 22% 15% 15% 15% 15% 15% 16% 16% 16% 16% 16% 16% 16% 16% 16% 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rencentage of reopie per onit oking per day. Percentage Skiers Accessing Other Dodgle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61%                                                           | 61%                                        | 61%                                                 | 1                                                                         |
| 1,480     1,150     1,580       1,910     840     2,170       700     480     800       1,190     1,180     1,450       2.5     2.5     2.5       1,190     1,180     1,450       1,190     1,180     1,450       2.5     2.5     2.5       1,5%     15%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     40%     40%       40%     41%     504       41     410     410       43     42     420       166     164     202       187     128     213       415     415       413     415       413     41     41       41     41     41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,480 1,150 1,580 1,160 1,580 1,160 1,191 840 2,170 700 480 800 1,190 1,180 1,180 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1,450 1, | 1,480 1,150 1,580 1,910 840 2,170 700 480 800 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 40% 40% 40% 476 472 580 414 410 504 237 237 237 195 183 195 166 164 202 167 168 168 213 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,480 1,150 1,580 1,910 840 2,170 700 480 800 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 414 410 40% 40% 40% 40% 414 410 504 237 237 432 420 432 844 1,160 166 164 202 187 128 213 353 292 415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Skiers Walking to Lift from Juniper Springs or Proposed Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400                                                           | 320                                        | 15%<br>580                                          | <br>260                                                                   |
| ng Day  M. Peak Hour  A. Peak Hour  A. Peak Hour  1,190  1,190  1,190  1,190  1,180  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1,150  1 | ng Day  The seak Hour  The seak Hour | 1,480 1,150 1,580 1,191 1,150 1,580 1,191 1,191 1,191 1,190 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,145 | 1,480 1,150 1,580 1,580 1,191 1,150 1,580 1,100 1,1580 1,191 1,190 1,180 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450 1,1450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kiere Walking to 1 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                             | ;                                          |                                                     |                                                                           |
| To a substitute of the control of th | To a substitute of the substit | 1,310   480   5,170     1,190   1,180   1,460     1,190   1,180   1,460     1,190   1,180   1,460     1,190   1,180   1,460     1,190   1,180   1,460     1,190   1,190   1,460     1,190   1,190   1,160     1,190   1,190   1,160     1,190   1,190   1,160     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190     1,190   1,190   1,190        | 1,510   480   5,170     1,190   1,180   1,450     1,190   1,180   1,450     2.5   2.5   15%     40%   40%   40%     40%   40%   40%     414   410   504     237   237   237     195   183       432   420       166   164   202     187   128   213     187   128   213     187   128   213     187   128   213     187   128   213     187   128   213     187   128   213     187   128   213     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%     40%   40%   40%     40%   40%   40%     40%   40%     40%   40%   40%     40%   40%   40%     40%   40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40%     40%   40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ones yearning to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,480                                                         | 1,150                                      | 1,580                                               | 430                                                                       |
| 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,180 1,450 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190 1,190  | 1,190 1,180 1,450  2,5 2,5 2,5  1,5% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,190 1,180 1,450 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,190 1,180 1,450 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kiers Being Dropped Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 700                                                           | 480                                        | 800                                                 | 1,330                                                                     |
| ng Day     2.5     2.5     2.5       .M. Peak Hour     15%     15%     15%       .M. Peak Hour     40%     40%     40%       .m. Peak Hour     47     40%     40%       .m. Peak Hour     47     40%     40%       .m. Peak Hour     47     40%     40%       .m. Peak On Site     237     237        .m. Used on Meridian Blvd.     432     420        .m. Peak On Meridian Blvd.     16     164     202       .m. Peak On Meridian Blvd.     16     213       .m. Peak On Meridian Blvd.     128     213       .m. Peak On Meridian Blvd.     213     21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5     2.5     2.5       M. Peak Hour     15%     15%     15%       M. Peak Hour     40%     40%     40%       40%     40%     40%     40%       40%     41%     40%     40%       40%     41%     40%     40%       40%     41%     40%     40%       40%     41%     41     504       41     420     11     11       432     420     1     11       432     420     1     1       432     420     1     203       166     164     203       187     128     213       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5 2.5 2.5 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5 2.5 15% 15% 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | klers Driving / Auto Passengers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,190                                                         | 1,180                                      | 1,450                                               | 270                                                                       |
| ng Day     15%     15%     15%       M. Peak Hour     40%     40%     15%       M. Peak Hour     40%     40%     40%       Annual Line     410     410     40%       Annual Line     410     410     415       Annual Line     415     415       Annual Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng Day     15%     15%     15%     15%       M. Peak Hour     40%     40%     40%       In Peak On Meridian Blvd.     10%     10%     10       In Section Blvd.     10%     10%     10%       In Section Blvd.     10%     10%     10% <tr< td=""><td>15% 15% 15% 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40</td><td>15% 15% 15% 15% 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40</td><td>Skier Vehicle Occupancy</td><td>2.5</td><td>2.5</td><td>2.5</td><td>ļ</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15% 15% 15% 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15% 15% 15% 15% 15% 15% 40% 40% 40% 40% 40% 40% 40% 40% 40% 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Skier Vehicle Occupancy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5                                                           | 2.5                                        | 2.5                                                 | ļ                                                                         |
| M. Peak Hour 40% 40% 40% 40% 40% 40% 40% 40% 40% 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M. Peak Hour     40%     40%     40%       ired     476     472     580       414     410     504       4 Used on Site     237        4 Used on Meridian Blvd.     432     420        432     420        952     944     1,160       166     164     202       187     128     213       187     128     415       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40% 40% 40% 40% 40% 40% 40% 40% 414 414 410 504 504 504 504 504 504 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40% 40% 40% 40% 40% 40% 40% 414 414 410 504 504 504 504 504 504 504 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Percent of Parking Spaces that Turn Over During Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15%                                                           | 15%                                        | 15%                                                 |                                                                           |
| red     476     472     580       Used on Site     414     410     504       Used on Meridian Blvd.     195     183        195     422     420        952     944     1,160       166     164     202       187     128     213       353     292     415       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | red     476     472     580       * Used on Site     237     237        * Used on Meridian Blvd.     195     183        432     420         952     944     1,160       166     164     202       187     128     213       353     292     415       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 476     472     580       414     410     504       237     237     237       195     183        432     420        952     944     1,160       166     164     202       187     128     213       353     292     415       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 476     472     580       414     410     504       237     237     237        195     183         432     420         952     944     1,160       166     164     202       187     128     213       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Percent Parked Vehicles that Exit Lot During P.M. Peak Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40%                                                           | 40%                                        | 40%                                                 | ı                                                                         |
| red  414 416 504  Used on Site  Used on Meridian Blvd.  952 944 1,160  166 164 202  187 128 213  187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | red  v Used on Site  v Used on Meridian Blvd.  v Used on Meridian Blvd | an Blvd. 414 416 504 237 237 195 183 195 183 195 183 195 183 195 183 195 183 195 183 195 183 195 183 195 184 1,160 187 128 213 353 292 415 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an Blvd. 414 416 504 237 237 195 183 432 420 432 420 166 164 202 187 128 213 353 292 415 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /ehicles Entering the Site Per Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 476                                                           | <b>1</b>                                   | ć                                                   |                                                                           |
| Used on Site  195 195 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Used on Site  Used on Meridian Blvd.  Used on Meridian Blvd.  Used on Meridian Blvd.  432  420   420   1460  166  167  187  128  213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an Blvd. 237 237 195 183 432 420 952 944 1,160 166 164 202 187 128 213 353 222 415 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8an Blvd. 237 237 195 183 432 420 952 944 1,160 166 164 202 187 128 213 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | stimated Number of Skier Parking Spaces Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 414                                                           | 410                                        | 200                                                 | 801                                                                       |
| Used on Meridian Blvd. 195 183 420 420 952 944 1,160 166 164 202 187 128 213 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Used on Meridian Blvd. 195 183 432 420 952 944 1,160 166 164 202 187 128 213 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 952 183 432 420 952 944 1,160 166 164 202 187 128 213 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 952 183 952 420 952 944 1,160 166 164 202 187 128 213 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Maximum Number of Parking Spaces Currently Used on Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 237                                                           | 237                                        | <b>t</b>                                            | <b>5</b> 1                                                                |
| 432     420        952     944     1,160       166     164     202       187     128     213       353     292     415       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 432     420        952     944     1,160       166     164     202       187     128     213       187     128     415       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 432     420        952     944     1,160       166     164     202       187     128     213       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 432     420        952     944     1,160       166     164     202       187     128     213       353     292     415       187     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 195                                                           | 183                                        | : :                                                 |                                                                           |
| uning Peak Hour     952     944     1,160       uning Peak Hour     166     164     202       During Peak Hour     187     128     213       Trips Generated \$ Trips Generated \$ Trips Generated \$ 128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 952 944 1,160<br>166 164 202<br>187 128 213<br>353 292 415<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 952 944 1,160<br>166 164 202<br>187 128 213<br>353 292 415<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 952 944 1,160<br>166 164 202<br>187 128 213<br>353 292 415<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Current Number of Parking Spaces Used per Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 432                                                           | 420                                        | :                                                   | : <b>:</b>                                                                |
| uning Peak Hour     152     344     1,100       During Peak Hour     166     164     202       During Peak Hour     187     128     213       Trips Generated <sup>5</sup> 128     213       Trips Generated <sup>5</sup> 128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 166 164 1,100<br>166 164 202<br>167 128 213<br>353 292 415<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 166 164 1,100<br>167 164 202<br>187 128 213<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 166 164 1,100<br>167 164 202<br>187 128 213<br>353 292 415<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Daily Skier Vehicle Trips Generated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 050                                                           | 77.0                                       | 7                                                   | 676                                                                       |
| During Peak Hour     187     104     202       Trips Generated \$     213     213       Trips Generated \$     128     213       Trips Generated \$     128     213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 187 128 213<br>353 292 415<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 187 128 213<br>353 292 415<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 187 128 202<br>353 292 415<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Parked Vehicles Exiting During Peak Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 166                                                           | 164                                        | 1, 19U                                              | 017                                                                       |
| Trips Generated <sup>5</sup> 292 415<br>r Trips Generated <sup>5</sup> 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35.3 29.2 41.5<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 353 252 415<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 353 292 415<br>187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Drop Off Vehicles Exiting During Peak Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 187                                                           | 128                                        | 202                                                 | 8 28                                                                      |
| r Trips Generated <sup>5</sup> 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 187 128 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P.M. Peak-Hour Exiting Skier Trips Generated <sup>§</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 353                                                           | 292                                        | 415                                                 | 123                                                                       |
| Unite 1. Recorded December 27 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iole 1: Recorded December 27, 2005.  10. 2. Does not include Junips Springs and Proposed Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vote 1: Recorded December 27, 2005. vote 2: Does not include Juhiper Springs and Proposed Project. vote 3: Based upon Town of Mammoth Lakes General Plan assumptions. vote 4: Includes 213 Hotel Equivalents. One Hotel Equivalent equals 0.5 condo units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vote 1: Recorded December 27, 2005.  Vote 2: Does not include Jumper Springs and Proposed Project.  Vote 3: Based upon Town of Mammoth Lakes General Plan assumptions.  Vote 4: Includes 213 Hotel Equivalents on Plant Equivalent equals 0.8 condo units.  Vote 6: Assumes 40 percent of skiers leave during the p.m. peak hour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P.M. Peak-Hour Entering Skier Trips Generated <sup>5</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 187                                                           | 128                                        | 213                                                 | 82                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | toto 1. Nocurous Descriptor 2., 2603.  1. C. Does and Chingle Julies Springs and Proposed Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | viere 2. Toes and succeining it states and Project. viere 2. Does not include Julyes and Proposed Project. viere 3. Based upon Town Own Own Own takes General Plan assumptions. viere 4: Includes 213 Hotel Equivalents. One Hotel Equivalent equals 0.5 condo units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Vote 2: December 2: Actors and Proposed Project. Vote 3: Based upon Town of Mammoth Lakes General Plan assumptions. Vote 3: Based upon Town of Mammoth Lakes General Plan assumptions. Vote 4: Includes 213 Hotel Equivalents. One Hotel Equivalent equals 0.5 condo units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lyla (- Bannyka Danmha 27 1905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |                                            |                                                     |                                                                           |

| 900          |          |
|--------------|----------|
| 5 and 2      |          |
| 2005         |          |
| ween         |          |
| y Beti       |          |
| turda        |          |
| ak Sa        |          |
| or Peak      |          |
| nary t       |          |
| Sumr         |          |
| rship        |          |
| Ride         |          |
| ransit       | rips)    |
| ISA T        | Son T    |
| TABLE B: MM. | y Per    |
| 3LE B:       | e-Wa     |
| TAE          | <u>ō</u> |

|                                                                        | Route      | ıte    |       |
|------------------------------------------------------------------------|------------|--------|-------|
|                                                                        | Yellow and |        |       |
| Date                                                                   | Combo      | Green  | Total |
| Peak Saturday Ridership <sup>1</sup>                                   | 2,630      | 2,852  | 5,482 |
| Typical Saturday Ridership <sup>2</sup>                                | 490        | 1,900  | 2,436 |
|                                                                        | 0.46%      | 0.46%  | ŀ     |
| Percent Skiers on Day Routes <sup>3</sup>                              | 91.00%     | 91.00% | ŀ     |
| Number of Skier Person Trips on Peak Day                               | 2,405      | 2,609  | 5,014 |
| Number of Skier Person Trips on Typical Saturday                       | 448        | 1,738  | 2,186 |
| Percent of Skier Ridership Accessing Eagle Lodge                       | 20%        | 100%   | ı     |
| Percent of Skier Ridership Accessing Eagle Lodge on Typical Saturday   | 25%        | %06    | ŀ     |
|                                                                        | 1,203      | 2,609  | 3,812 |
| Skier Person Trips to and from Eagle Lodge on a Typical Saturday       | 112        | 1,564  | 1,676 |
| _                                                                      | 602        | 1,305  | 1,906 |
| Skier Person Round Trips to and from Eagle Lodge on a Typical Saturday | 56         | 782    | 838   |
|                                                                        |            |        |       |

Note 1: Ridership occurring on December 29, 2005, during which time the mountain was at skier capacity. Note 2: Ridership recorded on January 7, 2006, factored up to represent typical Saturday. Note 3: Based upon Mammoth Lakes Transit Plan (LSC, 2000).

TABLE C: Base Lodge Trip Generation

| Land Use                                   | Quantity | Unit      | ITE<br>Code | ITE<br>Land Use       | Saturday P.M. Peak-<br>Hour Trip Rates Saturday<br>In Out Total Trip Rate | Sat<br>ay Peak | Saturday P.M.<br>eak-Hour Trip<br>In   Out   Tot | rday P.M.<br>Hour Trips<br>Out Total | Saturday P.M. Saturday Peak-Hour Trips Saturday Trip Rate In Out Total Trips |
|--------------------------------------------|----------|-----------|-------------|-----------------------|---------------------------------------------------------------------------|----------------|--------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|
| Food and Beverage                          | 8.74     | KSF1      | -           | :                     | Skier Service <sup>2</sup>                                                | 0              | 0                                                | 0                                    | 0                                                                            |
| Bar and Coffee Bar                         | 0.7      | KSF       |             | :                     | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Rental / Demo / Repair Shop / Basket Check | 3.7      | KSF       | 1           |                       | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Retail Shop                                | 1.2      | KSF       |             | -                     | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Ski School / Day Care 3                    | 4.3      | KSF       | 1           | :                     | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Ticketing / Lobby                          | 2.6      | KSF       | :           | 1                     | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Restrooms                                  | 4.5      | KSF       |             | 1                     | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Administrative                             | 1.03     | KSF       | ;           | 1                     | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Employee Break Room                        | 1.55     | KSF       | -           |                       | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Ski Patrol                                 | 0.46     | KSF       | !           | ;                     | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Maintenance/Loading Dock                   | 1.5      | KSF       | -           | ;                     | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Mechanical / Cell Site                     | 0.55     | KSF       | -           | 1                     | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Ice Rink                                   | 5        | KSF       | 465         | Ice Rink <sup>4</sup> | 1.15   1.40   2.55   39.93                                                | 3              | 7                                                | 13                                   | 200                                                                          |
| Storage                                    | 0.55     | KSF       | :           |                       | Skier Service                                                             | 0              | 0                                                | 0                                    | 0                                                                            |
| Employees                                  | 122      | employees | 1           | †                     | 0.00 0.36 0.36 1.83                                                       | 0              | 44                                               | 44                                   | 223                                                                          |
| Base Lodge Total                           |          |           |             |                       |                                                                           | ¥              | 7                                                | 57                                   | 400                                                                          |
| )                                          |          |           |             |                       |                                                                           | >              | 5                                                | 5                                    | 74                                                                           |

•

Note 1: KSF = 1,000 square feet of floor area.

Note 2: Skier services are considered skier amenities and do not generate external trips, excepting employee trips.

Note 3: No trips are expected to be generated during p.m. peak hour since ski school lessons start and end before late afternoon.

Note 4: Ice Rink weekend trip rate estimated based upon Ice Rink weekday trip rate compared to Multi-Purpose Recreational Facility weekend and weekday trip rates.

TABLE D: Eagle Lodge Commercial Component Trip Generation

|                     |               |                    |      |                                                             | Saturda | Saturday P.M. Peak- | Peak-                      |                                   | Satu    | Saturday P M | 2           |          |
|---------------------|---------------|--------------------|------|-------------------------------------------------------------|---------|---------------------|----------------------------|-----------------------------------|---------|--------------|-------------|----------|
|                     |               |                    | ITE  | 旦上                                                          | Hour    | Hour Trip Rates     | ates                       | Saturday Peak-Hour Trips Saturday | Peak    | Hour         | Trips       | Saturday |
| Land Use            | Quantity Unit | Unit               | Code | Land Use                                                    | ln.     |                     | Total                      | Out   Total Trip Rate             | u       | In Out Total | Total       | Trips    |
| Day Spa             | <b>ω</b>      | KSF1               | 492  | Health/Fitness Club 1.33 1.27 2.60                          | 1.33    | 1.27                | 2.60                       | 20.87                             | 11      | 10           | 21          | 167      |
| Locker Club         | 12            | KSF                | ;    | 1                                                           |         | Skier               | Skier Service <sup>2</sup> | 2                                 | 0       | -            | -           | 7        |
| Convenience Market  | 4             | KSF                | 852  | Convenience Market 38.55 38.55 77.10 863.10 (Open 24 Hours) | 38.55   | 38.55               | 77.10                      | 863.10                            | 154 154 | 154          | 308         | 3,452    |
| Sit-Down Restaurant | 200           | Seats <sup>2</sup> | 931  | Quality Restaurant 0.19 0.14 0.33                           | 0.19    | 0.14                | 0.33                       | 2.81                              | 38      | 28           | 99          | 562      |
| Commercial Subtotal |               |                    |      |                                                             |         |                     |                            |                                   | 203     | 192          | 203 192 395 | 4,181    |

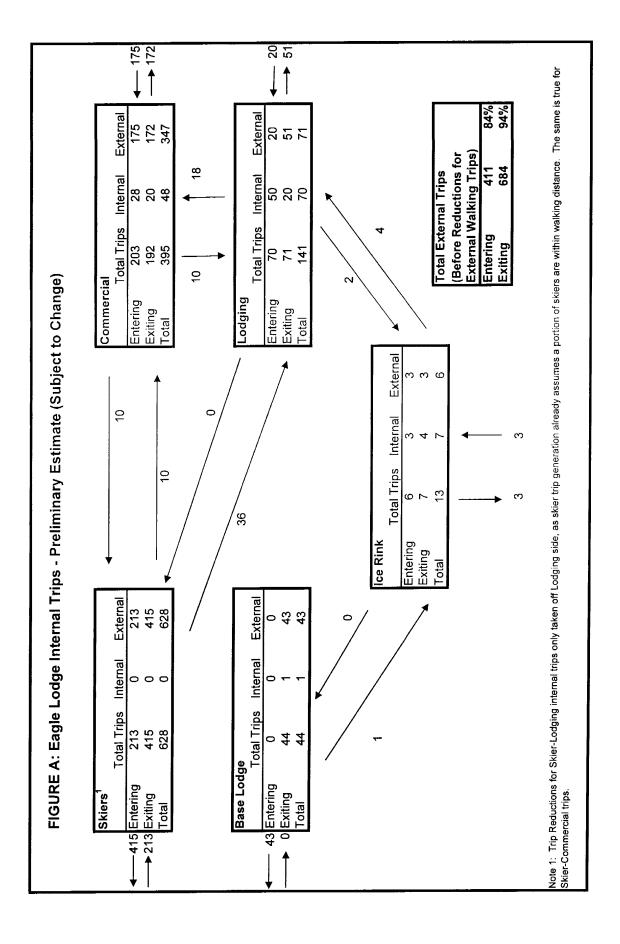
Note 1: KSF = 1,000 sf floor area.

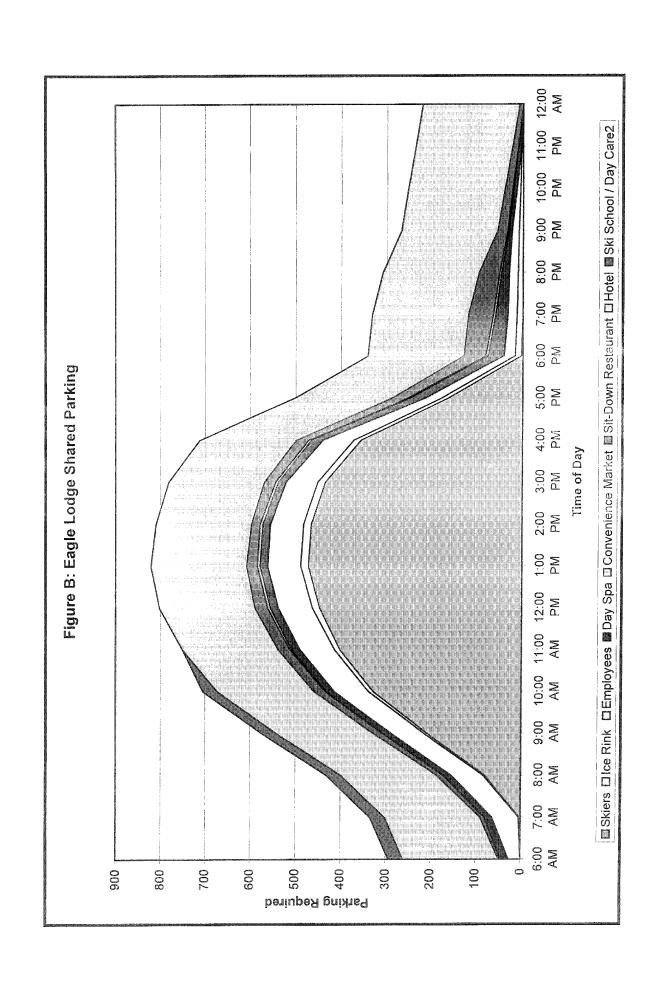
Note 2: Skier services are considered skier amenities and do not generate external trips, excepting employee trips.

Note 3: Assumes 80 patio seats plus 120 seats inside.

| TABLE E: Eagle Lodge Lodging Trip Generation                                                                                                                                                                                                                                                                                                        |                              |                                                |              |                         |                 |                  |       |               |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------|--------------|-------------------------|-----------------|------------------|-------|---------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                     |                              |                                                | Saturda      | Saturday P.M. Peak-Hour | ak-Hour         |                  | Satu  | Saturday P.M. |                 |
|                                                                                                                                                                                                                                                                                                                                                     |                              | •                                              |              | Inp Kates               |                 | Saturday         | Peak- | Hour Trips    | ιÓ.             |
| Land Use                                                                                                                                                                                                                                                                                                                                            | Quantity                     | Unit                                           | ln           | Out                     | Total           | Trip Rate        |       | In Out Total  | al Trips        |
| Hotel Equivalents                                                                                                                                                                                                                                                                                                                                   | 213                          | rooms                                          | 0.33         | 0.33                    | 99.0            | 8                | 70    | 71 141        | 1,704           |
| Conference Room                                                                                                                                                                                                                                                                                                                                     | 200                          | people at one time                             | No Pea       | No Peak Hour Trip Gen   | ip Gen          | 08.0             | 0     | 0             | 160             |
| Commercial Property Management Unit                                                                                                                                                                                                                                                                                                                 | 2                            | KSF                                            |              | Lodging Amenity         | Amenity         |                  | 0     | 0             | 0               |
| Back-of-House Service Areas (garbage, janitors closet, furnace room)                                                                                                                                                                                                                                                                                | 5                            | KSF                                            |              | Lodging                 | Lodging Amenity |                  | 0     | 0             | 0               |
| Lodging Total                                                                                                                                                                                                                                                                                                                                       |                              |                                                |              |                         |                 |                  | 20    | 71 14         | 70 71 141 1,864 |
| Note 1: Daily trip rate based upon traffic model. Proportion occurring during peak hour based upon ITE Hotel trip rates.  Note 2: KSF = 1,000 sf floor area.  Note 3: These uses are considered amenities of the hotel and do not generate additional trips. Trips associated with these uses are considered to be included in the Hotel trip rate. | ed upon ITE<br>ps. Trips ass | Hotel trip rates.<br>ociated with these uses a | re considere | ed to be inclu          | ded in the t    | totel trip rate. |       |               |                 |

|                           |          |                    |      |                                    | Saturo | Saturday P.M. Peak- | Peak-     |           | Saturo | Saturday P.M. Peak- | Peak- |               |
|---------------------------|----------|--------------------|------|------------------------------------|--------|---------------------|-----------|-----------|--------|---------------------|-------|---------------|
|                           |          |                    | ITE  | ITE                                | Hou    | Hour Trip Rates 2   | ates 2    | Saturday  |        | Hour Trips          | S     | Saturday      |
|                           | Quantity | Unit               | Code | Land Use                           | 드      |                     | Out Total | Trip Rate | 드      | Out                 | Total | Trips         |
| Mountain Bikers           | 426      | Bikers             | -    | -                                  | 0.00   | 60'0                | 0.09      | 0.40      | 0      | 38                  | 38    | 170           |
| Mountain Biking Employees | 25       | Employees          | :    |                                    | 0.00   | 0.36                | 0.36      | 1.83      | 0      | 6                   | 6     | 46            |
| Day Spa                   | 8        | KSF 1              | 492  | Health/Fitness Club                | 1.33   | 1.27                | 2.6       | 20.87     | 1      | 10                  | 21    | 167           |
| Convenience Market        | 4        | KSF                | 852  | Convenience Market (Open 24 Hours) | 38.55  | 38.55               | 77.1      | 863.1     | 154    | 154                 | 308   | 3,452         |
| Sit-Down Restaurant       | 200      | Seats              | 931  | Quality Restaurant                 | 0.19   | 0.14                | 0.33      | 2.81      | 38     | 28                  | 99    | 562           |
| Conference Facilities     | 200      | People at One Time |      |                                    | 0.4    | 4.0                 | 0.8       | 1.6       | 8      | 80                  | 160   | 320           |
| Hotel Equivalents         | 213      | Occupied Rooms     | 310  | Hotel                              | 0.33   | 0.33                | 99.0      | 8.00      | 20     | 7.1                 | 141   | 1,704         |
| Total                     |          |                    |      |                                    |        |                     |           |           | 353    |                     | 743   | 390 743 6.421 |


Note 1: KSF = 1,000 square feet of floor area. Note 2: Represents peak hour of site-generated traffic.


|            |      |                |           | Reductions for | _      |                     |       |         | Μd    | P.M. Peak-Hour    | Hour  |
|------------|------|----------------|-----------|----------------|--------|---------------------|-------|---------|-------|-------------------|-------|
|            | P.M  | P.M. Peak-Hour |           | External       |        | P.M. Peak-Hour      | Hour  |         | New B | New External Auto | Auto  |
|            | Exte | External Trips | rips      | Walking        | Extern | External Auto Trips | Trips | Percent |       | Trips             |       |
| Use        | ll   | Ont            | Out Total | Trips          | ln     | Out Total           | Total | Pass-By | u     | Out               | Total |
| Skiers 1   | 213  | 415            | 628       | ;              | 213    | 415                 | 628   | %0      | 213   | 415               | 628   |
| Base Lodge | 0    | 43             | 43        | %0             | 0      | 43                  | 43    | %0      | 0     | 43                | 43    |
| Ice Rink   | က    | က              | 9         | 2%             | က      | т                   | 9     | %0      | က     | က                 | ဖ     |
| Commercial | 175  | 172            | 347       | 42%            | 102    | 100                 | 202   | 25%     | 77    | 75                | 152   |
| Lodging    | 20   | 51             | 71        | %0             | 20     | 51                  | 71    | %0      | 20    | 51                | 71    |
| Buses      | 2    | 7              | 4         | %0             | 2      | 7                   | 4     | %0      | 7     | 7                 | 4     |
| Trucks     | ω    | 2              | 10        | %0             | 5      | ည                   | 10    | %0      | ß     | 2                 | 10    |
| Total      | 418  | 691            | 691 1,109 |                | 345    | 619                 | 964   |         | 320   | 594               | 914   |

|                           |          |                |       | -              |          |                     |             |         |          |                   |        |
|---------------------------|----------|----------------|-------|----------------|----------|---------------------|-------------|---------|----------|-------------------|--------|
|                           |          |                |       | Reductions for |          |                     | •••         |         | J.<br>∑. | P.M. Peak-Hour    | j      |
|                           | <u>Б</u> | P.M. Peak-Hour | Hour  | External       | P.<br>M. | P.M. Peak-Hour      | Jour        |         | New E    | New External Auto | l Auto |
|                           | Ext      | External Trips | ips   | Walking        | Extern   | External Auto Trips | Trips       | Percent |          | Trips             |        |
| Use                       | п        | Out            | Total | Trips          | n        | Out                 | Out   Total | Pass-By | 드        | Out               | Total  |
| Mountain Bikers           | 0        | 38             | 38    | 1              | 0        | 38                  | 38          | %0      | 0        | 38                | 38     |
| Mountain Biking Employees | 0        | တ              | თ     | %0             | 0        | တ                   | တ           | %0      | 0        | თ                 | თ      |
| Day Spa                   | 7        | 10             | 21    | 10%            | 10       | თ                   | 19          | %0      | 10       | თ                 | 19     |
| Convenience Market        | 154      | 154            | 308   | %09            | 77       | 77                  | 154         | 25%     | 28       | 28                | 116    |
| Sit-Down Restaurant       | 38       | 28             | 99    | 10%            | 34       | 25                  | 59          | %0      | 34       | 25                | 29     |
| Conference Facilities     | 80       | 80             | 160   | %0             | 80       | 80                  | 160         | %0      | 80       | 80                | 160    |
| Lodging                   | 70       | 71             | 141   | %0             | 20       | 71                  | 141         | %0      | 20       | 7                 | 141    |
| Total                     | 353      | 390            | 743   |                | 271      | 309                 | 580         |         | 252      | 290               | 542    |

| Land Use                                                                                                               | Quantity                    | Unit                                  | Parking<br>Demand Rate                                                                                             | Source<br>of Rate                                                                               | Parking<br>Demand |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------|
| Skiers                                                                                                                 | 000'9                       | Skiers per Day                        | See Table A in Appendix A                                                                                          | Appendix A 1                                                                                    | 497               |
| Base Lodge Food and Beverage Bar and Coffee Bar Rental / Demo / Repair Shop / Basket Check                             | 8.74<br>0.7<br>3.7          | KSF Z<br>KSF<br>KSF                   | No Incremental Parking Demand No Incremental Parking Demand No Incremental Parking Demand                          | No Incremental Parking Demand<br>No Incremental Parking Demand<br>No Incremental Parking Demand |                   |
| Retail Shop<br>Ski School / Day Care (Drop Off Only) <sup>2</sup><br>Ticketing / Lobby<br>Restrooms                    | 7.7<br>2.6<br>5.5<br>5.5    | KSF<br>KSF<br>KSF                     | No Incremental Parking 7.44 No Incremental Parking No Incremental Parking                                          |                                                                                                 | 32                |
| Administrative Employee Break Room Ski Patrol Maintenance/Loading Dock                                                 | 1.03<br>1.55<br>0.46<br>1.5 | X X X X X X X X X X X X X X X X X X X | No Incremental Parking | Parking Demand Parking Demand Parking Demand Parking Demand                                     |                   |
| lce Rink<br>Maximum Employees at One Time                                                                              | 5<br>122                    | KSF<br>employees                      | 3.60<br>0.83                                                                                                       | LSC<br>LSC                                                                                      | 18                |
| Commercial  Day Spa  Locker Club  Convenience Market  Sit-Down Restaurant                                              | 8<br>12<br>4<br>200         | KSF<br>KSF<br>KSF<br>Seats            | 5.19<br>No Incremental R<br>3.4<br>0.33                                                                            | 5.19 ITE No Incremental Parking Demand 3.4 ITE 0.33 Town Code                                   | 45<br>14<br>66    |
| Lodging Hotel Equivalents TOTAL                                                                                        | 213                         | rooms                                 | 1.05                                                                                                               | Town Code                                                                                       | 224<br><b>994</b> |
| Note 1: Includes reductions for walking, drop-off, an transit trips.<br>Note 2: KSF = 1,000 square feet of floor area. |                             |                                       |                                                                                                                    |                                                                                                 |                   |

| TABLE J: Cumulative Parking Demand                                                                                                                                                                                                                                                                                                            | ve Parkin <u>c</u>                | t Demand                             |                           |                         |                   |                                       |                           |                                              |               |                       |           |          |                      | à                      | Parking Demand by Hour for Shared Parking Analysis | Dema                  | nd by               | Hour fe           | r Shan    | ed Pa         | king A        | nalysis    |           |           |           |                    |                                                                       |                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|---------------------------|-------------------------|-------------------|---------------------------------------|---------------------------|----------------------------------------------|---------------|-----------------------|-----------|----------|----------------------|------------------------|----------------------------------------------------|-----------------------|---------------------|-------------------|-----------|---------------|---------------|------------|-----------|-----------|-----------|--------------------|-----------------------------------------------------------------------|-------------------------------------------|
| Land Use                                                                                                                                                                                                                                                                                                                                      | Quantity                          | Unit                                 | Parking<br>Demand<br>Rate | Source of<br>Rate       | Parking<br>Demand | Total Reduction for Non-Auto Access 1 | S<br>Dedicated<br>Parking | Available<br>Spaces for<br>Shared<br>Parking | MA 00:9       | MA 00:7               | MA 00:8   | MA 00:0  | MA 00:01             | MA 00:11<br>M9 00:21   | M9 00:1                                            | M9 00:S               | 3:00 PM             | M9 00:4           | M9 00:8   | M9 00:8       | M9 00:7       | MG 00:8    | M9 00:9   | M9 00:01  | M9 00:11  | MA 00 S1           | Max Required Spaces N Without S Shared Use                            | Max Required<br>Spaces With<br>Shared Use |
| Skiers                                                                                                                                                                                                                                                                                                                                        | 6,000                             | skiers per day                       | See                       | See Table A             | 497               | 5.0%                                  | 0                         | 472                                          | 0             | ъ                     | 80 21     | 208 3;   | 328 40               | 402 44                 | 447 472                                            | 72 466                | 6 435               | 356               | 162       | п             | ٥             | 0          | 0         | 0         | ٥         | 0                  | 472                                                                   | 472                                       |
| Base Lodge<br>Ice Rink<br>Employees                                                                                                                                                                                                                                                                                                           | 5 22                              | KSF                                  | 3.6                       | S S                     | 8 5               | 5.0%                                  | 0 0                       | 71 25                                        | 0 %           | <b>-</b> α            | 6 17      | 7 7 1    | 10 17 17             | 12 16                  | 16 17                                              | 71 77                 | 7 17                | 16                | 15        | 4 4           | 5 5           | <b>#</b> 6 | φέ        | φα        | m c       | 00                 | <b>1</b>                                                              | 4 5                                       |
| Ski School / Day Care <sup>2</sup>                                                                                                                                                                                                                                                                                                            | 4.3                               | KSF                                  | ;                         | ĪĒ                      | 32                | %0.0                                  | ,                         | 20                                           | 32            |                       |           |          |                      |                        |                                                    |                       |                     |                   |           | 0             | 0             | 0          | . 0       | 0         | • •       | . 0                | 32                                                                    | 0                                         |
| Commercial Day Spa Convenience Market Sit-Down Restaurant                                                                                                                                                                                                                                                                                     | 8<br>4<br>200                     | KSF 1<br>KSF<br>Seats                | 5.19<br>3.4<br>0.33       | ITE<br>ITE<br>Town Code | 45<br>14<br>86    | 16.0%<br>54.0%<br>16.0%               | 000                       | 35<br>6<br>55                                | <u>\$</u> 0 4 | 0 0                   | <u> </u>  | 18 1     | 17 1i<br>3 4<br>25 2 | 18 11<br>4 4 6<br>25 2 | 18 1.<br>6 6<br>28 2.                              | 17 17<br>6 6<br>24 19 | 7 17<br>5 6<br>9 25 | , 26<br>6<br>5 27 | 35        | 35<br>5<br>48 | 26<br>5<br>55 | 17<br>45   | 23        | 7 2 7     | r + 5     | 000                | 35<br>6<br>55                                                         | 7- 9 7- 8                                 |
| Lodging 213 Hotel Parking Available for Shared Use Dedicated Hotel Parking                                                                                                                                                                                                                                                                    | 213<br>for Shared                 | rooms<br>Use                         | 1.05                      | Town Code               | 224<br>11<br>213  | %0.0                                  | 0                         | 224<br>11<br>0                               | 213           | 9 213                 | 10        | 9 213 2  | 8 E<br>213 21        | 8 E<br>213 21          | 8 8<br>213 21                                      | 8 8<br>213 213        | 3 8<br>13 213       | 9 213             | 9 213     | 213           | 9<br>213      | 9<br>213   | 10<br>213 | 10<br>213 | 10<br>213 | 10<br>213          | 11<br>213                                                             | 8<br>213                                  |
| TOTAL                                                                                                                                                                                                                                                                                                                                         |                                   |                                      |                           |                         | 1,005             |                                       |                           | 968                                          | 302           | 343                   | 441 5     | 582 7    | 712 75               | 758 81                 | 810 82                                             | 829 81                | 818 790             | 0 721             | 1 511     | 351           | 341           | 318        | 278       | 263       | 246       | 231                | 906                                                                   | 829                                       |
|                                                                                                                                                                                                                                                                                                                                               |                                   |                                      |                           |                         |                   |                                       |                           |                                              |               |                       |           |          |                      |                        |                                                    |                       |                     |                   |           |               |               |            |           |           |           | Junip              | Juniper Springs<br>Total                                              | 26<br>855                                 |
|                                                                                                                                                                                                                                                                                                                                               |                                   |                                      |                           |                         |                   |                                       |                           |                                              |               |                       |           |          | i                    |                        |                                                    |                       |                     |                   |           | ĭ             | otal Pa       | rking      | Propo     | sed to    | 8         | onstruct<br>Parkin | Total Parking Proposed to Be Constructed On Site<br>Parking Shortfall | 544<br>-311                               |
| Note 1: Estimated waking trips from nearby residences. Note 2: As the Ski School / Day Care paking will be provided as drop-off spaces and peak parking demand is assumed to occur during A.M. peak hour of skier traffic, all drop-off parking spaces were assumed to be utilized during A.M. peak hour and not available for shared parking | from nearby re:<br>Care parking w | sidences.<br>vill be provided as dro | a saces as                | nd peak parking di      | emand is assu     | umed to occur du                      | ring A.M. peakl           | hour of skier tra                            | affic, all ¢  | Jrap-off <sub>k</sub> | parking s | spaces v | vere assu            | umed to                | be utiliz                                          | red durir             | ng A.M.             | peak hor          | ır and no | ot availa     | ble for sl    | ared ba    | rking.    |           |           |                    |                                                                       |                                           |





# PARKING STUDY - FEBRUARY 2006 - CAR COUNTS

| I ITTI E E4GI E I OCATION     | 2/12/2006           | 2/18/2006            | 2/25/2006            | 90       |
|-------------------------------|---------------------|----------------------|----------------------|----------|
|                               | (SUNDAY≈ 11am-12pm) | (SATURDAY≈ 12pm-1pm) | (SATURDAY» 12pm-1pm) | 2pm-1pm) |
| CHAIR 15 PARKING LOT          | 237                 | 219                  |                      |          |
| CHAIR 15 EMPLOYEE LOT         | 25 271              | 27 253               | 27                   | 260      |
| CHAR 15 LOADING ZONE          | 6                   | 7                    | 6                    |          |
| NORTH MERIDIAN BLVD           | 69                  | 79                   | 77                   |          |
| SOUTH MERIDIAN BLVD           | 73 142              | 75 154               | 83                   | 160      |
| COMBINED LOT & STREET PARKING | 413                 | 407                  |                      | 420      |
| Skier Count                   | 14897               | 20225                | 17968                |          |
| CANYON I ODGE I OCATION       | 2/11/2006           | 2/18/2006            | 2/25/2006            | 90       |
| מוויים בספסה בספיווטו         | (SUNDAY-11am-12pm)  | (SATURDAY-12pm-1pm)  | (SATURDAY-12pm-1pm)  | (md1-md) |

| CANYON LODGE LOCATION         | 2/11/2006          | 2/18/2006 | 5006                | 2/25      | 2/25/2006           |
|-------------------------------|--------------------|-----------|---------------------|-----------|---------------------|
| CANTON LODGE LOCATION         | (SUNDAY-11am-12pm) | (SATURDAY | (SATURDAY-12pm-1pm) | (SATURDA) | (SATURDAY-12pm-1pm) |
| CANYON LODGE LOT              | 290                | 275       |                     | 294       |                     |
| CANYON LODGE LOADING ZONE     | 35 35              | 45        | 320                 | 29        | 323                 |
| NORTH CANYON BLVD             |                    | 30        |                     | -         |                     |
| SOUTH CANYON BLVD             |                    | 40        | 0,                  | 35        | 36                  |
| EAST FOREST TRAIL             | 7                  | 2         |                     | _         |                     |
| WEST FOREST TRAIL             |                    | 0         | n                   | 2         | ,<br>,              |
| NORTH RAINBOW LANE            | 94                 | 58        | 007                 | 69        |                     |
| SOUTH RAINBOW LANE            | 58 132             | 20        | 871                 | 86        | 155                 |
| NORTH LAKEVIEW BLVD           | 58                 | 36        | 707                 | 32        | ,                   |
| SOUTH LAKEVIEW BLVD           | 66                 | 100       | 95.                 | 134       | 166                 |
| EAST WARMING HUT II RD        | 98                 | 28        |                     | 31        |                     |
| WEST WARMING HUT II RD        | 8                  | 61        | <u> </u>            | 65        | 95                  |
| EAST MAMMOTH SLOPES DR        |                    | 7         | ,                   | 16        |                     |
| WEST MAMMOTH SLOPES DR        |                    | 0         | \<br>\              | 0         | <b>9</b>            |
| COMBINED LOT & STREET PARKING | 727                |           | 755                 |           | 795                 |
| count by:                     | pab                |           | pr                  |           | ā                   |

pr

----Original Message----

From: Becky [mailto:becky@lsctahoe.com] Sent: Wednesday, November 10, 2004 3:43 PM To: Sonja Brynelsen; Bill Taylor; Peter Bernasconi

Cc: "Sara Hertel"@server.exwire.com Subject: Mammoth LOS Standards

### Hello all,

LSC is currently working on running the LOS calculations for the 2004 and four 2024 alternatives conditions. We propose to use the following LOS thresholds in our analysis, consistent with the Airport EIR:

For Signalized Intersections: Total intersection LOS D or better must be maintained. Therefore, if a signalized intersection is found to operate at a total intersection LOS E or F, we will assume mitigation is required. For Unsignalized Intersections: Approach intersection LOS D or better must be maintained. For example, if the minor street approach at an unsignalized two-way stop-controlled intersection operates at LOS E or F, then mitigation will be required.

Please let us know if you see fault in this approach as soon as possible. In the meantime, we will proceed with the LOS thresholds stated above.

### Becky

Rebecca L. Bucar Transportation Engineer LSC Transportation Consultants, Inc. 2690 Lake Forest Rd. / PO Box 5875 Tahoe City, California 96145 P: (530)583-4053 F: (530)583-5966 becky@lsctahoe.com

# Appendix B Level of Service Calculations

# 2005 No Project LOS

Page 1-1 Tue Jun 13, 2006 08:30:13 2005

> Eagle Lodge EIR 2005 No Project

\_\_\_\_\_\_

Scenario Report

Scenario: 2005

Command: WO/ Proj
Volume: PM
Geometry: Default Geometry
Impact Fee: Default Impact Fee
Trip Generation: PM
Trip Distribution: Default Trip Distribution
Paths: Default Paths
Routes: Default Routes
Configuration: Future

## Eagle Lodge EIR

2005 No Project 

### Turning Movement Report PM

| Volume<br>Type |        | orthbo<br>Thru |        |        | outhbo<br>Thru |     |      | astboi<br>Thrii | ınd<br>Right |     | estbou<br>Thru |     | Total<br>Volume |
|----------------|--------|----------------|--------|--------|----------------|-----|------|-----------------|--------------|-----|----------------|-----|-----------------|
| Type           | DCTC   | IIII a         | n gire | 2020   | 11114          | 50  | 2020 |                 |              |     |                | 5   |                 |
| #1 OLD         | MAIN   | 1              |        |        |                |     |      |                 |              |     |                |     |                 |
| Base           | 346    | 0              | 60     | 0      | 0              | 0   | 0    | 301             | 648          | 84  | 275            | 0   | 1714            |
| Added          | 0      | 0              | 0      | 0      | 0              | 0   | 0    | 0               | 0            | 0   | 0              | 0   | 0               |
| Total          | 346    | 0              | 60     | 0      | 0              | 0   | 0    | 301             | 648          | 84  | 275            | 0   | 1714            |
| #2 MER         | IDIAN  | OLDM           |        |        |                |     |      |                 |              |     |                |     |                 |
| Base           | 117    | 260            | 100    | 100    | 327            | 132 | 158  | 145             | 120          | 129 | 161            | 124 | 1873            |
| Added          | 0      | 0              | 0      | 0      | 0              | 0   | 0    | 0               | 0            | 0   | 0              | 0   | 0               |
| Total          | 117    | 260            | 100    | 100    | 327            | 132 | 158  | 145             | 120          | 129 | 161            | 124 | 1873            |
| #3 MINA        | ARET/N | MERIDI.        | AN     |        |                |     |      |                 |              |     |                |     |                 |
| Base           | 14     | 87             | 23     | 161    | 187            | 70  | 97   | 333             | 30           | 23  | 178            | 97  | 1300            |
| Added          | 0      | 0              | 0      | 0      | 0              | 0   | 0    | 0               | 0            | 0   | 0              | 0   | 0               |
| Total          | 14     | 87             | 23     | 161    | 187            | 70  | 97   | 333             | 30           | 23  | 178            | 97  | 1300            |
| #4 MINA        | ARET/M | IAIN           |        |        |                |     |      |                 |              |     |                |     |                 |
| Base           | 124    | 120            | 60     | 540    | 205            | 132 | 90   | 471             | 155          | 69  | 345            | 90  | 2401            |
| Added          | 0      | 0              | 0      | 0      | 0              | 0   | 0    | 0               | 0            | 0   | 0              | 0   | 0               |
| Total          | 124    | 120            | 60     | 540    | 205            | 132 | 90   | 471             | 155          | 69  | 345            | 90  | 2401            |
| #5 KELI        | LY/LAF | (E MAR         | Y      |        |                |     |      |                 |              |     |                |     |                 |
| Base           | 20     | 0              | 35     | 0      | 0              | 0   | 0    | 39              | 4            | 40  | 65             | 0   | 203             |
| Added          | 0      | 0              | 0      | 0      | 0              | 0   | 0    | 0               | 0            | 0   | 0              | 0   | 0               |
| Total          | 20     | 0              | 35     | 0      | 0              | 0   | 0    | 39              | 4            | 40  | 65             | 0   | 203             |
| #6 MERI        | DIAN   | / MAJ          | ESTIC  | PINES  | (EAST          | )   |      |                 |              |     |                |     |                 |
| Base           | 0      | . 0            | 2      | 78     | 0              | 20  | 16   | 253             | 9            | 9   | 162            | 69  | 618             |
| Added          | 0      | 0              | 0      | 0      | 0              | 0   | 0    | 0               | 0            | 0   | 0              | 0   | 0               |
| Total          | 0      | 0              | 2      | 78     | 0              | 20  | 16   | 253             | 9            | 9   | 162            | 69  | 618             |
| #7 MER]        | DIAN/  | MAJES'         | TIC PI | NES (W | EST)           |     |      |                 |              |     |                |     |                 |
| Base           | 3      | 10             | 24     | 199    | 22             | 2   | 1    | 15              | 3            | 46  | 20             | 90  | 435             |
| Added          | 0      | 0              | 0      | 0      | 0              | 0   | 0    | 0               | 0            | 0   | 0              | 0   | 0               |
| Total          | 3      | 10             | 24     | 199    | 22             | 2   | 1    | 15              | 3            | 46  | 20             | 90  | 435             |

### Eagle Lodge EIR 2005 No Project

2005 NO Project

### Impact Analysis Report Level Of Service

| In | tersection                       | Base<br>Del/ V/           | Future<br>Del/ V/         | Change<br>in |
|----|----------------------------------|---------------------------|---------------------------|--------------|
| #  | 1 OLDM/MAIN                      | LOS Veh C<br>C 22.9 0.871 | LOS Veh C<br>C 22.9 0.871 | + 0.000 D/V  |
| #  | 2 MERIDIAN/OLDM                  | C 21.4 0.719              | C 21.4 0.719              | + 0.000 D/V  |
| #  | 3 MINARET/MERIDIAN               | C 20.5 0.674              | C 20.5 0.674              | + 0.000 D/V  |
| #  | 4 MINARET/MAIN                   | C 20.8 0.784              | C 20.8 0.784              | + 0.000 D/V  |
| #  | 5 KELLY/LAKE MARY                | A 1.5 0.000               | A 1.5 0.000               | + 0.000 D/V  |
| #  | 6 MERIDIAN / MAJESTIC PINES (EAS | В 1.6 0.000               | B 1.6 0.000               | + 0.000 D/V  |
| #  | 7 MERIDIAN?MAJESTIC PINES (WEST) | A 8.9 0.323               | A 8.9 0.323               | + 0.000 V/C  |

# Eagle Lodge EIR

| 2005 No Project                                                                             |            |                       |             |       |             |                    |                |             |                |              |        |                 |
|---------------------------------------------------------------------------------------------|------------|-----------------------|-------------|-------|-------------|--------------------|----------------|-------------|----------------|--------------|--------|-----------------|
| Level Of Service Computation Report<br>2000 HCM Operations Method (Base Volume Alternative) |            |                       |             |       |             |                    |                |             |                |              |        |                 |
| **********************                                                                      |            |                       |             |       |             |                    |                |             |                |              |        |                 |
| Intersection #1 OLDM/MAIN ************************************                              |            |                       |             |       |             |                    |                |             |                |              |        |                 |
| - 1. 1. 2. 2. 2. (VI) 0. 0.71                                                               |            |                       |             |       |             |                    |                |             |                |              |        |                 |
| Cycle (sec):                                                                                | ,          |                       |             | 4     |             |                    |                |             |                |              | 22.    |                 |
| Loss Time (se                                                                               |            |                       |             | = 4 : |             | Average<br>Level O |                |             | 2/ VEII/ :     |              | 22.    | . <i>9</i><br>C |
| Optimal Cycle                                                                               | 3:<br>++++ | 88<br>** <b>**</b> ** | ;<br>****** | ****  | . * * * *   | *****              | *****<br>T 96T | * * * * * * | *****          | ****         | ****   |                 |
| Approach:                                                                                   |            | rth Bo                |             |       | ith Bo      |                    |                | ast Bo      |                |              | est Bo |                 |
| Movement:                                                                                   | L          |                       | - R         |       | - T         |                    |                | - T         |                |              | - T    |                 |
|                                                                                             |            |                       |             | 1     |             |                    |                |             |                |              |        |                 |
| Control:                                                                                    |            | rotect                |             |       |             | ed                 |                | ot+Per      |                |              | ot+Per |                 |
| Rights:                                                                                     |            | Incli                 | ıde         |       | Inclu       | ıde                |                | Inclu       | ıde            |              | Inclu  | ıde             |
| Min. Green:                                                                                 | 0          | 0                     | 0           | 0     | 0           | 0                  | 0              | 0           | 0              | 0            | 0      | 0               |
| Lanes:                                                                                      | 1          | 0 0                   | 0 1         | 0 (   | 0 0         | 0 0                | 0 (            |             |                | . 1 (        | 0 2    | 0 0             |
|                                                                                             |            |                       |             |       |             |                    |                |             | - <del>-</del> |              |        |                 |
| Volume Module                                                                               | €:         |                       |             |       |             |                    | _              |             |                |              |        |                 |
| Base Vol:                                                                                   | 346        | 0                     | 60          | 0     | 0           | 0                  | 0              | 301         | 648            | 84           | 275    | 0               |
| Growth Adj:                                                                                 |            | 1.00                  | 1.00        |       | 1.00        | 1.00               |                | 1.00        | 1.00           |              | 1.00   | 1.00            |
| Initial Bse:                                                                                | 346        | 0                     | 60          | 0     | 0           | 0                  | 0              | 301         | 648            | 84           | 275    | 0               |
| User Adj:                                                                                   |            | 1.00                  | 1.00        |       | 1.00        | 1.00               |                | 1.00        | 1.00           |              | 1.00   | 1.00<br>0.90    |
| PHF Adj:                                                                                    |            | 0.90                  | 0.90        | 0.90  | 0.90        | 0.90               | 0.90           | 0.90        | 0.90<br>720    | 93           | 0.90   | 0.90            |
| PHF Volume:                                                                                 | 384        | 0                     | 67<br>0     | 0     | 0           | 0                  | 0              | 334         | 720            | 93           | 0      | 0               |
| Reduct Vol:                                                                                 | 0<br>384   | 0                     | 67          | 0     | 0           | 0                  | 0              | 334         | 720            | 93           | 306    | 0               |
| Reduced Vol:                                                                                |            | 1.00                  | 1.00        | _     | 1.00        | 1.00               |                | 1.00        | 1.00           | 1.00         |        | 1.00            |
| PCE Adj:<br>MLF Adj:                                                                        |            | 1.00                  | 1.00        | 1.00  |             | 1.00               |                | 1.00        | 1.00           | 1.00         |        | 1.00            |
| Final Vol.:                                                                                 | 384        | 0                     | 67          | 0     | 0           | 0                  | 0              | 334         | 720            | 93           | 306    | 0               |
|                                                                                             |            |                       |             |       |             |                    |                |             |                |              |        |                 |
| Saturation Fl                                                                               |            |                       | •           |       |             | ,                  | 1              |             |                | '            |        |                 |
| Sat/Lane:                                                                                   |            | 1900                  | 1900        | 1900  | 1900        | 1900               | 1900           | 1900        | 1900           | 1900         | 1900   | 1900            |
| Adjustment:                                                                                 | 0.93       | 1.00                  | 0.83        | 1.00  | 1.00        | 1.00               | 1.00           | 0.90        | 0.81           | 0.90         | 0.90   | 1.00            |
| Lanes:                                                                                      | 1.00       | 0.00                  | 1.00        | 0.00  | 0.00        | 0.00               | 0.00           | 2.00        | 1.00           | 1.00         | 2.00   | 0.00            |
| Final Sat.:                                                                                 | 1769       | 0                     | 1583        | 0     | 0           | 0                  |                | 3437        | 1537           | 1718         | 3437   | 0               |
|                                                                                             |            |                       | ·           |       | - <b></b> - |                    |                | <b></b>     |                |              |        |                 |
| Capacity Anal                                                                               |            |                       |             |       |             |                    |                |             |                |              |        |                 |
| Vol/Sat:                                                                                    |            | 0.00                  | 0.04        | 0.00  | 0.00        | 0.00               | 0.00           | 0.10        | 0.47           | 0.05<br>**** | 0.09   | 0.00            |
| Crit Moves:                                                                                 | ****       |                       |             |       | 0 00        | 0 00               | 0 00           | 0 54        | ****           |              | 0 60   | 0 00            |
| Green/Cycle:                                                                                |            |                       | 0.25        | 0.00  |             | 0.00               |                | 0.54        | 0.54<br>0.87   | 0.65<br>0.15 |        | 0.00            |
| Volume/Cap:                                                                                 | 0.87       |                       | 0.17        | 0.00  | 0.00        | 0.00               | 0.0            | 0.18<br>9.5 | 26.0           | 5.4          | 7.0    | 0.00            |
| Delay/Veh:                                                                                  | 45.6       | 0.0                   | 23.7        | 0.0   |             | 1.00               |                | 1.00        | 1.00           | 1.00         |        | 1.00            |
| User DelAdj:                                                                                | 45.6       | 0.0                   | 23.7        | 0.0   | 0.0         | 0.0                | 0.0            | 9.5         | 26.0           | 5.4          | 7.0    | 0.0             |
| AdjDel/Veh:<br>HCM2kAvq:                                                                    | 13         | 0.0                   | 23.7        | 0.0   | 0.0         | 0.0                | 0.0            | 2           | 19             | 1            | 2      | 0               |
| HCMZKAV9:                                                                                   |            |                       |             |       | _           |                    | -              |             |                | _            | _      | _               |

\_\_\_\_\_ Eagle Lodge EIR 2005 No Project Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #1 OLDM/MAIN \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 80 Critical Vol./Cap. (X): 0.871 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle:OPTIMIZED Level Of Service: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_|\_\_\_| \_\_\_\_\_| Volume Module: Base Vol: 346 0 60 0 0 0 301 648 84 275 0 Initial Bse: 346 0 60 0 0 0 0 301 648 84 275 0 Added Vol: 0 0 0 0 0 0 0 0 0 0 Final Vol.: 384 0 67 0 0 0 334 720 93 306 0 \_\_\_\_\_|\_\_\_|\_\_\_| Saturation Flow Module: Final Sat.: 1769 0 1583 0 0 0 0 3437 1537 1718 3437 0 \_\_\_\_\_| \_\_\_\_| \_\_\_\_| \_\_\_\_| \_\_\_\_| \_\_\_\_\_| \_\_\_\_\_| \_\_\_\_\_| \_\_\_\_\_| \_\_\_\_| Capacity Analysis Module: Vol/Sat: 0.22 0.00 0.04 0.00 0.00 0.00 0.10 0.47 0.05 0.09 0.00 Crit Moves: \*\*\*\* AdjDel/Veh: 45.6 0.0 23.7 0.0 0.0 0.0 9.5 26.0 5.4 7.0 0.0 HCM2kAvg: 13 0 1 0 0 0 0 2 19 1 2 0

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## Eagle Lodge EIR

| 2005 No Project                                                                                                                                     |                                                                                             |                                                                              |                                                                |                                              |                                                               |                                                                       |                                                                       |                                                   |                                                                       |                                                        |                                                                |                                                                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------|--|
|                                                                                                                                                     | Level Of Service Computation Report<br>2000 HCM Operations Method (Base Volume Alternative) |                                                                              |                                                                |                                              |                                                               |                                                                       |                                                                       |                                                   |                                                                       |                                                        |                                                                |                                                                       |  |
| **************************************                                                                                                              |                                                                                             |                                                                              |                                                                |                                              |                                                               |                                                                       |                                                                       |                                                   |                                                                       |                                                        |                                                                |                                                                       |  |
| <pre>%************************************</pre>                                                                                                    |                                                                                             |                                                                              |                                                                |                                              |                                                               |                                                                       |                                                                       |                                                   |                                                                       |                                                        |                                                                |                                                                       |  |
| Approach: Movement:                                                                                                                                 | No:                                                                                         | rth Bo<br>- T                                                                | ound<br>- R                                                    | Son<br>L                                     | uth Bo<br>- T                                                 | ound                                                                  | E:<br>L                                                               | ast Bo<br>- T                                     | ound<br>- R                                                           | W.                                                     | est Bo<br>- T                                                  | ound<br>- R                                                           |  |
| Control:<br>Rights:<br>Min. Green:<br>Lanes:                                                                                                        | ' Р:<br>О                                                                                   | rotect<br>Inclu<br>0                                                         | ed<br>ide<br>0                                                 | , P:<br>0                                    | rotect<br>Incl                                                | ed<br>ide<br>0                                                        | Sp.                                                                   | lit Ph<br>Inclu<br>0                              | ase                                                                   | Spi                                                    | lit Pl<br>Incl                                                 | nase<br>ude<br>0                                                      |  |
| Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.: Saturation F | 117<br>1.00<br>117<br>1.00<br>0.90<br>130<br>0<br>1.00<br>1.00<br>1.00                      | 260<br>1.00<br>260<br>1.00<br>0.90<br>289<br>0<br>289<br>1.00<br>1.00<br>289 | 100<br>1.00<br>1.00<br>0.90<br>111<br>0<br>111<br>1.00<br>1.00 | 100<br>1.00<br>100<br>1.00                   | 327<br>1.00<br>327<br>1.00<br>0.90<br>363<br>0<br>363<br>1.00 | 132<br>1.00<br>132<br>1.00<br>0.90<br>147<br>0<br>147<br>1.00<br>1.00 | 158<br>1.00<br>158<br>1.00<br>0.90<br>176<br>0<br>176<br>1.00<br>1.00 | 145 1.00 145 1.00 0.90 161 0 161 1.00 1.00 161    | 120<br>1.00<br>120<br>1.00<br>0.90<br>133<br>0<br>133<br>1.00<br>1.00 | 129<br>1.00<br>0.90<br>143<br>0<br>143<br>1.00<br>1.00 | 161<br>1.00<br>161<br>1.00<br>0.90<br>179<br>0<br>1.00<br>1.00 | 124<br>1.00<br>124<br>1.00<br>0.90<br>138<br>0<br>138<br>1.00<br>1.00 |  |
| Sat/Lane: Adjustment: Lanes: Final Sat.:                                                                                                            | 1900<br>0.93<br>1.00<br>1769                                                                | 1900<br>0.98<br>1.00<br>1862                                                 | 1900<br>0.83<br>1.00<br>1583                                   | 1900<br>0.93<br>1.00<br>1769                 | 0.98<br>1.00<br>1862                                          | 1900<br>0.83<br>1.00<br>1583                                          | 0.93<br>1.00<br>1769                                                  | 1900<br>0.87<br>1.09<br>1804                      | 1900<br>0.87<br>0.91<br>1493                                          | 0.93<br>1.00<br>1769                                   | 1900<br>0.87<br>1.13<br>1869                                   | 1900<br>0.87<br>0.87<br>1439                                          |  |
| Capacity Anal<br>Vol/Sat:<br>Crit Moves:<br>Green/Cycle:<br>Volume/Cap:<br>Delay/Veh:<br>User DelAdj:<br>AdjDel/Veh:<br>HCM2kAvg:                   | lysis<br>0.07<br>****<br>0.10<br>0.72<br>32.7<br>1.00<br>32.7<br>4                          | Modul<br>0.16<br>0.27<br>0.58<br>16.1<br>1.00<br>16.1                        | 0.07<br>0.27<br>0.26<br>13.4<br>1.00<br>13.4                   | 0.06<br>0.11<br>0.58<br>23.7<br>1.00<br>23.7 | ****<br>0.27<br>0.72<br>19.8<br>1.00<br>19.8<br>6             | 0.09<br>0.27<br>0.34<br>13.6<br>1.00<br>13.6<br>2                     | **** 0.14 0.72 28.5 1.00 28.5 4                                       | 0.09<br>0.14<br>0.65<br>21.6<br>1.00<br>21.6<br>3 | 0.09<br>0.14<br>0.65<br>21.6<br>1.00<br>21.6<br>3                     | 0.13<br>0.61<br>23.0<br>1.00<br>23.0                   | 0.72<br>24.4<br>1.00<br>24.4<br>4                              | 0.10<br>****<br>0.13<br>0.72<br>24.4<br>1.00<br>24.4<br>4             |  |

## Eagle Lodge EIR

| 2005 No Project                                                                           |        |               |            |       |               |            |      |               |         |      |        |             |  |  |
|-------------------------------------------------------------------------------------------|--------|---------------|------------|-------|---------------|------------|------|---------------|---------|------|--------|-------------|--|--|
|                                                                                           |        |               |            |       |               |            |      |               |         |      |        |             |  |  |
| Level Of Service Computation Report                                                       |        |               |            |       |               |            |      |               |         |      |        |             |  |  |
| 2000 HCM Operations Method (Base Volume Alternative) ************************************ |        |               |            |       |               |            |      |               |         |      |        |             |  |  |
| Intersection #3 MINARET/MERIDIAN                                                          |        |               |            |       |               |            |      |               |         |      |        |             |  |  |
| *******************                                                                       |        |               |            |       |               |            |      |               |         |      |        |             |  |  |
| Cycle (sec): 45 Critical Vol./Cap. (X): 0.674                                             |        |               |            |       |               |            |      |               |         |      |        |             |  |  |
| Loss Time (s                                                                              |        |               | (Y+R       | = 4   |               |            |      |               | c/veh): |      | 20     |             |  |  |
| Optimal Cycl                                                                              | e:     | 50            |            |       |               | Level O    |      |               |         |      |        | C           |  |  |
| _                                                                                         |        |               |            |       | uth Bo        |            |      | ast Bo        |         |      | est Bo | _           |  |  |
| Approach:<br>Movement:                                                                    | I<br>L | rth Bo<br>- T | - R        |       | ucn bo<br>- T |            |      | авс вс<br>- Т |         |      | - Т    |             |  |  |
| Movement:                                                                                 |        |               |            |       |               |            |      |               |         |      |        |             |  |  |
| Control:                                                                                  | 1      | lit Ph        |            |       | lit Ph        |            | •    | lit Ph        | •       | •    | lit Ph |             |  |  |
| Rights:                                                                                   |        | Inclu         |            | -     | Inclu         |            | -    | Inclu         | ıde     | -    | Inclu  | ıde         |  |  |
| Min. Green:                                                                               | 0      | 0             | 0          | 0     | 0             | 0          | 0    | 0             | 0       | 0    | 0      | 0           |  |  |
| Lanes:                                                                                    |        | -             | 1 0        | . 1   | 0 0           | 1 0        | . 1  | 0 1           | 1 0     | 1    | 0 1    | 1 0         |  |  |
|                                                                                           | 1      |               |            |       |               |            |      |               |         |      |        |             |  |  |
| Volume Module                                                                             |        | 0.7           | 2.2        | 1.61  | 107           | 70         | 97   | 333           | 30      | 23   | 178    | 97          |  |  |
| Base Vol:<br>Growth Adj:                                                                  | 14     | 87<br>1.00    | 23<br>1.00 | 161   | 187 $1.00$    | 1.00       | 1.00 |               | 1.00    |      | 1.00   | 1.00        |  |  |
| Initial Bse:                                                                              | 1.00   | 87            | 23         | 161   | 187           | 70         | 97   | 333           | 30      | 23   | 178    | 97          |  |  |
| User Adj:                                                                                 |        | 1.00          | 1.00       |       | 1.00          | 1.00       |      | 1.00          | 1.00    |      | 1.00   | 1.00        |  |  |
| PHF Adj:                                                                                  |        | 0.90          | 0.90       |       | 0.90          | 0.90       | 0.90 | 0.90          | 0.90    | 0.90 | 0.90   | 0.90        |  |  |
| PHF Volume:                                                                               | 16     | 97            | 26         | 179   | 208           | 78         | 108  | 370           | 33      | 26   | 198    | 108         |  |  |
| Reduct Vol:                                                                               | 0      | 0             | 0          | 0     | 0             | 0          | 0    | 0             | 0       | 0    | 0      | 0           |  |  |
| Reduced Vol:                                                                              | 16     | 97            | 26         | 179   | 208           | 78         | 108  | 370           | 33      | 26   | 198    | 108         |  |  |
| PCE Adj:                                                                                  |        | 1.00          | 1.00       |       | 1.00          | 1.00       |      | 1.00          | 1.00    |      | 1.00   | 1.00        |  |  |
| MLF Adj:                                                                                  |        | 1.00          | 1.00       |       | 1.00          | 1.00<br>78 | 1.00 | 1.00<br>370   | 1.00    | 26   | 1.00   | 1.00<br>108 |  |  |
| Final Vol.:                                                                               | 16     | 97            | 26         | 179   | 208           | /8<br>     |      | 370           |         |      | 190    |             |  |  |
| Saturation F                                                                              | 1      |               | ,          |       |               | i          | 1    |               | ı       | I    |        | I           |  |  |
| Sat/Lane:                                                                                 |        | 1900          | 1900       | 1900  | 1900          | 1900       | 1900 | 1900          | 1900    | 1900 | 1900   | 1900        |  |  |
| Adjustment:                                                                               |        | 0.95          | 0.95       |       | 0.94          | 0.94       | 0.93 | 0.92          | 0.92    | 0.93 | 0.88   | 0.88        |  |  |
| Lanes:                                                                                    | 1.00   | 0.79          | 0.21       | 1.00  | 0.73          | 0.27       | 1.00 | 1.83          | 0.17    | 1.00 | 1.29   | 0.71        |  |  |
| Final Sat.:                                                                               | 1769   | 1427          | 377        | 1769  | 1299          | 486        |      | 3206          | 289     |      | 2169   | 1182        |  |  |
|                                                                                           | ı      |               |            |       |               |            |      |               |         |      |        |             |  |  |
| Capacity Anal                                                                             |        |               |            | 0 10  | 0 16          | 0 16       | 0 00 | 0 10          | 0.12    | 0 01 | 0.09   | 0.09        |  |  |
| Vol/Sat:                                                                                  | 0.01   | 0.07<br>****  | 0.07       | 0.10  | 0.16          | 0.16       | 0.06 | 0.12          | 0.12    | 0.01 | ****   | 0.09        |  |  |
| Crit Moves:<br>Green/Cycle:                                                               | 0 10   |               | 0.10       | 0.24  | 0.24          | 0.24       | 0.17 | 0.17          | 0.17    | 0.14 |        | 0.14        |  |  |
| Volume/Cap:                                                                               |        | 0.10          | 0.67       |       | 0.67          | 0.67       |      | 0.67          | 0.67    | 0.11 |        | 0.67        |  |  |
| Delay/Veh:                                                                                |        | 29.1          | 29.1       | 15.3  |               | 19.8       |      | 20.5          | 20.5    | 17.3 | 22.5   | 22.5        |  |  |
| User DelAdj:                                                                              |        |               | 1.00       | 1.00  | 1.00          | 1.00       | 1.00 | 1.00          | 1.00    | 1.00 |        | 1.00        |  |  |
| AdjDel/Veh:                                                                               |        | 29.1          | 29.1       | 15.3  |               | 19.8       |      | 20.5          | 20.5    | 17.3 |        | 22.5        |  |  |
| HCM2kAvg:                                                                                 | 0      | 3             | 3          | 3     | 5             |            |      |               | 4       | 0    | 4      | 4           |  |  |
| *****                                                                                     | ****   | ****          | ****       | ***** | ****          | ****       | **** | ****          | ****    | **** | ****   | ****        |  |  |

.\_\_\_\_\_ Eagle Lodge EIR 2005 No Project Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #3 MINARET/MERIDIAN \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 45 Critical Vol./Cap. (X): 0.674
Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): 20.5
Optimal Cycle:OPTIMIZED Level Of Service: C \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 
 Control:
 Split Phase
 Split Phase
 Split Phase
 Split Phase
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td \_\_\_\_\_| Volume Module: Base Vol: 14 87 23 97 333 30 23 178 97 161 187 70 Initial Bse: 14 87 23 161 187 70 97 333 30 23 178 97 Reduced Vol: 16 97 26 179 208 78 108 370 33 26 198 108 Final Vol.: 16 97 26 179 208 78 108 370 33 26 198 108 Saturation Flow Module: Lanes: 1.00 0.79 0.21 1.00 0.73 0.27 1.00 1.83 0.17 1.00 1.29 0.71 Final Sat.: 1769 1427 377 1769 1299 486 1769 3206 289 1769 2169 1182 \_\_\_\_\_| Capacity Analysis Module: Vol/Sat: 0.01 0.07 0.07 0.10 0.16 0.16 0.06 0.12 0.12 0.01 0.09 0.09 \*\*\* \*\*\* \*\*\* \*\*\* Crit Moves: AdjDel/Veh: 18.6 29.1 29.1 15.3 19.8 19.8 17.2 20.5 20.5 17.3 22.5 22.5 HCM2kAvq: 0 3 3 3 5 5 2 4 4 0 4 4

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

### Eagle Lodge EIR

| 2005 No Project                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| Level Of Service Computation Report                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| 2000 HCM Operations Method (Base Volume Alternative)                                                |  |  |  |  |  |  |  |  |  |  |  |  |
| ***************                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| Intersection #4 MINARET/MAIN ************************************                                   |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| Cycle (sec): 40                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| Optimal Cycle: 50 Level Of Service: C                                                               |  |  |  |  |  |  |  |  |  |  |  |  |
| ***********************                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |
| Approach: North Bound South Bound East Bound West Bound                                             |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement: L - T - R L - T - R L - T - R                                                             |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| Control: Split Phase Split Phase Split Phase Split Phase Rights: Include Include Include            |  |  |  |  |  |  |  |  |  |  |  |  |
| Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0                               |  |  |  |  |  |  |  |  |  |  |  |  |
| Lanes: 1 0 1 0 1 2 0 0 1 0 1 0 2 0 1 1 0 2 0 1                                                      |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| Volume Module:                                                                                      |  |  |  |  |  |  |  |  |  |  |  |  |
| Base Vol: 124 120 60 540 205 132 90 471 155 69 345 90                                               |  |  |  |  |  |  |  |  |  |  |  |  |
| Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
| Initial Bse: 124 120 60 540 205 132 90 471 155 69 345 90                                            |  |  |  |  |  |  |  |  |  |  |  |  |
| User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                    |  |  |  |  |  |  |  |  |  |  |  |  |
| PHF Adj: 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| Reduced Vol: 138 133 67 600 228 147 100 523 172 77 383 100                                          |  |  |  |  |  |  |  |  |  |  |  |  |
| PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| Final Vol.: 138 133 67 600 228 147 100 523 172 77 383 100                                           |  |  |  |  |  |  |  |  |  |  |  |  |
| (about bin Black Madula                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |
| Saturation Flow Module: Sat/Lane: 1900 1900 1900 1900 1900 1900 1900 190                            |  |  |  |  |  |  |  |  |  |  |  |  |
| Adjustment: 0.91 0.96 0.82 0.92 0.94 0.94 0.93 0.93 0.83 0.90 0.90 0.81                             |  |  |  |  |  |  |  |  |  |  |  |  |
| Lanes: 1.00 1.00 1.00 2.00 0.61 0.39 1.00 2.00 1.00 1.00 2.00 1.00                                  |  |  |  |  |  |  |  |  |  |  |  |  |
| Final Sat.: 1734 1825 1551 3500 1087 700 1769 3538 1583 1718 3437 1537                              |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| Capacity Analysis Module:                                                                           |  |  |  |  |  |  |  |  |  |  |  |  |
| Vol/Sat: 0.08 0.07 0.04 0.17 0.21 0.06 0.15 0.11 0.04 0.11 0.07                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| Crit Moves: **** **** **** **** Green/Cycle: 0.10 0.10 0.10 0.27 0.27 0.27 0.19 0.19 0.19 0.14 0.14 |  |  |  |  |  |  |  |  |  |  |  |  |
| Volume/Cap: 0.78 0.72 0.42 0.64 0.78 0.78 0.30 0.78 0.58 0.31 0.78 0.46                             |  |  |  |  |  |  |  |  |  |  |  |  |
| Delay/Veh: 37.7 30.3 18.7 14.5 21.8 21.8 14.5 21.5 17.5 16.1 24.6 17.2                              |  |  |  |  |  |  |  |  |  |  |  |  |
| User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| AdjDel/Veh: 37.7 30.3 18.7 14.5 21.8 21.8 14.5 21.5 17.5 16.1 24.6 17.2                             |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM2kAvg: 4 3 1 5 7 7 1 6 3 1 5 2                                                                   |  |  |  |  |  |  |  |  |  |  |  |  |

\_\_\_\_\_ Eagle Lodge EIR 2005 No Project \_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #4 MINARET/MAIN \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 40 Critical Vol./Cap. (X): 0.784 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle:OPTIMIZED Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R \_\_\_\_\_|\_\_|\_\_| 
 Control:
 Split Phase
 Split Phase
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 1
 0
 1
 0
 2
 0
 1
 1
 0
 2
 0
 1
 \_\_\_\_\_| Volume Module: 69 345 90 Base Vol: 124 120 60 540 205 132 90 471 155 Initial Bse: 124 120 60 540 205 132 90 471 155 69 345 90 PHF Volume: 138 133 67 600 228 147 100 523 172 77 383 100 1.00 \_\_\_\_\_ Saturation Flow Module: Adjustment: 0.91 0.96 0.82 0.92 0.94 0.94 0.93 0.93 0.83 0.90 0.90 0.81 Lanes: 1.00 1.00 1.00 2.00 0.61 0.39 1.00 2.00 1.00 1.00 2.00 1.00 Final Sat.: 1734 1825 1551 3500 1087 700 1769 3538 1583 1718 3437 1537 -----|----|-----||------||------| Capacity Analysis Module: Vol/Sat: 0.08 0.07 0.04 0.17 0.21 0.21 0.06 0.15 0.11 0.04 0.11 0.07 Crit Moves: \*\*\*\* \*\*\*\* Green/Cycle: 0.10 0.10 0.10 0.27 0.27 0.27 0.19 0.19 0.19 0.14 0.14 0.14 Volume/Cap: 0.78 0.72 0.42 0.64 0.78 0.78 0.30 0.78 0.58 0.31 0.78 0.46 Delay/Veh: 37.7 30.3 18.7 14.5 21.8 21.8 14.5 21.5 17.5 16.1 24.6 17.2 AdjDel/Veh: 37.7 30.3 18.7 14.5 21.8 21.8 14.5 21.5 17.5 16.1 24.6 17.2 HCM2kAvg: 4 3 1 5 7 7 1 6 3 1 5 2

\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Eagle Lodge EIR 2005 No Project \_\_\_\_\_\_ Level Of Service Computation Report 1994 HCM Unsignalized Method (Base Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 KELLY/LAKE MARY \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 1.5 Worst Case Level Of Service: A \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 20 0 35 0 0 0 39 4 40 65 Initial Bse: 20 0 35 0 0 0 0 39 4 40 65 0 PHF Volume: 22 0 39 0 0 0 0 43 4 44 72 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 22 0 39 0 0 0 0 43 4 44 72 0 Adjusted Volume Module: \_\_\_\_\_| Critical Gap Module: -----| Capacity Module: Level Of Service Module: Α Α ApproachLOS: Α

Traffix 7.7.0715 (c) 2004 Dowling Assoc. Licensed to LSC DENVER

Eagle Lodge EIR 2005 No Project

Level Of Service Computation Report 1994 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 KELLY/LAKE MARY \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 1.5 Worst Case Level Of Service: A \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R \_\_\_\_\_| \_\_\_\_\_|\_\_\_|\_\_\_| Volume Module: Base Vol: 20 0 35 0 0 0 39 4 40 65 0 Initial Bse: 20 0 35 0 0 0 0 39 4 40 65 0 Added Vol: 0 0 0 0 0 0 0 0 0 0 0 Adjusted Volume Module: 0% 08 0% Grade: Trck/Cmb PCE: xxxx xxxx xxxx xxxx xxxx Adj Vol.: 24 0 43 0 0 0 Critical Gap Module: -----| Capacity Module: 

Level Of Service Module:

Traffix 7.7.0715 (c) 2004 Dowling Assoc. Licensed to LSC DENVER

Eagle Lodge EIR

2005 No Project Level Of Service Computation Report 1994 HCM Unsignalized Method (Base Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 MERIDIAN / MAJESTIC PINES (EAST) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 1.6 Worst Case Level Of Service: B \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_| Volume Module:
Base Vol: 0 0 9 162 2 78 0 20 16 253 9 Initial Bse: 0 0 2 78 0 20 16 253 9 9 162 69 PHF Volume: 0 0 2 87 0 22 18 281 10 10 180 77 Reduct Vol: 0 0 0 2 87 0 22 18 281 10 10 180 77 \_\_\_\_\_| Adjusted Volume Module: 
 Grade:
 0%
 0%
 0%

 % Cycle/Cars:
 xxxx xxxx
 xxxxx
 xxxxx
 xxxxx
 xxxxx
 xxxxx
 xxxx
 \_\_\_\_\_|\_\_\_|\_\_\_| Critical Gap Module: -----| Capacity Module: Cnflict Vol: xxxx xxxx 146 527 xxxx 128 257 xxxx xxxxx 291 xxxx xxxxx Level Of Service Module: Stopped Del:xxxxx xxxx 3.1 9.2 xxxx 3.1 2.9 xxxx xxxxx 3.0 xxxx xxxxx LOS by Move: \* \* A \* \* \* A \* \* \* A \* \* \* A \* \* \* Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT Shared Cap.: xxxx xxxxx xxxxx xxxxx 543 xxxxx 1248 xxxx xxxxx 1196 xxxx xxxxx Shared LOS: \* \* \* B \* A \* \* A \* \* ApproachDel: 3.1 8.3 0.2 0.1 ApproachLOS: Α В Α Α

Traffix 7.7.0715 (c) 2004 Dowling Assoc. Licensed to LSC DENVER

Eagle Lodge EIR

2005 No Project \_\_\_\_\_\_ Level Of Service Computation Report 1994 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 MERIDIAN / MAJESTIC PINES (EAST) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 1.6 Worst Case Level Of Service: B \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Lanes: 0 0 0 0 1 0 0 1! 0 0 0 1 0 1 0 1 0 1 0 \_\_\_\_\_| Volume Module:
Base Vol: 0 0 2 78 0 20 16 253 9 9 162 Initial Bse: 0 0 2 78 0 20 16 253 9 9 162 69 Added Vol: 0 0 0 0 0 0 0 0 0 0 

 Initial Bse:
 0
 0
 2
 78
 0
 20
 16
 253
 9
 9
 162
 69

 Added Vol:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Adjusted Volume Module: 0 % Grade: 0% 0 응 Trck/Cmb PCE: xxxx xxxx Adj Vol.: 0 0 2 95 0 24 20 281 10 11 180 77 Critical Gap Module: \_\_\_\_\_|\_\_\_|\_\_\_| Capacity Module: Level Of Service Module: Stopped Del:xxxxx xxxx 3.1 9.2 xxxx 3.1 2.9 xxxx xxxxx 3.0 xxxx xxxxx LOS by Move: \* \* A \* \* \* A \* \* \* A \* \* \* Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT Shared Cap.: xxxx xxxx xxxxx xxxx 543 xxxxx 1248 xxxx xxxxx 1196 xxxx xxxxx Shared LOS: \* \* \* \* B \* A \* \* A \* ApproachDel: 3.1 8.3 0.2 0.1 В Α Α Α ApproachLOS:

Traffix 7.7.0715 (c) 2004 Dowling Assoc. Licensed to LSC DENVER

#### Eagle Lodge EIR 2005 No Project

|                                                                                                                                                                  |                                                                         |                                                                        |                                                                         |                                                     | JJ NO                                                                   |                                                                        |                                                                |                                                                         |                                                                        | <b>-</b>                                                          |                                                                         |                                                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Level Of Service Computation Report  2000 HCM 4-Way Stop Method (Base Volume Alternative)  ***********************************                                   |                                                                         |                                                                        |                                                                         |                                                     |                                                                         |                                                                        |                                                                |                                                                         |                                                                        |                                                                   |                                                                         |                                                                     |  |
| Intersection #7 MERIDIAN?MAJESTIC PINES (WEST)                                                                                                                   |                                                                         |                                                                        |                                                                         |                                                     |                                                                         |                                                                        |                                                                |                                                                         |                                                                        |                                                                   |                                                                         |                                                                     |  |
| **************************************                                                                                                                           |                                                                         |                                                                        |                                                                         |                                                     |                                                                         |                                                                        |                                                                |                                                                         |                                                                        |                                                                   |                                                                         |                                                                     |  |
| Approach: Movement:                                                                                                                                              | Noi<br>L                                                                | cth Bo<br>- T                                                          | und<br>- R                                                              | Soi<br>L                                            | uth Bo<br>- T                                                           | und<br>- R                                                             | Ea<br>L -                                                      | ast Bo<br>- T                                                           | ound<br>- R                                                            | We<br>L -                                                         | st Bo                                                                   | ound<br>- R                                                         |  |
| Control:<br>Rights:                                                                                                                                              | St                                                                      | op Si<br>Inclu                                                         | gn<br>de                                                                | St                                                  | top Si<br>Inclu                                                         | gn                                                                     |                                                                | op Si<br>Inclu                                                          | .gn                                                                    | St                                                                | op Si<br>Inclu                                                          | .gn                                                                 |  |
| Min. Green:<br>Lanes:                                                                                                                                            | 0 (                                                                     | 0                                                                      | 0 0                                                                     |                                                     | 0 1!                                                                    |                                                                        | 0 (                                                            | 1!                                                                      | 0 0                                                                    | 1 0                                                               | 0                                                                       | 1 0                                                                 |  |
| Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: Final Vol.:                           | 3<br>1.00<br>3<br>1.00<br>0.90<br>3<br>0<br>3<br>1.00<br>1.00<br>3<br>1 | 10<br>1.00<br>1.00<br>0.90<br>11<br>0<br>11<br>1.00<br>1.00<br>11<br>  | 24<br>1.00<br>24<br>1.00<br>0.90<br>27<br>0<br>27<br>1.00<br>1.00<br>27 | 199 1.00 199 1.00 0.90 221 0 221 1.00 1.00 221 1.00 | 22<br>1.00<br>22<br>1.00<br>0.90<br>24<br>0<br>24<br>1.00<br>1.00<br>24 | 2<br>1.00<br>2<br>1.00<br>0.90<br>2<br>0<br>2<br>1.00<br>1.00<br>2<br> | 1.00<br>1.00<br>0.90<br>1<br>0<br>1.00<br>1.00<br>1.00<br>1.00 | 15<br>1.00<br>15<br>1.00<br>0.90<br>17<br>0<br>17<br>1.00<br>1.00<br>17 | 3<br>1.00<br>3<br>1.00<br>0.90<br>3<br>0<br>3<br>1.00<br>1.00<br>3<br> | 46<br>1.00<br>46<br>1.00<br>0.90<br>51<br>1.00<br>1.00<br>51<br>1 | 20<br>1.00<br>20<br>1.00<br>0.90<br>22<br>0<br>22<br>1.00<br>1.00<br>22 | 90<br>1.00<br>90<br>1.00<br>0.90<br>100<br>100<br>1.00<br>1.00<br>1 |  |
| Capacity Anal<br>Vol/Sat:<br>Crit Moves:<br>Delay/Veh:<br>Delay Adj:<br>AdjDel/Veh:<br>LOS by Move:<br>ApproachDel:<br>Delay Adj:<br>ApprAdjDel:<br>LOS by Appr: | 7.5<br>1.00<br>7.5<br>A                                                 | Modul<br>0.05<br>****<br>7.5<br>1.00<br>7.5<br>A<br>7.5<br>1.00<br>7.5 | e:<br>0.05<br>7.5<br>1.00<br>7.5<br>A                                   | 0.32<br>9.7<br>1.00<br>9.7<br>A                     | 0.32<br>****<br>9.7<br>1.00<br>9.7<br>A<br>9.7<br>1.00<br>9.7           | 9.7<br>1.00<br>9.7<br>A                                                | 0.03<br>7.9<br>1.00<br>7.9<br>A                                | 0.03<br>7.9<br>1.00<br>7.9<br>A<br>7.9<br>1.00<br>7.9                   | 0.03<br>****<br>7.9<br>1.00<br>7.9<br>A                                | 0.08<br>8.9<br>1.00<br>8.9<br>A                                   | 0.16<br>****<br>8.2<br>1.00<br>8.2<br>A<br>8.4<br>1.00<br>8.4           | 0.16<br>8.2<br>1.00<br>8.2<br>A                                     |  |

Eagle Lodge EIR 2005 No Project \_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #7 MERIDIAN?MAJESTIC PINES (WEST) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap. (X): 0.323 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_|\_\_\_|\_\_\_| Volume Module:
Base Vol: 3 10 24 199 22 1 15 3 46 20 90 2 Final Vol.: 3 11 27 221 24 2 1 17 3 51 22 100 \_\_\_\_\_|\_\_\_|\_\_\_| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.05 0.05 0.05 0.32 0.32 0.32 0.03 0.03 0.03 0.08 0.16 0.16 

# 2009 No Project LOS

Page 1-1 2009 No Project Tue Jun 20, 2006 11:50:37 Page 1-1 Tue Jun 20, 2006 11:50:37

Eagle Lodge EIR

\_\_\_\_\_

Scenario Report

Scenario: 2009 No Project

W/ Proj

W/ Proj

Volume: PM

Geometry: Default Geometry

Impact Fee: Default Impact Fee

Trip Generation: PM

Trip Distribution: Default Trip Distribution

Paths: Default Paths

Routes: Default Routes

Configuration: Future

| 2009 No Project        | Tue Jun 20, 2            | 006 11:5   |             |             | <b></b>      | Page 2         | 2-1   |  |  |  |  |  |
|------------------------|--------------------------|------------|-------------|-------------|--------------|----------------|-------|--|--|--|--|--|
| Eagle Lodge EIR        |                          |            |             |             |              |                |       |  |  |  |  |  |
| Trip Generation Report |                          |            |             |             |              |                |       |  |  |  |  |  |
| Forecast for PM        |                          |            |             |             |              |                |       |  |  |  |  |  |
| Zone<br># Subzone Am   | ount Units               | Rate<br>In | Rate<br>Out | Trips<br>In | Trips<br>Out | Total<br>Trips |       |  |  |  |  |  |
|                        |                          |            |             |             |              |                |       |  |  |  |  |  |
| Zone 2 Sub             | 1.00 Base Lodge<br>total |            |             | 101<br>101  | 223<br>223   |                | 100.0 |  |  |  |  |  |
| TOTAL                  |                          |            |             |             | 223          | 324            | 100.0 |  |  |  |  |  |

| 2009 No | Project                               |     | T             | ue Jun | 20, 2  | 006 11 | :50:37 |     |     | P    | age 3-1 |  |  |  |
|---------|---------------------------------------|-----|---------------|--------|--------|--------|--------|-----|-----|------|---------|--|--|--|
|         | Eagle Lodge EIR                       |     |               |        |        |        |        |     |     |      |         |  |  |  |
|         |                                       |     | T:            | rip Di | stribu | tion R | eport  |     |     |      |         |  |  |  |
|         |                                       |     | P             | ercent | Of Tr  | ips De | fault  |     |     |      |         |  |  |  |
|         | To Gates<br>1 2 5 6 7 8 9 10 11 12 14 |     |               |        |        |        |        |     |     |      |         |  |  |  |
| Zone    | 1                                     | 2   | 5<br><b>-</b> | 6      | 7<br>  | 8      | 9      | 10  | 11  | 12   | 14      |  |  |  |
| 2       | 11.0                                  | 0.0 | 1.0           | 2.0    | 5.0    | 4.0    | 11.0   | 2.0 | 9.0 | 18.0 | 14.0    |  |  |  |
|         |                                       |     | Gates         |        |        |        |        |     |     |      |         |  |  |  |
| Zone    | 15<br>                                | 16  | 17<br>        | 18     | 19     |        |        |     |     |      |         |  |  |  |

2 4.0 5.0 10.0 2.0 2.0

2009 No Project Tue Jun 20, 2006 11:50:37 Page 4-1 Eagle Lodge EIR

#### Turning Movement Report ΡM

| Volume<br>Type |            | orthb<br>Thru      | ound<br>Right |         | outhbo<br>Thru | ound<br>Right |     | astboı<br>Thru | und<br>Right |         | estbo<br>Thru |     | Total<br>Volume |
|----------------|------------|--------------------|---------------|---------|----------------|---------------|-----|----------------|--------------|---------|---------------|-----|-----------------|
|                | . /        | _                  |               |         |                |               |     |                |              |         |               |     |                 |
| #1 OLD         | •          |                    | 4.0           | •       | _              | ^             | 0   | 204            | 668          | 70      | 285           | 0   | 1730            |
| Base           | 346        | 0                  | 48            | 0       | 0              | 0             | 0   | 304            |              | 79      | 285<br>0      | 0   | 1/30            |
| Added          | 0          | 0                  | 9             | 0       | 0              | 0             | 0   | 0              | 0            | 4<br>83 | 285           | 0   | 1743            |
| Total          | 346        | 0                  | 57            | 0       | 0              | 0             | 0   | 304            | 668          | 83      | 285           | 0   | 1/43            |
| #2 MER         | IDIAN,     | OLDM/              |               |         |                |               |     |                |              |         |               |     |                 |
| Base           | 122        | 305                | 73            | 131     | 385            | 106           | 101 | 173            | 141          | 122     | 192           | 148 | 1999            |
| Added          | 2          | 0                  | 0             | 0       | 0              | 18            | 40  | 22             | 4            | 0       | 10            | 0   | 96              |
| Total          | 124        | 305                | 73            | 131     | 385            | 124           | 141 | 195            | 145          | 122     | 202           | 148 | 2095            |
| #3 MINA        | ARET/I     | MERID:             | IAN           |         |                |               |     |                |              |         |               |     |                 |
| Base           | 20         | 112                | 24            | 166     | 187            | 48            | 60  | 269            | 5            | 23      | 174           | 139 | 1227            |
| Added          | 18         | 0                  | 0             | 0       | 0              | 15            | 33  | 91             | 40           | 0       | 41            | 0   | 238             |
| Total          | 38         | 112                | 24            | 166     | 187            | 63            | 93  | 360            | 45           | 23      | 215           | 139 | 1465            |
| #4 MINA        | א רחבים א  | σα TNT             |               |         |                |               |     |                |              |         |               |     |                 |
|                | 176        | 137                | 45            | 586     | 203            | 132           | 90  | 509            | 323          | 58      | 386           | 144 | 2789            |
| Base           |            | 137                | 11            | 0       | 203            | 132           | 0   | 0              | 4            | 5       | 0             | 0   | 34              |
| Added          | 8          |                    | 56            | 586     | 205            | 132           | 90  | 509            | 327          | 63      | 386           | 144 | 2823            |
| Total          | 184        | 141                | 56            | 586     | 205            | 134           | 90  | 503            | 321          | 0.5     | 300           | 111 | 2023            |
| #5 KELI        | LY/LAI     | KE MAI             |               |         |                |               |     |                |              |         |               |     |                 |
| Base           | 21         | 0                  | 33            | 0       | 0              | 0             | 0   | 123            | 137          | 34      | 60            | 0   | 408             |
| Added          | 1          | 0                  | 1             | 0       | 0              | 0             | 0   | 1              | 1            | 1       | 3             | 0   | 8               |
| Total          | 22         | 0                  | 34            | 0       | 0              | 0             | 0   | 124            | 138          | 35      | 63            | 0   | 416             |
| #6 MER         | IDIAN      | / MA               | JESTIC        | PINES   | (EAST          | r)            |     |                |              |         |               |     |                 |
| Base           | 0          | 0                  | 2             | 120     | 0              | 12            | 32  | 70             | 9            | 9       | 55            | 107 | 416             |
| Added          | 0          | 0                  | 0             | 0       | 0              | 10            | 23  | 176            | 0            | 0       | 80            | 0   | 289             |
| Total          | 0          | 0                  | 2             | 120     | 0              | 22            | 55  | 246            | 9            | 9       | 135           | 107 | 705             |
| #7 MER         | TDTAN      | MAJE:              | STIC P        | INES (I | WEST)          |               |     |                |              |         |               |     |                 |
| Base           | 3          | 0                  | 48            | 0       | 0              | 0             | 0   | 15             | 3            | 46      | 20            | 0   | 135             |
| Added          | 0          | 11                 | 0             | 198     | 25             | 0             | 0   | 0              | 0            | 0       | 0             | 90  | 324             |
| Total          | 3          | 11                 | 48            | 198     | 25             | Ō             | 0   | 15             | 3            | 46      | 20            | 90  | 459             |
| #8 MER         | IDIAN      | /B116/3            | Auto Di       | ron Off | <u>-</u>       |               |     |                |              |         |               |     |                 |
| #0 MEK.        | O<br>LDTWN | оць/ <i>1</i><br>О | 0             | 0       | . 0            | 0             | 0   | 61             | 0            | 0       | 62            | 0   | 123             |
| Added          | 0          | 0                  | 0             | 0       | 0              | 0             | 0   | 198            | 0            | 0       | 90            | 0   | 288             |
| Total          | 0          | 0                  | 0             | 0       | 0              | 0             | 0   | 259            | 0            | Ô       | 152           | 0   | 411             |
| TOLAL          | U          | U                  | U             | U       | J              | U             | U   | 200            | Ü            | J       |               | J   |                 |

2009 No Project Tue Jun 20, 2006 11:50:37 Page 5-1 Eagle Lodge EIR

#### \_\_\_\_\_ Link Volume Report

PM

|                |         |                    |            |           |            | 1.1.1 |            |      |       |      |       |       |        |
|----------------|---------|--------------------|------------|-----------|------------|-------|------------|------|-------|------|-------|-------|--------|
| Volume         |         | NB Li              | nk         |           | SB Li      | ink   |            | EB L | ink   |      | WB L: | ink   | Total  |
| Type           | In      | Out                | Total      | In        | Out        | Total | In         | Out  | Total | In   | Out   | Total | Volume |
| 11             |         |                    |            |           |            |       |            |      |       |      |       |       |        |
| #1 OLDM        | /MAI    | N                  |            |           |            |       |            |      |       |      |       |       |        |
| Base           | 394     |                    | 1141       | 0         | 0          | 0     | 972        | 631  | 1603  | 364  | 352   | 716   | 3460   |
| Added          | 9       |                    | 13         | 0         | 0          | 0     | 0          | 0    | 0     | 4    | 9     | 13    | 26     |
| Total          | 403     | 751                | 1154       | 0         | 0          | 0     | 972        | 631  | 1603  | 368  | 361   | 729   | 3486   |
| #2 MERI        | DTAN    | /OT/DM             |            |           |            |       |            |      |       |      |       |       |        |
| Base           | 500     | 648                | 1148       | 622       | 554        | 1176  | 415        | 420  | 835   | 462  | 377   | 839   | 3998   |
| Added          | 2       | 4                  | 6          | 18        | 40         | 58    | 66         | 30   | 96    | 10   | 22    | 32    | 192    |
| Total          | 502     | 652                | 1154       | 640       | 594        | 1234  | 481        | 450  | 931   | 472  | 399   | 871   | 4190   |
| UO METATA      | DDM /   | 14 A TO TO TO TO T | - 7-3-7    |           |            |       |            |      |       |      |       |       |        |
| #3 MINA        | 156     |                    | .AN<br>371 | 401       | 311        | 712   | 334        | 242  | 576   | 336  | 459   | 795   | 2454   |
| Base           | 18      | 215<br>40          | 58         | 15        | 311        | 48    | 164        | 74   | 238   | 41   | 91    | 132   | 476    |
| Added<br>Total | 174     | 255                | 429        | 416       | 344        | 760   | 498        | 316  | 814   | 377  | 550   | 927   | 2930   |
| IOLAI          | 1,14    | 200                | 423        | 410       | 244        | 700   | 400        | 310  | 014   | 3,,, | 330   | 227   | 2550   |
| #4 MINA        | RET/    | MAIN               |            |           |            |       |            |      |       |      |       |       |        |
| Base           | 358     | 584                | 942        | 921       | 371        | 1292  | 922        | 694  | 1616  |      | 1140  | 1728  | 5578   |
| Added          | 23      | 11                 | 34         | 2         | 4          | 6     | 4          | 8    | 12    | 5    | 11    | 16    | 68     |
| Total          | 381     | 595                | 976        | 923       | 375        | 1298  | 926        | 702  | 1628  | 593  | 1151  | 1744  | 5646   |
| #5 KELL        | Y / T.A | KE MAR             | Υ          |           |            |       |            |      |       |      |       |       |        |
| Base           | 54      | 171                | 225        | 0         | 0          | 0     | 260        | 81   | 341   | 94   | 156   | 250   | 816    |
| Added          | 2       | 2                  | 4          | 0         | 0          | 0     | 2          | 4    | 6     | 4    | 2     | 6     | 16     |
| Total          | 56      | 173                | 229        | 0         | 0          | 0     | 262        | 85   | 347   | 98   | 158   | 256   | 832    |
| "              |         | / 267 7            |            | DIMBO     | / ED 20 CO | . \   |            |      |       |      |       |       |        |
| #6 MERI        |         |                    | ESTIC      |           | (EAST      | 271   | 111        | 67   | 178   | 171  | 192   | 363   | 832    |
| Base           | 2       | 18<br>0            | 20         | 132<br>10 | 23         | 33    | 111<br>199 | 90   | 289   | 80   | 176   | 256   | 578    |
| Added          | 0<br>2  | 18                 | 20         | 142       | 162        | 304   | 310        | 157  | 467   | 251  | 368   | 619   | 1410   |
| Total          |         | 1.0                | 20         | 142       | 102        | 204   | 310        | 137  | 407   | 231  | 200   | 019   | 1410   |
| #7 MERI        | DIAN    | MAJES              | TIC PI     | NES (V    | VEST)      |       |            |      |       |      |       |       |        |
| Base           | 51      | 49                 | 100        | 0         | 0          | 0     | 18         | 23   | 41    | 66   | 63    | 129   | 270    |
| Added          | 11      | 25                 | 36         | 223       | 101        | 324   | 0          | 0    | 0     | 90   | 198   | 288   | 648    |
| Total          | 62      | 74                 | 136        | 223       | 101        | 324   | 18         | 23   | 41    | 156  | 261   | 417   | 918    |
| #8 MERI        | DTAN    | /Bus/A             | uto Dr     | op Off    | •          |       |            |      |       |      |       |       |        |
| Base           | 0       | 0                  | 0          | 0         | 0          | 0     | 61         | 62   | 123   | 62   | 61    | 123   | 246    |
| Added          | 0       | 0                  | 0          | 0         | 0          | 0     | 198        | 90   | 288   | 90   | 198   | 288   | 576    |
| Total          | 0       | 0                  | 0          | 0         | 0          | 0     | 259        | 152  | 411   | 152  | 259   | 411   | 822    |
|                |         |                    |            |           |            |       |            |      |       |      |       |       |        |

| 2009 No Project         | Tue Jun 20, 20   | 06 11:50:38 | 8   | Pag    | ge 6-1 |
|-------------------------|------------------|-------------|-----|--------|--------|
|                         | Eagle Lod        | ge EIR      |     |        |        |
|                         | Signal Warrant S | ummary Repo | ort |        |        |
| Intersection            |                  | Base Met    | t   | Future | Met    |
|                         |                  | [Del / Vo   | ol] | [Del / | Vol]   |
| # 5 KELLY/LAKE MARY     |                  | ??? / ??    | ??  | No /   | No     |
| # 6 MERIDIAN / MAJESTIC | PINES (EAST)     | ??? / ??    | ??  | No /   | No     |
| # 7 MERIDIAN?MAJESTIC F |                  | ??? / ??    | ??  | No /   | No     |
| # 8 MERIDIAN/Bus/Auto D |                  | 333 \ 33    | ??  | No /   | No     |

\_\_\_\_\_\_ Eagle Lodge EIR \_\_\_\_\_\_ Peak Hour Delay Signal Warrant Report \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 KELLY/LAKE MARY \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Future Volume Alternative: Peak Hour Warrant NOT Met Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_ -----| Approach[northbound][lanes=1][control=Stop] Signal Warrant Rule #1: [vehicle-hours=0.2] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=59] FAIL - Approach volume less than 100 for one lane approach. Signal Warrant Rule #3: [approach count=3] [total volume=438] FAIL - Total volume less than 650 for intersection with less than four approaches.

Signal Warrant Rule #3: [approach count=4] [total volume=742] FAIL - Total volume less than 800 for intersection

with four or more approaches.

Page 8-1 Tue Jun 20, 2006 11:50:38 2009 No Project \_\_\_\_\_\_ Eagle Lodge EIR \_\_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #1 OLDM/MAIN \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 75 Critical Vol./Cap. (X): 0.850 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 20.8 Optimal Cycle: 80 Level Of Service: CCritical Vol./Cap. (X): 0.850 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----| Control: Protected Protected Prot+Permit Prot+Permit Rights: Include I Volume Module: Base Vol: 346 0 48 0 0 0 0 304 668 79 285 Initial Bse: 346 0 48 0 0 0 0 304 668 79 285 0 Final Vol.: 364 0 60 0 0 0 320 703 87 300 0 \_\_\_\_\_| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.21 0.00 0.04 0.00 0.00 0.00 0.00 0.09 0.46 0.05 0.09 0.00 Crit Moves: \*\*\*\* AdjDel/Veh: 42.0 0.0 22.6 0.0 0.0 0.0 0.0 8.9 23.1 5.0 6.7 0.0 HCM2kAvq: 12 0 1 0 0 0 0 2 17 1 2

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\_\_\_\_\_\_ Eagle Lodge EIR \_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #2 MERIDIAN/OLDM \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 50 Critical Vol./Cap. (X): 0.751 23.8 Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 58 Level Of Service: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R \_\_\_\_\_|\_\_\_|\_\_\_| Volume Module: Base Vol: 122 305 73 131 385 106 101 173 141 122 192 148 Initial Bse: 122 305 73 131 385 106 101 173 141 122 192 148 MLF Adj: Final Vol.: 131 321 77 138 405 131 148 205 153 128 213 156 \_\_\_\_\_| Saturation Flow Module: -----| Capacity Analysis Module: Vol/Sat: 0.07 0.17 0.05 0.08 0.22 0.08 0.08 0.11 0.11 0.07 0.11 0.11 \*\*\* Crit Moves: \*\*\*\* HCM2kAvg: 4 6 1 3 8 2 3 5 5 3 5 5

2009 No Project Tue Jun 20, 2006 11:50:38 Page 10-1 \_\_\_\_\_ Eagle Lodge EIR \_\_\_\_\_ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #3 MINARET/MERIDIAN \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 

| ****************************** |        |          |      |           |          |      |      |         |       |       |           |      |
|--------------------------------|--------|----------|------|-----------|----------|------|------|---------|-------|-------|-----------|------|
| Approach:                      | No     | rth Bo   | ound | So        | uth Bo   | ound |      | ast B   |       | We    | est Bo    | ound |
| Movement:                      | L      | - T      | - R  |           | - T      |      |      | - T     |       | _     | - T       | - R  |
|                                | 1      |          |      |           |          |      |      |         |       |       |           |      |
| Control:                       | Sp     | lit Pl   | nase | Sp        | lit Ph   |      | Sp   |         | nase  | Sp.   | lit Pl    |      |
| Rights:                        |        | Incl     | ıde  |           | Inclu    |      |      | Incl    | ıde   |       | Incl      | ıde  |
| Min. Green:                    | 0      | 0        | 0    |           | 0        | 0    | 0    | -       | 0     | 0     | 0         | 0    |
| Lanes:                         | 1      | 0 0      | 1 0  | 1         | 0 0      | 1 0  | 1    |         |       | 1 (   | ) 1       | 1 0  |
|                                |        |          |      |           |          |      |      |         |       |       |           |      |
| Volume Module                  | e:     |          |      |           |          |      |      |         |       |       |           |      |
| Base Vol:                      | 20     | 112      | 24   | 166       | 187      | 48   | 60   | 269     | 5     | 23    | 174       | 139  |
| Growth Adj:                    | 1.00   | 1.00     | 1.00 | 1.00      | 1.00     | 1.00 |      |         | 1.00  | 1.00  | 1.00      | 1.00 |
| Initial Bse:                   | 20     | 112      | 24   | 166       | 187      | 48   | 60   | 269     | 5     | 23    | 174       | 139  |
| Added Vol:                     | 18     | 0        | 0    | 0         | 0        | 15   | 33   | 91      | 40    | 0     | 41        | 0    |
| PasserByVol:                   | 0      | 0        | 0    | 0         | 0        | 0    | 0    | 0       | 0     | 0     | 0         | 0    |
| Initial Fut:                   | 38     | 112      | 24   | 166       | 187      | 63   | 93   | 360     | 45    | 23    | 215       | 139  |
| User Adj:                      | 1.00   | 1.00     | 1.00 | 1.00      | 1.00     | 1.00 | 1.00 | 1.00    | 1.00  | 1.00  | 1.00      | 1.00 |
| PHF Adj:                       | 0.95   | 0.95     | 0.95 | 0.95      | 0.95     | 0.95 | 0.95 | 0.95    | 0.95  | 0.95  | 0.95      | 0.95 |
| PHF Volume:                    | 40     | 118      | 25   | 175       | 197      | 66   | 98   | 379     | 47    | 24    | 226       | 146  |
| Reduct Vol:                    | 0      | 0        | 0    | 0         | 0        | 0    | 0    | 0       | 0     | 0     | 0         | 0    |
| Reduced Vol:                   | 40     | 118      | 25   | 175       | 197      | 66   | 98   | 379     | 47    | 24    | 226       | 146  |
| PCE Adi:                       | 1.00   | 1.00     | 1.00 | 1.00      | 1.00     | 1.00 | 1.00 | 1.00    | 1.00  | 1.00  | 1.00      | 1.00 |
| MLF Adj:                       | 1.00   | 1.00     | 1.00 | 1.00      | 1.00     | 1.00 | 1.00 | 1.00    | 1.00  | 1.00  | 1.00      | 1.00 |
| Final Vol.:                    | 40     | 118      | 25   | 175       | 197      | 66   | 98   | 379     | 47    | 24    | 226       | 146  |
|                                |        | <b></b>  |      |           | <b>-</b> |      |      |         |       |       | <b></b> - |      |
| Saturation F                   | low Mo | odule:   |      | •         |          |      |      |         | ·     |       |           |      |
| Sat/Lane:                      | 1900   | 1900     | 1900 | 1900      | 1900     | 1900 | 1900 | 1900    | 1900  | 1900  | 1900      | 1900 |
| Adjustment:                    | 0.93   | 0.95     | 0.95 | 0.93      | 0.94     | 0.94 | 0.93 | 0.96    | 0.96  | 0.93  | 0.92      | 0.92 |
| Lanes:                         | 1.00   | 0.82     | 0.18 | 1.00      | 0.75     | 0.25 | 1.00 | 1.78    | 0.22  | 1.00  | 1.21      | 0.79 |
| Final Sat.:                    | 1769   | 1494     | 320  | 1769      | 1340     | 451  | 1769 | 3254    | 407   | 1769  | 2128      | 1376 |
|                                |        | <b>-</b> |      |           |          |      |      | <b></b> |       |       |           |      |
| Capacity Anal                  | lysis  | Modul    | .e:  | •         |          |      |      |         |       |       |           |      |
| Vol/Sat:                       |        | 0.08     | 0.08 | 0.10      | 0.15     | 0.15 | 0.06 | 0.12    | 0.12  | 0.01  | 0.11      | 0.11 |
| Crit Moves:                    |        | ***      |      |           |          | **** |      | ****    |       |       |           | **** |
| Green/Cycle:                   | 0.11   | 0.11     | 0.11 | 0.21      | 0.21     | 0.21 | 0.17 | 0.17    | 0.17  | 0.15  | 0.15      | 0.15 |
| Volume/Cap:                    | 0.20   | 0.70     | 0.70 | 0.47      | 0.70     | 0.70 | 0.33 | 0.70    | 0.70  | 0.09  | 0.70      | 0.70 |
| Delay/Veh:                     | 18.6   | 29.2     | 29.2 | 16.5      | 22.0     | 22.0 | 17.2 | 21.2    | 21.2  | 16.5  | 22.1      | 22.1 |
| User DelAdj:                   | 1.00   | 1.00     | 1.00 | 1.00      | 1.00     | 1.00 | 1.00 | 1.00    | 1.00  | 1.00  | 1.00      | 1.00 |
| AdjDel/Veh:                    |        | 29.2     | 29.2 | 16.5      | 22.0     | 22.0 | 17.2 | 21.2    | 21.2  | 16.5  | 22.1      | 22.1 |
| HCM2kAvq:                      | 1      | 4        | 4    | 3         | 5        | 5    | 2    | 4       | 4     | 0     | 4         | 4    |
| ******                         | ****   | *****    | **** | * * * * * | ****     | **** | **** | *****   | ***** | ***** | ****      | **** |

Page 11-1 2009 No Project Tue Jun 20, 2006 11:50:38 \_\_\_\_\_\_\_\_\_\_ Eagle Lodge EIR \_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #4 MINARET/MAIN \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 50 Critical Vol./Cap. (X): 0.842 12 (Y+R = 4 sec) Average Delay (sec/veh): Loss Time (sec): Optimal Cycle: 63 Level Of Service: Approach: North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R L - T - R Movement: 
 Control:
 Split Phase
 Include
 -----|----|------| Volume Module: Base Vol: 176 137 45 586 203 132 90 509 323 58 386 144 Initial Bse: 176 137 45 586 203 132 90 509 323 58 386 144 Added Vol: 8 4 11 0 2 0 0 0 4 5 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 184 141 56 586 205 132 90 509 327 63 386 144 PHF Volume: 194 148 59 617 216 139 95 536 344 66 406 152 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 194 148 59 617 216 139 95 536 344 66 406 152 Saturation Flow Module: Adjustment: 0.91 0.96 0.82 0.95 0.94 0.94 0.93 0.98 0.83 0.90 0.95 0.81 Lanes: 1.00 1.00 1.00 2.00 0.61 0.39 1.00 2.00 1.00 1.00 2.00 1.00 Final Sat.: 1734 1825 1551 3609 1087 700 1769 3724 1583 1718 3618 1537 -----| Capacity Analysis Module: Vol/Sat: 0.11 0.08 0.04 0.17 0.20 0.20 0.05 0.14 0.22 0.04 0.11 0.10 Crit Moves: \*\*\*\* \*\*\*\* Crit Moves: Green/Cycle: 0.13 0.13 0.13 0.24 0.24 0.24 0.26 0.26 0.26 0.13 0.13 0.13 Volume/Cap: 0.84 0.61 0.29 0.73 0.84 0.84 0.21 0.56 0.84 0.29 0.84 0.74 Delay/Veh: 44.6 25.1 20.3 20.7 32.4 32.4 14.8 16.8 32.1 20.2 33.8 34.1 AdjDel/Veh: 44.6 25.1 20.3 20.7 32.4 32.4 14.8 16.8 32.1 20.2 33.8 34.1

HCM2kAvg: 6 3 1 6 8 8 1 4 8 1 6 4

.\_\_\_\_\_\_ Eagle Lodge EIR \_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 KELLY/LAKE MARY \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 2.0 Worst Case Level Of Service: B[ 10.2] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 \_\_\_\_\_|\_\_|\_\_| Volume Module: 33 0 0 123 137 34 60 Base Vol: 21 0 0 0 Initial Bse: 21 0 33 0 0 0 123 137 34 60 Added Vol: 1 0 1 0 0 0 0 1 1 1 3 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 3 Thirtial Fut: 22 0 34 0 0 0 0 124 138 35 63 0 0 123 0 0 1 137 34 60 0 Ω PHF Volume: 23 0 36 0 0 0 0 131 145 37 66 0 Reduct Vol: 0 0 0 0 0 0 0 0 131 145 37 66 0 Final Vol.: 23 0 36 0 0 0 0 131 145 37 66 0 Reduct Vol: 0 0 Final Vol.: 23 0 Critical Gap Module: \_\_\_\_\_\_|\_\_\_|\_\_\_| Capacity Module: Level Of Service Module: A \* \* LOS by Move: \* \* \* \* \* \* \* \* LT - LTR - RT LT - LTR - RT LT - LTR - RT Movement: LT - LTR - RT 7.9 xxxx xxxxx A \* \* Shared LOS: \* B \* \* \* \* \* \* \* \* \* \* ApproachDel: 10.2 xxxxxx ApproachLOS: B \* \* \* \* XXXXXX

\_\_\_\_\_\_

Eagle Lodge EIR

\_\_\_\_\_\_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 MERIDIAN / MAJESTIC PINES (EAST) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 3.8 Worst Case Level Of Service: C[ 15.1] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R -----| Volume Module: Critical Gap Module: Critical Gp:xxxxx xxxx 6.9 7.5 xxxx 6.9 4.1 xxxx xxxxx 4.1 xxxx xxxxx FollowUpTim:xxxxx xxxx 3.3 3.5 xxxx 3.3 2.2 xxxx xxxxx 2.2 xxxx xxxxx Capacity Module: Cnflict Vol: xxxx xxxx 134 463 xxxx 127 255 xxxx xxxxx 268 xxxx xxxxx Potent Cap.: xxxx xxxx 896 487 xxxx 905 1322 xxxx xxxxx 1307 xxxx xxxxx Move Cap.: xxxx xxxx 896 466 xxxx 905 1322 xxxx xxxxx 1307 xxxx xxxxx Volume/Cap: xxxx xxxx 0.00 0.27 xxxx 0.03 0.04 xxxx xxxx 0.01 xxxx xxxx Level Of Service Module: A \* \* A \* \*
LT - LTR - RT Movement: LT - LTR - RT Shrd StpDel:xxxxx xxxx xxxxx xxxxx 15.1 xxxxx 7.8 xxxx xxxxx 7.8 xxxx xxxxx Shared LOS: \* \* \* \* C \* A \* \* A \* \* ApproachDel: 9.0 15.1 xxxxxx ApproachLoS: A C \* \*

| Ontimal Cycle: 0             |                      |              |          | = 4 sec) Average Delay (sec/veh): |      |      |                      |      |       | A          |             |       |
|------------------------------|----------------------|--------------|----------|-----------------------------------|------|------|----------------------|------|-------|------------|-------------|-------|
| Approach:                    |                      |              |          |                                   |      |      | East Bound           |      |       | West Bound |             |       |
| Movement:                    | T.                   | - T          | - R      | L                                 | - T  | - R  | L ·                  | - T  | - R   |            | - T         |       |
|                              |                      |              |          |                                   |      |      |                      |      |       |            |             |       |
| Control:                     | Stop Sign<br>Include |              |          | Stop Sign                         |      |      | Stop Sign<br>Include |      |       | Stop Sign  |             |       |
| Rights:                      |                      |              |          |                                   |      |      |                      |      |       |            |             |       |
| Min. Green:                  | _                    | 0            | 0        |                                   | 0    | 0    |                      | 0    | 0     | _          | . 0         | 0     |
| Lanes:                       | . 0                  | 0 1!         | 0 0      |                                   |      | 0 0  |                      |      | 1 0   |            |             |       |
|                              |                      |              |          |                                   |      |      |                      |      |       |            |             |       |
| Volume Modul                 |                      | 0            | 4.0      | 0                                 | 0    | 0    | 0                    | 15   | 3     | 46         | 20          | 0     |
| Base Vol:                    | 3                    |              | 48       | 1 00                              | 1 00 | 1.00 | -                    | 1.00 | 1.00  |            | 1.00        | 1.00  |
| Growth Adj:                  |                      | 1.00         | 1.00     | 1.00                              | 1.00 | 0    | 0.00                 | 15   | 3     | 46         | 20          | 0     |
| Initial Bse:                 | 0                    |              | 0        | 198                               | 25   | 0    | 0                    | 0    | 0     | 0          | 0           | 90    |
| Added Vol:                   |                      |              | 0        | 198                               | 0    | 0    | 0                    | 0    | 0     | 0          | 0           | 0     |
| PasserByVol:<br>Initial Fut: |                      |              | 48       | 198                               | 25   | 0    | 0                    | 15   | 3     | 46         | 20          | 90    |
| User Adj:                    |                      | 1.00         | 1.00     |                                   | 1.00 | 1.00 | _                    | 1.00 | 1.00  |            | 1.00        | 1.00  |
| PHF Adj:                     |                      | 0.95         | 0.95     | 0.95                              |      | 0.95 |                      | 0.95 | 0.95  |            | 0.95        | 0.95  |
| PHF Volume:                  | 3                    |              | 51       | 208                               | 26   | 0.55 | 0                    | 16   | 3     | 48         | 21          | 95    |
| Reduct Vol:                  |                      |              | 0        | 0                                 | 0    | 0    | 0                    | 0    | 0     | 0          | 0           | 0     |
| Reduced Vol:                 |                      |              | 51       | 208                               | 26   | 0    | 0                    | 16   | 3     | 48         | 21          | 95    |
| PCE Adj:                     |                      |              | 1.00     |                                   | 1.00 | 1.00 | 1.00                 | 1.00 | 1.00  | 1.00       | 1.00        | 1.00  |
| MLF Adj:                     | 1.00                 | 1.00         | 1.00     |                                   | 1.00 | 1.00 |                      | 1.00 | 1.00  | 1.00       | 1.00        | 1.00  |
| Final Vol.:                  | 3                    | 12           | 51       | 208                               | 26   | 0    | 0                    | 16   | 3     | 48         | 21          | 95    |
|                              |                      | <del>_</del> |          |                                   |      |      |                      |      |       |            | <del></del> |       |
| Saturation F                 |                      |              |          | ,                                 |      |      |                      |      |       |            |             |       |
| Adjustment:                  | 1.00                 | 1.00         | 1.00     | 1.00                              | 1.00 | 1.00 |                      | 1.00 |       |            | 1.00        | 1.00  |
| Lanes:                       | 0.05                 | 0.18         | 0.77     |                                   | 0.11 | 0.00 |                      | 0.83 |       |            | 0.30        | 1.00  |
|                              | 40                   |              | 643      | 681                               |      | 0    |                      | 589  | 118   | 435        | 189         | 763   |
|                              |                      |              |          |                                   |      |      |                      |      |       |            |             |       |
| Capacity Ana                 |                      |              |          | 0 01                              | 0 21 |      |                      | 0 03 | 0.03  | 0 11       | 0.11        | 0.12  |
| Vol/Sat:                     | 0.08                 | 0.08<br>**** | 0.08     | 0.31                              | 0.31 | xxxx | XXXX                 | 0.03 | 0.03  | 0.11       | 0.11        | ****  |
| Crit Moves:                  |                      |              | 7.5      | 9.5                               | 9.5  | 0.0  | 0.0                  | 7.9  | 7.9   | 8.9        | 8.9         | 7.8   |
| Delay/Veh:<br>Delay Adj:     | 7.5                  |              | 1.00     | 1.00                              |      | 1.00 | 1.00                 |      | 1.00  | 1.00       |             | 1.00  |
| AdjDel/Veh:                  |                      | 7.5          | 7.5      | 9.5                               | 9.5  | 0.0  | 0.0                  | 7.9  | 7.9   | 8.9        | 8.9         | 7.8   |
| LOS by Move:                 |                      |              | 7.5<br>A |                                   | ). J | *    | *                    | A    | A     | A          | A           | A     |
| ApproachDel:                 |                      | 7.5          |          |                                   | 9.5  |      |                      | 7.9  | = -   |            | 8.3         |       |
| Delay Adj:                   |                      | 1.00         |          |                                   | 1.00 |      |                      | 1.00 |       |            | 1.00        |       |
| ApprAdjDel:                  |                      | 7.5          |          |                                   | 9.5  |      |                      | 7.9  |       |            | 8.3         |       |
| LOS by Appr:                 |                      | Α            |          |                                   | Α    |      |                      | Α    |       |            | Α           |       |
| ******                       | ****                 | * * * * *    | ****     | ****                              | **** | **** | *****                | **** | ***** | ****       | ****        | ***** |

Tue Jun 20, 2006 11:50:38 Page 15-1 2009 No Project Eagle Lodge EIR \_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #8 MERIDIAN/Bus/Auto Drop Off \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.0 Worst Case Level Of Service: A[ 9.0] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 1 0 1 0 1 0 \_\_\_\_\_| Volume Module: 0 0 61 0 62 0 0 0 0 0 0 Base Vol: Initial Bse: 0 0 0 0 0 0 0 61 0 0 62 0 Added Vol: 0 0 0 0 0 0 198 0 0 90 0 Added Vol: Reduct Vol: 0 0 Final Vol.: 0 0 0 0 0 0 0 0 160 0 273 Critical Gap Module: \_\_\_\_\_| Capacity Module: Level Of Service Module: LOS by Move: \* \* \* \* \* \* \* \* \* \* \* \* LT - LTR - RT Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT 

# 2009 Plus Project LOS

2009 Plus Project Fri Jun 30, 2006 08:47:59 Page 1-1

Mammoth Eagle Lodge EIR

\_\_\_\_\_\_

Scenario Report

Scenario: 2009 Plus Project

W/O Proj

W/O Proj

Volume: PM

Geometry: Default Geometry

Impact Fee: Default Impact Fee

Trip Generation: PM

Trip Distribution: Default Trip Distribution

Paths: Default Paths

Routes: Default Routes

Configuration: Future

| Zone<br># | Subzone Amount                       | Units | Rate<br>In | Rate<br>Out | Trips<br>In | Trips<br>Out | Total<br>Trips |              |
|-----------|--------------------------------------|-------|------------|-------------|-------------|--------------|----------------|--------------|
|           |                                      |       |            | <b>-</b>    |             |              |                |              |
| 2         | Base Lodge ( 1.00<br>Zone 2 Subtotal |       |            |             | 80<br>80    | 323<br>323   | 403<br>403     |              |
| 4         | Hotel 1.00<br>Zone 4 Subtotal        |       |            |             | 20<br>20    | 51<br>51     | 71<br>71       | 7.8<br>7.8   |
| 5         | Bus Auto Dr 1.00<br>Zone 5 Subtotal  |       |            |             | 215<br>215  | 215<br>215   | 430<br>430     | 47.0<br>47.0 |
| 6         | TRUCKS 1.00<br>Zone 6 Subtotal       |       |            |             | 5<br>5      | 5<br>5       | 10<br>10       | 1.1          |
| TOTA      | <br>L                                |       |            |             |             |              | 914            | 100.0        |

| 2009 Plus Project | Fri Jun 30, 2006 08:47:59 | Page 3-1 |
|-------------------|---------------------------|----------|
|                   | Mammoth Eagle Lodge EIR   |          |

#### Trip Distribution Report

#### Percent Of Trips Default

|      |      |     |       |      | To   | Gates |      |      |               |      |      |
|------|------|-----|-------|------|------|-------|------|------|---------------|------|------|
|      | 1    | 2   | 5     | 6    | 7    | 8     | 9    | 10   | 11            | 12   | 14   |
| Zone |      |     |       |      |      |       |      |      | - <del></del> |      |      |
| 2    | 11.0 | 0.0 | 1.0   | 2.0  | 5.0  | 4.0   | 11.0 | 2.0  | 9.0           | 18.0 | 14.0 |
| 4    | 0.0  | 0.0 | 1.0   | 22.0 | 17.0 | 3.0   | 3.0  | 10.0 | 0.0           | 2.0  | 15.0 |
| 5    | 11.0 | 0.0 | 1.0   | 2.0  | 5.0  | 4.0   | 11.0 | 2.0  | 9.0           | 18.0 | 14.0 |
| 6    | 0.0  | 0.0 | 15.0  | 10.0 | 25.0 | 0.0   | 0.0  | 0.0  | 0.0           | 0.0  | 25.0 |
|      |      |     | Q - + |      |      |       |      |      |               |      |      |
|      |      |     | Gates |      |      |       |      |      |               |      |      |
|      | 15   | 16  | 17    | 18   | 19   |       |      |      |               |      |      |
| Zone |      |     |       |      |      |       |      |      |               |      |      |
| 2    | 4.0  | 5.0 | 10.0  | 2.0  | 2.0  |       |      |      |               |      |      |
| 4    | 3.0  | 0.0 | 14.0  | 5.0  | 5.0  |       |      |      |               |      |      |
| 5    | 4.0  | 5.0 | 10.0  | 2.0  | 2.0  |       |      |      |               |      |      |
| 6    | 0.0  | 0.0 | 25.0  | 0.0  | 0.0  |       |      |      |               |      |      |
| 0    | 0.0  | 0.0 |       |      |      |       |      |      |               |      |      |

2009 Plus Project Fri Jun 30, 2006 08:47:59 Page 4-1 Mammoth Eagle Lodge EIR

Turning Movement Report PM

| Volume<br>Type  |             | orthbo<br>Thru | und<br>Right |       | outhbo<br>Thru | und<br>Right |     | ıstboı<br>Thru | ınd<br>Right |     | stbou<br>Thru |     | Total<br>Volume |
|-----------------|-------------|----------------|--------------|-------|----------------|--------------|-----|----------------|--------------|-----|---------------|-----|-----------------|
| #1 OLDM         | 1 / M 7 T P | ıτ             |              |       |                |              |     |                |              |     |               |     |                 |
| #1 OLDM<br>Base | 346         | 0              | 43           | 0     | 0              | 0            | 0   | 304            | 668          | 77  | 285           | 0   | 1723            |
| Added           | 0           | 0              | 23           | Õ     | Ö              | ő            | 0   | 0              | 0            | 12  | 0             | 0   | 35              |
| Total           | 346         | 0              | 66           | 0     | 0              | 0            | 0   | 304            | 668          | 89  | 285           | 0   | 1758            |
| #2 MERI         | DIAN        | /OLDM          |              |       |                |              |     |                |              |     |               |     |                 |
| Base            | 121         | 305            | 73           | 131   | 385            | 99           | 83  | 163            | 140          | 122 | 188           | 148 | 1958            |
| Added           | 8           | 0              | 0            | 0     | 0              | 58           | 107 | 62             | 16           | 0   | 34            | 0   | 285             |
| Total           | 129         | 305            | 73           | 131   | 385            | 157          | 190 | 225            | 156          | 122 | 222           | 148 | 2243            |
| #3 MINA         | RET/N       |                |              |       |                |              |     |                |              |     |               |     |                 |
| Base            | 19          | 112            | 24           | 166   | 187            | 41           | 42  | 232            | 2            | 23  | 159           | 139 | 1146            |
| Added           | 54          | 0              | 0            | 0     | 0              | 56           | 107 | 246            | 98           | 0   | 132           | 0   | 693             |
| Total           | 73          | 112            | 24           | 166   | 187            | 97           | 149 | 478            | 100          | 23  | 291           | 139 | 1839            |
| #4 MINA         | RET/N       | MIAN           |              |       |                |              |     |                |              |     |               |     |                 |
| Base            | 168         | 136            | 39           | 586   | 202            | 132          | 90  | 509            | 320          | 56  | 386           | 144 | 2768            |
| Added           | 25          | 22             | 37           | 0     | 11             | 0            | 0   | 0              | 14           | 19  | 0             | 0   | 128             |
| Total           | 193         | 158            | 76           | 586   | 213            | 132          | 90  | 509            | 334          | 75  | 386           | 144 | 2896            |
| #5 KELL         | Y/LAI       | KE MAR         | Υ            |       |                |              |     |                |              |     |               |     |                 |
| Base            | 21          | 0              | 33           | 0     | 0              | 0            | 0   | 122            | 137          | 34  | 59            | 0   | 406             |
| Added           | 3           | 0              | 6            | 0     | 0              | 0            | 0   | 5              | 2            | 3   | 10            | 0   | 29              |
| Total           | 24          | 0              | 39           | 0     | 0              | 0            | 0   | 127            | 139          | 37  | 69            | 0   | 435             |
| #6 MERI         | DIAN        | ,              |              | PINES | (EAST          |              |     |                |              |     |               |     |                 |
| Base            | 0           | 0              | 2            | 120   | 0              | 12           | 31  | 39             | 9            | 9   | 39            | 107 | 368             |
| Added           | 0           | 0              | 0            | 56    | 0              | 30           | 57  | 422            | 0            | 0   | 232           | 24  | 821             |
| In-Pro          | 0           | 0              | 0            | -13   | 0              | 13           | 13  | 13             | 0            | 0   | 13            | -13 | 26              |
| Total           | 0           | 0              | 2            | 163   | 0              | 55           | 101 | 474            | 9            | 9   | 284           | 118 | 1215            |
| #7 MERI         |             |                |              |       | EST)           |              |     |                |              |     |               |     |                 |
| Base            | 3           | 0              | 45           | 0     | 0              | 0            | 0   | 15             | 3            | 39  | 19            | 0   | 124             |
| Added           | 0           | 9              | 24           | 479   | 59             | 0            | 0   | 0              | 0            | 0   | 0             | 71  | 642             |
| In-Pro          | 0           | 0              | 0            | 26    | 0              | 0            | 0   | 0              | 0            | 0   | 0             | 26  | 52              |
| Total           | 3           | 9              | 69           | 505   | 59             | 0            | 0   | 15             | 3            | 39  | 19            | 97  | 818             |
| #8 MERI         |             |                |              |       |                |              |     |                | _            |     |               | _   |                 |
| Base            | 0           | 0              | 0            | 0     | 0              | 0            | 0   | 60             | 0            | 0   | 58            | 0   | 118             |
| Added           | 0           | 0              | 0            | 0     | 0              | 0            | 24  | 479            | 0            | 0   | 71            | 191 | 765             |
| In-Pro          | 0           | 0              | 0            | 0     | 0              | 0            | 0   | 26             | 0            | 0   | 26            | 0   | 52              |
| Total           | 0           | 0              | 0            | 0     | 0              | 0            | 24  | 565            | 0            | 0   | 155           | 191 | 935             |
| #9              |             |                |              |       |                |              |     |                | _            | _   |               | _   |                 |
| Base            | 0           | 0              | 0            | 0     | 0              | 0            | 0   | 138            | 0            | 0   | 132           | 0   | 270             |
| Added           | 0           | 0              | 56           | 0     | 0              | 0            | 0   | 30             | 0            | 0   | 81            | 0   | 167             |
| Total           | 0           | 0              | 56           | 0     | 0              | 0            | 0   | 168            | 0            | 0   | 213           | 0   | 437             |

Traffix 7.7.0515 (c) 2005 Dowling Assoc. Licensed to LSC DENVER

| 2009 P                        | lus Pr        | oject            |             | Fı          | ci Ju         | n 30, 2       | 2006 0      | 8:47:            | 59           |               |                  | Page        | 4-2               |
|-------------------------------|---------------|------------------|-------------|-------------|---------------|---------------|-------------|------------------|--------------|---------------|------------------|-------------|-------------------|
|                               |               |                  |             |             | /ammo         | th Eagl       | e Lod       | ge EI            | R            |               |                  |             |                   |
| Volume<br>Type                | No:<br>Left ' | rthbou<br>Thru I |             |             | outhb<br>Thru | ound<br>Right | _           | astbo<br>Thru    | und<br>Right |               | estbou<br>Thru   |             | Total<br>Volume   |
| #10<br>Base<br>Added<br>Total | 0<br>0<br>0   | 0<br>0<br>0      | 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>0   | 0<br>0<br>0   | 0<br>0<br>0 | 138<br>30<br>168 | 0<br>1<br>1  | 0<br>24<br>24 | 132<br>57<br>189 | 0<br>0<br>0 | 270<br>112<br>382 |

Mammoth Eagle Lodge EIR

### \_\_\_\_\_

Link Volume Report PΜ

|         |      |                |         |        |       | PM    | I   |      |       |     |      |       |        |
|---------|------|----------------|---------|--------|-------|-------|-----|------|-------|-----|------|-------|--------|
| Volume  |      | NB L           | ink     |        | SB Li | ink   |     | EB L |       |     | WB L |       | Total  |
| Туре    | In   | Out            | Total   | In     | Out   | Total | In  | Out  | Total | In  | Out  | Total | Volume |
| #1 OLDM | /MAI | N              |         |        |       |       |     |      |       |     |      |       |        |
| Base    | 389  | 745            | 1134    | 0      | 0     | 0     | 972 | 631  | 1603  | 362 | 347  | 709   | 3446   |
| Added   | 23   | 12             | 35      | 0      | 0     | 0     | 0   | 0    | 0     | 12  | 23   | 35    | 70     |
| Total   | 412  | 757            | 1169    | 0      | 0     | 0     | 972 | 631  | 1603  | 374 | 370  | 744   | 3516   |
| #2 MERI | DIAN | /OLDM          |         |        |       |       |     |      |       |     |      |       |        |
| Base    | 499  | 647            | 1146    | 615    | 536   | 1151  | 386 | 408  | 794   | 458 | 367  | 825   | 3916   |
| Added   | 8    | 16             | 24      | 58     | 107   | 165   | 185 | 100  | 285   | 34  | 62   | 96    | 570    |
| Total   | 507  | 663            | 1170    | 673    | 643   | 1316  | 571 | 508  | 1079  | 492 | 429  | 921   | 4486   |
| #3 MINA | RET/ | MERID          | IAN     |        |       |       |     |      |       |     |      |       |        |
| Base    | 155  | 212            | 367     | 394    | 293   | 687   | 276 | 219  | 495   | 321 | 422  | 743   | 2292   |
| Added   | 54   | 98             | 152     | 56     | 107   | 163   | 451 | 242  | 693   | 132 | 246  | 378   | 1386   |
| Total   | 209  | 310            | 519     | 450    | 400   | 850   | 727 | 461  | 1188  | 453 | 668  | 1121  | 3678   |
| #4 MINA | RET/ | MAIN           |         |        |       |       |     |      |       |     |      |       |        |
| Base    | 343  | 578            | 921     | 920    | 370   | 1290  | 919 | 686  | 1605  | 586 | 1134 | 1720  | 5536   |
| Added   | 84   | 44             | 128     | 11     | 22    | 33    | 14  | 25   | 39    | 19  | 37   | 56    | 256    |
| Total   | 427  | 622            | 1049    | 931    | 392   | 1323  | 933 | 711  | 1644  | 605 | 1171 | 1776  | 5792   |
| #5 KELL | Y/LA | KE MAF         | S.A.    |        |       |       |     |      |       |     |      |       |        |
| Base    | 54   | 171            | 225     | 0      | 0     | 0     | 259 | 80   | 339   | 93  | 155  | 248   | 812    |
| Added   | 9    | 5              | 14      | 0      | 0     | 0     | 7   | 13   | 20    | 13  | 11   | 24    | 58     |
| Total   | 63   | 176            | 239     | 0      | 0     | 0     | 266 | 93   | 359   | 106 | 166  | 272   | 870    |
| #6 MERI | DIAN | / MAG          | JESTIC  | PINES  | (EAST | 7)    |     |      |       |     |      |       |        |
| Base    | 2    | 18             | 20      | 132    | 138   | 270   | 79  | 51   | 130   | 155 | 161  | 316   | 736    |
| Added   | 0    | 0              | 0       | 86     | 81    | 167   | 479 | 262  | 741   | 256 | 478  | 734   | 1642   |
| In-Pro  | 0    | 0              | 0       | 0      | 0     | 0     | 26  | 26   | 52    | 0   | 0    | 0     | 52     |
| Total   | 2    | 18             | 20      | 218    | 219   | 437   | 584 | 339  | 923   | 411 | 639  | 1050  | 2430   |
| #7 MERI | DIAN | ?MAJES         | STIC PI | NES (V | WEST) |       |     |      |       |     |      |       |        |
| Base    | 48   | 42             | 90      | 0      | 0     | 0     | 18  | 22   | 40    | 58  | 60   | 118   | 248    |
| Added   | 33   | 59             | 92      | 538    | 80    | 618   | 0   | 0    | 0     | 71  | 503  | 574   | 1284   |
| In-Pro  | 0    | 0              | 0       | 26     | 26    | 52    | 0   | 0    | 0     | 26  | 26   | 52    | 104    |
| Total   | 81   | 101            | 182     | 564    | 106   | 670   | 18  | 22   | 40    | 155 | 589  | 744   | 1636   |
| #8 MERI | DIAN | /Bus/ <i>I</i> | Auto Dr | op Off | =     |       |     |      |       |     |      |       |        |
| Base    | 0    | 0              | 0       | 0      | 0     | 0     | 60  | 58   | 118   | 58  | 60   | 118   | 236    |
| Added   | 0    | 0              | 0       | 0      | 215   | 215   | 503 | 71   | 574   | 262 | 479  | 741   | 1530   |
| In-Pro  | 0    | 0              | 0       | 0      | 0     | 0     | 26  | 26   | 52    | 26  | 26   | 52    | 104    |
| Total   | 0    | 0              | 0       | 0      | 215   | 215   | 589 | 155  | 744   | 346 | 565  | 911   | 1870   |
| #9      |      |                |         |        |       |       |     |      |       |     |      |       |        |
| Base    | 0    | 0              | 0       | 0      | 0     | 0     | 138 | 132  | 270   | 132 | 138  | 270   | 540    |
| Added   | 56   | 0              | 56      | 0      | 0     | 0     | 30  | 81   | 111   | 81  | 86   | 167   | 334    |
| Total   | 56   | 0              | 56      | 0      | 0     | 0     | 168 | 213  | 381   | 213 | 224  | 437   | 874    |
|         |      |                |         |        |       |       |     |      |       |     |      |       |        |

Traffix 7.7.0515 (c) 2005 Dowling Assoc. Licensed to LSC DENVER

| 2009 Plus Project             |             |                |              | Fri Jun 30, 2006 08:47:59 |              |             |                  |                  |                  |                  |                  | Page 5-2          |                   |  |
|-------------------------------|-------------|----------------|--------------|---------------------------|--------------|-------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|--|
|                               |             | <del>-</del> - |              | ]                         | Mammo        | th Eagl     | e Lod            | ge EI            | R                |                  |                  |                   |                   |  |
| Volume<br>Type                | In          | NB L<br>Out    | ink<br>Total | In                        | SB L:<br>Out |             | In               | EB L<br>Out      | _                | In               | WB L<br>Out      |                   | Total<br>Volume   |  |
| #10<br>Base<br>Added<br>Total | 0<br>0<br>0 | 25             | _            | 0<br>0<br>0               | 0<br>0<br>0  | 0<br>0<br>0 | 138<br>31<br>169 | 132<br>57<br>189 | 270<br>88<br>358 | 132<br>81<br>213 | 138<br>30<br>168 | 270<br>111<br>381 | 540<br>224<br>764 |  |

2009 Plus Project Fri Jun 30, 2006 08:48:01 Page 6-1

|    | Mammoth Eagle Lodge EIR |                                  |                |             |  |  |  |  |  |  |  |  |
|----|-------------------------|----------------------------------|----------------|-------------|--|--|--|--|--|--|--|--|
|    |                         | Signal Warrant                   | Summary Report |             |  |  |  |  |  |  |  |  |
| Ιr | itei                    | rsection                         | Base Met       | Future Met  |  |  |  |  |  |  |  |  |
|    |                         |                                  | [Del / Vol]    | [Del / Vol] |  |  |  |  |  |  |  |  |
| #  | 5                       | KELLY/LAKE MARY                  | ??? / ???      | No / No     |  |  |  |  |  |  |  |  |
| #  | 6                       | MERIDIAN / MAJESTIC PINES (EAST) | 333 \ 333      | No / No     |  |  |  |  |  |  |  |  |
| #  | 7                       | MERIDIAN?MAJESTIC PINES (WEST)   | ??? / ???      | No / No     |  |  |  |  |  |  |  |  |
| #  | 8                       | MERIDIAN/Bus/Auto Drop Off       | ??? / ???      | No / No     |  |  |  |  |  |  |  |  |
| #  | 9                       | ,                                | ??? / ???      | No / No     |  |  |  |  |  |  |  |  |
| #  | 10                      |                                  | ??? / ???      | No / No     |  |  |  |  |  |  |  |  |

with four or more approaches.

| 2009 Plus Project          | Fri Jun 30, 2006        | 08:48:01     | Page 7-9     |
|----------------------------|-------------------------|--------------|--------------|
|                            | Mammoth Eagle Lo        | odge EIR     |              |
| *****                      | Peak Hour Delay Signal  |              | ****         |
| Intersection #10 ********* | ******                  | *****        | *****        |
| Future Volume Alterna      | tive: Peak Hour Warrant | NOT Met      |              |
| Approach: North            | Bound South Bound       | East Bound   | West Bound   |
| Movement: L - 7            | ' - R L - T - R         | L - T - R    | L - T - R    |
|                            |                         |              |              |
| Control: Stop              | Sign Stop Sign          | Uncontrolled | Uncontrolled |
| Lanes: 0 0 0               | 0 0 0 0 1 0 0           | 0 0 0 1 0    | 1 0 1 0 0    |
| Final Vol.: 0              | 0 0 0 0                 | 0 0 177 1    | 25 199 0     |
| ApproachDel: xxxxx         | x xxxxx                 | xxxxxx       | xxxxxx       |
|                            |                         | -            |              |

### \_\_\_\_\_\_ Mammoth Eagle Lodge EIR \_\_\_\_\_ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #1 OLDM/MAIN \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 75 Critical Vol./Cap. (X): Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): Critical Vol./Cap. (X): 0.854 Optimal Cycle:OPTIMIZED Level Of Service: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* L - T - R -----| -----|----| Volume Module: Base Vol: 346 0 43 0 0 0 0 304 668 77 285 0 -----| Saturation Flow Module: Adjustment: 0.93 1.00 0.83 1.00 1.00 1.00 1.00 0.90 0.81 0.90 0.90 1.00 -----| Capacity Analysis Module: Vol/Sat: 0.21 0.00 0.04 0.00 0.00 0.00 0.09 0.46 0.05 0.09 0.00 Crit Moves: \*\*\*\* Green/Cycle: 0.24 0.00 0.24 0.00 0.00 0.00 0.00 0.54 0.54 0.65 0.60 0.00 Volume/Cap: 0.85 0.00 0.18 0.00 0.00 0.00 0.00 0.17 0.85 0.14 0.15 0.00 Delay/Veh: 42.6 0.0 22.8 0.0 0.0 0.0 0.0 9.0 23.6 5.0 6.6 0.0 AdjDel/Veh: 42.6 0.0 22.8 0.0 0.0 0.0 0.0 9.0 23.6 5.0 6.6 0.0 HCM2kAvg: 12 0 1 0 0 0 0 2 17 1 2 0

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Fri Jun 30, 2006 08:48:01 \_\_\_\_\_ Mammoth Eagle Lodge EIR \_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #2 MERIDIAN/OLDM \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 55 Critical Vol./Cap. (X): 0.751 Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle:OPTIMIZED Level Of Service: \*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F Movement: L - T - R L - T - R L - T - R - T - R - T - R -----| Volume Module: Initial Bse: 121 305 73 131 385 99 83 163 140 122 188 148 Added Vol: 8 0 0 0 0 58 107 62 16 0 34 0 In-Process: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 129 305 73 131 385 157 190 225 156 122 222 148 PHF Volume: 136 321 77 138 405 165 200 237 164 128 234 156 -----| Saturation Flow Module: Adjustment: 0.93 0.98 0.83 0.93 0.98 0.83 0.93 0.87 0.87 0.93 0.88 0.88 Lanes: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.18 0.82 1.00 1.20 0.80 Final Sat.: 1769 1862 1583 1769 1862 1583 1769 1962 1360 1769 1995 1330 Capacity Analysis Module: Vol/Sat: 0.08 0.17 0.05 0.08 0.22 0.10 0.11 0.12 0.12 0.07 0.12 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\* Green/Cycle: 0.10 0.27 0.27 0.12 0.29 0.29 0.16 0.16 0.16 0.16 0.16 0.16 Volume/Cap: 0.75 0.64 0.18 0.64 0.75 0.36 0.70 0.75 0.75 0.47 0.75 0.75 Delay/Veh: 40.0 20.4 15.6 29.2 23.5 16.0 29.5 27.9 27.9 22.4 28.2 28.2 AdjDel/Veh: 40.0 20.4 15.6 29.2 23.5 16.0 29.5 27.9 27.9 22.4 28.2 28.2 HCM2kAvg: 4 6 1 4 8 3 5 5 5 3 5 5

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

# Mammoth Eagle Lodge EIR

Level Of Service Computation Report

2000 HCM Operations Method (Future Volume Alternative)

Cycle (sec): 55 Critical Vol./Cap. (X): 0.788
Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): 27.4
Optimal Cycle:OPTIMIZED Level Of Service: C

| obrimar cycre |      |        |           |       |      | _ever ( |       |        | ***** | ****  | ****   | し<br>* * * * * * * |
|---------------|------|--------|-----------|-------|------|---------|-------|--------|-------|-------|--------|--------------------|
|               |      | rth Bo |           |       |      | ound    |       | ast Bo |       |       | est Bo |                    |
| Movement:     | L    | - T    | - R       | L     |      | - R     |       |        | - R   |       | - T    |                    |
|               |      |        |           |       |      |         |       |        |       |       |        |                    |
| Control:      |      |        | nase      |       |      |         |       |        | nase  |       | lit Pl |                    |
| Rights:       |      | Inclu  |           |       | Incl |         |       | Inclu  |       |       | Incl   |                    |
| Min. Green:   | _    | 0      | 0         | 0     | _    | 0       | _     | 0      | 0     | 0     |        | 0                  |
| Lanes:        | . 1  |        |           |       | 0 0  |         |       | 0 1    |       | , 1   | 0 1    | 1 0                |
|               |      |        |           |       |      |         |       |        |       |       |        |                    |
| Volume Module | -    |        |           |       |      |         |       |        | _     |       | 1.50   | 100                |
| Base Vol:     | 19   |        | 24        | 166   | 187  | 41      | 42    |        | 2     | 23    |        | 139                |
| Growth Adj:   |      | 1.00   | 1.00      |       | 1.00 | 1.00    |       | 1.00   | 1.00  |       | 1.00   | 1.00               |
| Initial Bse:  | 19   | 112    | 24        | 166   | 187  | 41      | 42    |        | 2     | 23    | 159    | 139                |
| Added Vol:    | 54   | 0      | 0         | 0     | 0    | 56      | 107   |        | 98    | 0     | 132    | 0                  |
| In-Process:   | 0    |        | 0         | 0     |      | 0       | 0     |        | 0     | 0     | 0      | 0                  |
| Initial Fut:  | 73   | 112    | 24        | 166   | 187  | 97      | 149   | 478    | 100   | 23    | 291    | 139                |
| User Adj:     |      | 1.00   | 1.00      |       | 1.00 | 1.00    |       | 1.00   | 1.00  |       | 1.00   | 1.00               |
| PHF Adj:      |      | 0.95   | 0.95      | 0.95  | 0.95 | 0.95    | 0.95  |        | 0.95  | 0.95  |        | 0.95               |
| PHF Volume:   | 77   | 118    | 25        | 175   | 197  | 102     | 157   | 503    | 105   | 24    | 306    | 146                |
| Reduct Vol:   | 0    | 0      | 0         | 0     | 0    | 0       | 0     | 0      | 0     | 0     |        | 0                  |
| Reduced Vol:  | 77   | 118    | 25        | 175   | 197  | 102     | 157   | 503    | 105   | 24    | 306    | 146                |
| PCE Adj:      |      | 1.00   | 1.00      |       | 1.00 | 1.00    |       | 1.00   | 1.00  |       | 1.00   | 1.00               |
| MLF Adj:      |      | 1.00   | 1.00      |       | 1.00 | 1.00    |       | 1.00   | 1.00  |       | 1.00   | 1.00               |
| Final Vol.:   | 77   | 118    | 25        | 175   | 197  | 102     | 157   | 503    | 105   | 24    |        | 146                |
| Saturation Fl |      |        |           |       |      |         |       |        |       |       |        |                    |
| Saturation Fi |      | 1900   | :<br>1900 | 1900  | 1000 | 1900    | 1000  | 1900   | 1900  | 1000  | 1900   | 1900               |
| Adjustment:   |      | 0.95   | 0.95      | 0.93  |      | 0.93    |       | 0.91   | 0.91  |       | 0.89   | 0.89               |
| Lanes:        |      | 0.82   | 0.18      | 1.00  |      | 0.34    |       | 1.65   | 0.35  |       | 1.35   | 0.65               |
| Final Sat.:   |      | 1494   | 320       |       | 1164 | 604     |       | 2850   | 596   |       | 2279   | 1089               |
|               |      |        |           |       |      |         |       |        |       |       |        |                    |
| Capacity Anal |      |        |           | 1     |      | '       | 1     |        | 1     | 1     |        | ı                  |
| Vol/Sat:      | -    | 0.08   | 0.08      | 0.10  | 0.17 | 0.17    | 0.09  | 0.18   | 0.18  | 0.01  | 0.13   | 0.13               |
| Crit Moves:   |      | ****   |           |       |      | ***     |       | ***    |       |       | ***    |                    |
| Green/Cycle:  | 0.10 | 0.10   | 0.10      | 0.21  | 0.21 | 0.21    | 0.22  | 0.22   | 0.22  | 0.17  | 0.17   | 0.17               |
| Volume/Cap:   |      |        | 0.79      | 0.46  | 0.79 | 0.79    | 0.40  | 0.79   | 0.79  | 0.08  | 0.79   | 0.79               |
| Delay/Veh:    |      | 44.4   | 44.4      | 19.7  | 31.0 | 31.0    | 18.8  | 25.6   | 25.6  | 19.3  | 29.1   | 29.1               |
| User DelAdj:  | 1.00 | 1.00   | 1.00      | 1.00  | 1.00 | 1.00    | 1.00  | 1.00   | 1.00  | 1.00  | 1.00   | 1.00               |
| AdjDel/Veh:   | 25.0 | 44.4   | 44.4      | 19.7  | 31.0 | 31.0    | 18.8  | 25.6   | 25.6  | 19.3  | 29.1   | 29.1               |
| HCM2kAvg:     | 2    | 5      | 5         | 3     | 7    | 7       | 3     | 7      | 7     | 0     | 6      | 6                  |
| ******        | **** | *****  | *****     | ***** | **** | *****   | ***** | *****  | ***** | ***** | ****   | *****              |

```
Mammoth Eagle Lodge EIR
______
                      Level Of Service Computation Report
           2000 HCM Operations Method (Future Volume Alternative)
*******************
Intersection #4 MINARET/MAIN
*******************
Cycle (sec): 55
                                     Critical Vol./Cap. (X): 0.845

b) Average Delay (sec/veh): 28.5
Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh):
Optimal Cycle:OPTIMIZED Level Of Service:
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F
                                                                 L - T - R
-----|

        Control:
        Split Phase
        Rights:
        Include
        Include

-----|
Volume Module:
Base Vol: 168 136 39 586 202 132 90 509 320 56 386 144
Initial Bse: 168 136 39 586 202 132 90 509 320 56 386 Added Vol: 25 22 37 0 11 0 0 0 14 19 0 In-Process: 0 0 0 0 0 0 0 0 0 0
PHF Volume: 203 166 80 617 224 139 95 536 352 79 406 152 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 203 166 80 617 224 139 95 536 352 79 406 152
-----|
Saturation Flow Module:
Adjustment: 0.91 0.96 0.82 0.92 0.94 0.94 0.93 0.93 0.83 0.90 0.90 0.81
Lanes: 1.00 1.00 1.00 2.00 0.62 0.38 1.00 2.00 1.00 1.00 2.00 1.00
Final Sat.: 1734 1825 1551 3500 1106 685 1769 3538 1583 1718 3437 1537
_____|
Capacity Analysis Module:
Vol/Sat: 0.12 0.09 0.05 0.18 0.20 0.20 0.05 0.15 0.22 0.05 0.12 0.10 Crit Moves: **** ****
Green/Cycle: 0.14 0.14 0.14 0.24 0.24 0.24 0.26 0.26 0.26 0.14 0.14 0.14
Volume/Cap: 0.84 0.66 0.37 0.73 0.84 0.84 0.20 0.58 0.84 0.33 0.84 0.70
Delay/Veh: 46.1 28.6 22.6 22.7 34.1 34.1 16.0 18.5 33.8 22.1 36.0 32.7
AdjDel/Veh: 46.1 28.6 22.6 22.7 34.1 34.1 16.0 18.5 33.8 22.1 36.0 32.7
HCM2kAvg: 6 4 2 7 9 9 1 5 9 2 6 4
********************
```

Mammoth Eagle Lodge EIR

Level Of Service Computation Report

| Average Delay              |      |       | 2.2 Worst Case Level Of Service: B[ 10.************************************ |      |           |            |            |          |            | -        |          |       |
|----------------------------|------|-------|-----------------------------------------------------------------------------|------|-----------|------------|------------|----------|------------|----------|----------|-------|
| Approach:                  | No   | rth B | ound                                                                        | So   | uth B     | ound       | E          | ast B    | ound       | W        | est B    | ound  |
| Movement:                  |      |       | - R                                                                         |      |           | - R        |            |          | - R        | _        | _        | - R   |
| Control: Rights:           | ່ ຮ  | top S | ign<br>ude                                                                  |      | top S     | ign<br>ude | Un         |          | olled      | Un       |          | olled |
| Lanes:                     |      |       | 0 0                                                                         | 0    | -         | 0 0        |            |          | 1 0        | 0        |          | 0 0   |
|                            |      |       |                                                                             |      |           |            |            |          |            |          |          |       |
| Volume Module              | ∋:   |       |                                                                             |      |           |            |            |          |            |          |          |       |
| Base Vol:                  | 21   | 0     | 33                                                                          | 0    | 0         | 0          | 0          | 122      | 137        | 34       | 59       | 0     |
| Growth Adj:                | 1.00 | 1.00  | 1.00                                                                        | 1.00 | 1.00      | 1.00       | 1.00       | 1.00     | 1.00       | 1.00     | 1.00     | 1.00  |
| Initial Bse:               | 21   | 0     | 33                                                                          | 0    | 0         | 0          | 0          | 122      | 137        | 34       | 59       | 0     |
| Added Vol:                 | 3    | 0     | 6                                                                           | 0    | 0         | 0          | 0          | 5        | 2          | 3        | 10       | 0     |
| In-Process:                | 0    | 0     | 0                                                                           | 0    | 0         | 0          | 0          | 0        | 0          | 0        | 0        | 0     |
| Initial Fut:               | 24   | 0     | 39                                                                          | 0    | 0         | 0          | 0          | 127      | 139        | 37       | 69       | 0     |
| User Adj:                  | 1.00 | 1.00  | 1.00                                                                        | 1.00 | 1.00      | 1.00       | 1.00       | 1.00     | 1.00       | 1.00     | 1.00     | 1.00  |
| PHF Adj:                   | 0.95 | 0.95  | 0.95                                                                        | 0.95 | 0.95      | 0.95       | 0.95       |          | 0.95       | 0.95     | 0.95     | 0.95  |
| PHF Volume:                | 25   | 0     | 41                                                                          | 0    | 0         | 0          | 0          | 134      | 146        | 39       | 73       | 0     |
| Reduct Vol:                | 0    | 0     | 0                                                                           | 0    | 0         | 0          | 0          | 0        | 0          | 0        | 0        | 0     |
| Final Vol.:                | 25   | 0     | 41                                                                          | 0    | 0         | 0          | 0          | 134      | 146        | 39       | 73       | 0     |
| Critical Gap               |      |       |                                                                             |      |           |            |            |          |            |          |          |       |
| Critical Gp:               |      |       |                                                                             |      |           |            |            |          | XXXXX      |          |          | XXXXX |
| FollowUpTim:               |      | xxxx  |                                                                             |      |           |            |            |          | xxxxx      |          |          | xxxxx |
|                            |      |       |                                                                             |      |           |            |            |          |            |          |          |       |
| Capacity Modu              |      |       |                                                                             |      |           |            |            |          |            |          |          |       |
| Cnflict Vol:               |      | xxxx  |                                                                             |      |           | xxxxx      |            |          | XXXXX      |          |          | XXXXX |
| Potent Cap.:               |      | xxxx  | 839                                                                         |      |           | XXXXX      |            |          | XXXXX      |          |          | XXXXX |
| Move Cap.:                 |      | XXXX  | 839                                                                         |      |           | XXXXX      |            |          | XXXXX      |          |          | XXXXX |
| Volume/Cap:                |      | XXXX  |                                                                             |      | xxxx      |            |            | xxxx     |            |          | xxxx     |       |
| Level Of Serv              |      |       |                                                                             |      |           |            |            |          |            |          |          |       |
|                            |      |       |                                                                             |      | 3,53,53,5 | 7,57,57,57 | 3535353535 | 75353535 | 3535353535 | 0 1      | 35353535 | xxxxx |
| Stopped Del:x              |      |       |                                                                             |      |           | XXXXX      |            |          |            |          |          | XXXXX |
| LOS by Move:               |      | *     | *                                                                           | *    | *         | *          | *          | *        | *          | 7.9<br>A | *        | *     |
| Movement:                  |      | - LTR |                                                                             |      |           | - RT       |            | - LTR    |            |          | - LTR    |       |
| Shared Cap.:               |      |       | - KI                                                                        |      |           | XXXXX      |            |          | XXXXX      |          |          | XXXXX |
| Shared Cap.: SharedOueue:x |      |       |                                                                             |      |           | XXXXX      |            |          |            |          |          | XXXXX |
| Shrd StpDel:x              |      |       |                                                                             |      |           |            |            |          |            |          |          | XXXXX |
| Shared LOS:                | *    | В     |                                                                             | *    | *         | *          | *          | *        | *          | A        | *        | *     |
| ApproachDel:               |      | 10.3  |                                                                             | xx   | xxxx      |            | xx         | xxxx     |            | x        | xxxx     |       |
| ApproachLOS:               |      | В     |                                                                             |      | *         |            |            | *        |            |          | *        |       |
|                            |      |       |                                                                             |      |           |            |            |          |            |          |          |       |

Α

```
Mammoth Eagle Lodge EIR
______
           Level Of Service Computation Report
      2000 HCM 4-Way Stop Method (Future Volume Alternative)
****************************
Intersection #7 MERIDIAN?MAJESTIC PINES (WEST)
Cycle (sec): 100 Critical Vol./Cap. (X): 0.779
Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 17.7 Optimal Cycle: 0 Level Of Service: C
**************************
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
                                 L - T - R
-----|
-----|
Volume Module:
-----|
Saturation Flow Module:
Lanes: 0.04 0.11 0.85 0.90 0.10 0.00 0.00 0.83 0.17 0.67 0.33 1.00
Final Sat.: 28 83 633 683 80 0 0 474 95 351 171 614
-----|
Capacity Analysis Module:
Vol/Sat: 0.11 0.11 0.11 0.78 0.78 xxxx xxxx 0.03 0.03 0.12 0.12 0.17 Crit Moves: **** ****

Delay/Veh: 8.1 8.1 8.1 21.6 21.6 0.0 0.0 8.9 8.9 9.9 9.9 9.1
AdjDel/Veh: 8.1 8.1 8.1 21.6 21.6 0.0 0.0 8.9 8.9 9.9 9.9 9.1
LOS by Move: A A A C C * * A
ApproachDel: 8.1 21.6 8.9
Delay Adj: 1.00 1.00 1.00
ApprAdjDel: 8.1 21.6 8.9
LOS by Appr: A C A
                             A A A
                                   9.4
                                  1.00
                                  9.4
*********
```

Shared LOS: \* \* \* \* \* \* \* \* ApproachDel: xxxxxx xxxxx

ApproachLOS:

xxxxxx

A \* \* A \* \* xxxxxx

```
Mammoth Eagle Lodge EIR
______
     Level Of Service Computation Report
  2000 HCM Unsignalized Method (Future Volume Alternative)
**************************
Intersection #9
*****************
Average Delay (sec/veh): 1.2 Worst Case Level Of Service: A[ 9.4]
*****
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
-----|
Volume Module:
Base Vol: 0 0
      0
        0 0
          0
            0 138
               0
                0 132
Initial Bse: 0 0 0 0 0 0 138 0 0 132 0
0
                   0
PHF Volume: 0 0 59 0 0 0 0 177 0 0 224 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0
Final Vol.: 0 0 59
        0 0
          0
            0 177
              0
                0 224
Critical Gap Module:
-----||-----||-----|
Capacity Module:
-----|
Level Of Service Module:
```

Fri Jun 30, 2006 08:48:01 Page 17-1 2009 Plus Project \_\_\_\_\_\_ Mammoth Eagle Lodge EIR \_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #10 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.5 Worst Case Level Of Service: A[ 7.6] \*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R \_\_\_\_\_ Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 Volume Module: 0 0 0 Base Vol: 0 0 0 132 0 0 138 0 Initial Bse: 0 0 0 0 0 0 138 0 0 132 0 Critical Gap Module: \_\_\_\_\_| Capacity Module: -----| Level Of Service Module: A \* \* 

Traffix 7.7.0515 (c) 2005 Dowling Assoc. Licensed to LSC DENVER

ApproachLOS: \*

# 2024 No Project LOS

Page 1-1 2024 No Project Tue Jun 20, 2006 11:52:40 

Eagle Lodge EIR

\_ \_ \_

Scenario Report

Scenario: 2024 No Project

Command: W/ Proj
Volume: PM
Geometry: Default Geometry
Impact Fee: Default Impact Fee
Trip Generation: PM
Trip Distribution: Default Trip Distribution
Paths: Default Paths
Routes: Default Routes
Configuration: Future

| 2024 No Project                        | Tue Jun 20, 2006 11:52:40 Page 2-1 |            |             |             |              |                |          |  |  |  |  |  |
|----------------------------------------|------------------------------------|------------|-------------|-------------|--------------|----------------|----------|--|--|--|--|--|
| Eagle Lodge EIR                        |                                    |            |             |             |              |                |          |  |  |  |  |  |
| Trip Generation Report                 |                                    |            |             |             |              |                |          |  |  |  |  |  |
| Forecast for PM                        |                                    |            |             |             |              |                |          |  |  |  |  |  |
| Zone<br># Subzone Amount               | Units                              | Rate<br>In | Rate<br>Out | Trips<br>In | Trips<br>Out | Total<br>Trips |          |  |  |  |  |  |
|                                        |                                    |            |             |             |              |                | <b>-</b> |  |  |  |  |  |
| 2 Base Lodge ( 1.00<br>Zone 2 Subtotal |                                    |            |             | 101<br>101  | 223<br>223   |                | 100.0    |  |  |  |  |  |
| TOTAL                                  | <b></b>                            | - <b></b>  |             | . 101       | 223          | 324            | 100.0    |  |  |  |  |  |

| 2024 No Project Tue Jun 20, 2006 11:52:40 |          |        |        |       |        |     |      |     |     |      | age 3-1 |
|-------------------------------------------|----------|--------|--------|-------|--------|-----|------|-----|-----|------|---------|
| Eagle Lodge EIR                           |          |        |        |       |        |     |      |     |     |      |         |
| Trip Distribution Report                  |          |        |        |       |        |     |      |     |     |      |         |
| Percent Of Trips Default                  |          |        |        |       |        |     |      |     |     |      |         |
|                                           | To Gates |        |        |       |        |     |      |     |     |      |         |
| Zone                                      | 1        | 2      | 5<br>  | 6<br> | 7<br>  | 8   | 9    | 10  | 11  | 12   | 14      |
| 2                                         | 11.0     | 0.0    | 1.0    | 2.0   | 5.0    | 4.0 | 11.0 | 2.0 | 9.0 | 18.0 | 14.0    |
| To Gates                                  |          |        |        |       |        |     |      |     |     |      |         |
| Zone                                      | 15<br>   | 16<br> | 17<br> | 18    | 19<br> |     |      |     |     |      |         |

2 4.0 5.0 10.0 2.0 2.0

-----Eagle Lodge EIR

#### Turning Movement Report

### PM

| Volume<br>Type      |        | orthbo<br>Thru | und<br>Right |        | outhbo<br>Thru | ound<br>Right |     | astbou<br>Thru | ınd<br>Right |     | estbou<br>Thru |     | Total<br>Volume |
|---------------------|--------|----------------|--------------|--------|----------------|---------------|-----|----------------|--------------|-----|----------------|-----|-----------------|
| #1 OLDM/MAIN        |        |                |              |        |                |               |     |                |              |     |                |     |                 |
| Base                | 285    | . 0            | 85           | 0      | 0              | 0             | 0   | 495            | 698          | 86  | 399            | 0   | 2048            |
| Added               | 0      | 0              | 9            | 0      | 0              | 0             | 0   | 0              | 0            | 4   | 0              | 0   | 13              |
| Total               | 285    | 0              | 94           | 0      | 0              | 0             | 0   | 495            | 698          | 90  | 399            | 0   | 2061            |
| #2 MERIDIAN/OLDM    |        |                |              |        |                |               |     |                |              |     |                |     |                 |
| Base                | 114    | 404            | 130          | 210    | 589            | 86            | 73  | 265            | 187          | 157 | 197            | 120 | 2532            |
| Added               | 2      | O              | 0            | 0      | 0              | 18            | 40  | 22             | 4            | 0   | 10             | 0   | 96              |
| Total               | 116    | 404            | 130          | 210    | 589            | 104           | 113 | 287            | 191          | 157 | 207            | 120 | 2628            |
| #3 MINARET/MERIDIAN |        |                |              |        |                |               |     |                |              |     |                |     |                 |
| Base                | 154    | 217            | 24           | 275    | 374            | 9             | 68  | 470            | 128          | 10  | 353            | 114 | 2196            |
| Added               | 18     | 0              | 0            | 0      | 0              | 15            | 33  | 91             | 40           | 0   | 41             | 0   | 238             |
| Total               | 172    | 217            | 24           | 275    | 374            | 24            | 101 | 561            | 168          | 10  | 394            | 114 | 2434            |
| #4 MIN              | ARET/M | IAIN           |              |        |                |               |     |                |              |     |                |     |                 |
| Base                | 202    | 132            | 105          | 592    | 328            | 148           | 80  | 637            | 409          | 135 | 515            | 218 | 3501            |
| Added               | 8      | 4              | 11           | 0      | 2              | 0             | 0   | 0              | 4            | 5   | 0              | 0   | 34              |
| Total               | 210    | 136            | 116          | 592    | 330            | 148           | 80  | 637            | 413          | 140 | 515            | 218 | 3535            |
| #5 KELI             | LY/LAK | E MAR          | Y            |        |                |               |     |                |              |     |                |     |                 |
| Base                | 69     | 0              | 163          | 0      | 0              | 0             | 0   | 233            | 59           | 197 | 298            | 0   | 1019            |
| Added               | 1      | 0              | 1            | 0      | 0              | 0             | 0   | 1              | 1            | 1   | 3              | 0   | 8               |
| Total               | 70     | 0              | 164          | 0      | 0              | 0             | 0   | 234            | 60           | 198 | 301            | 0   | 1027            |
| #6 MERI             | IDIAN  | / MAJ          | ESTIC        | PINES  | (EASI          | ")            |     |                |              |     |                |     |                 |
| Base                | 0      | 0              | 0            | 200    | 0              | 55            | 135 | 81             | 0            | 0   | 114            | 180 | 765             |
| Added               | 0      | 0              | 0            | 0      | 0              | 10            | 23  | 176            | 0            | 0   | 80             | 0   | 289             |
| Total               | 0      | 0              | 0            | 200    | 0              | 65            | 158 | 257            | 0            | 0   | 194            | 180 | 1054            |
| #7 MERI             | IDIAN? | MAJES'         | TIC PI       | NES (W | EST)           |               |     |                |              |     |                |     |                 |
| Base                | 3      | 1              | 113          | 0      | 0              | 0             | 0   | 74             | 11           | 81  | 80             | 0   | 363             |
| Added               | 0      | 11             | 0            | 198    | 25             | 0             | 0   | 0              | 0            | 0   | 0              | 90  | 324             |
| Total               | 3      | 12             | 113          | 198    | 25             | 0             | 0   | 74             | 11           | 81  | 80             | 90  | 687             |
| #8 MERI             | IDIAN/ | Bus/A          | uto Dr       | op Off |                |               |     |                |              |     |                |     |                 |
| Base                | 0      | 0              | 0            | 0      | 0              | 0             | 0   | 185            | 0            | 0   | 157            | 0   | 342             |
| Added               | 0      | 0              | 0            | 0      | 0              | 0             | 0   | 198            | 0            | 0   | 90             | 0   | 288             |
| Total               | 0      | 0              | 0            | 0      | 0              | 0             | 0   | 383            | 0            | 0   | 247            | 0   | 630             |

\_\_\_\_\_\_ Eagle Lodge EIR

Link Volume Report

## PM

| Volume<br>Type      | In    | NB L   | ink<br>Total | In     | SB L  | ink<br>Total | In   | EB L: | ink<br>Total | In  | WB L: |      | Total<br>Volume |
|---------------------|-------|--------|--------------|--------|-------|--------------|------|-------|--------------|-----|-------|------|-----------------|
| #1 OLDM/MAIN        |       |        |              |        |       |              |      |       |              |     |       |      |                 |
| Base                | 370   | 784    | 1154         | 0      | 0     | 0            | 1193 | 684   | 1877         | 485 | 580   | 1065 | 4096            |
| Added               | 9     | 4      | 13           | 0      | 0     | 0            | 0    | 0     | 0            | 4   | 9     | 13   | 26              |
| Total               | 379   | 788    | 1167         | 0      | 0     | 0            | 1193 | 684   | 1877         | 489 | 589   | 1078 | 4122            |
| #2 MERIDIAN/OLDM    |       |        |              |        |       |              |      |       |              |     |       |      |                 |
| Base                | 648   | 933    | 1581         | 885    | 597   | 1482         | 525  | 397   | 922          | 474 | 605   | 1079 | 5064            |
| Added               | 2     | 4      | 6            | 18     | 40    | 58           | 66   | 30    | 96           | 10  | 22    | 32   | 192             |
| Total               | 650   | 937    | 1587         | 903    | 637   | 1540         | 591  | 427   | 1018         | 484 | 627   | 1111 | 5256            |
| #3 MINARET/MERIDIAN |       |        |              |        |       |              |      |       |              |     |       |      |                 |
| Base                | 395   | 512    | 907          | 658    | 399   | 1057         | 666  | 516   | 1182         | 477 | 769   | 1246 | 4392            |
| Added               | 18    | 40     | 58           | 15     | 33    | 48           | 164  | 74    | 238          | 41  | 91    | 132  | 476             |
| Total               | 413   | 552    | 965          | 673    | 432   | 1105         | 830  | 590   | 1420         | 518 | 860   | 1378 | 4868            |
| #4 MINA             | RET/I | MIAN   |              |        |       |              |      |       |              |     |       |      |                 |
| Base                | 439   | 872    | 1311         | 1068   | 430   | 1498         | 1126 | 865   | 1991         | 868 | 1334  | 2202 | 7002            |
| Added               | 23    | 11     | 34           | 2      | 4     | 6            | 4    | 8     | 12           | 5   | 11    | 16   | 68              |
| Total               | 462   | 883    | 1345         | 1070   | 434   | 1504         | 1130 | 873   | 2003         | 873 | 1345  | 2218 | 7070            |
| #5 KELLY            | Y/LAI | KE MAI | RY           |        |       |              |      |       |              |     |       |      |                 |
| Base                | 232   | 256    | 488          | 0      | 0     | 0            | 292  | 367   | 659          | 495 | 396   | 891  | 2038            |
| Added               | 2     | 2      | 4            | 0      | 0     | 0            | 2    | 4     | 6            | 4   | 2     | 6    | 16              |
| Total               | 234   | 258    | 492          | 0      | 0     | 0            | 294  | 371   | 665          | 499 | 398   | 897  | 2054            |
| #6 MERII            | NAIC  | / MA   | JESTIC       | PINES  | (EAST | Γ)           |      |       |              |     |       |      |                 |
| Base                | 0     | 0      | 0            | 255    | 315   | 570          | 216  | 169   | 385          | 294 | 281   | 575  | 1530            |
| Added               | 0     | 0      | 0            | 10     | 23    | 33           | 199  | 90    | 289          | 80  | 176   | 256  | 578             |
| Total               | 0     | 0      | 0            | 265    | 338   | 603          | 415  | 259   | 674          | 374 | 457   | 831  | 2108            |
| #7 MERII            | DIAN  | MAJES  | STIC PI      | NES (V | VEST) |              |      |       |              |     |       |      |                 |
| Base                | 117   | 92     | 209          | 0      | 1     | 1            | 85   | 83    | 168          | 161 | 187   | 348  | 726             |
| Added               | 11    | 25     | 36           | 223    | 101   | 324          | 0    | 0     | 0            | 90  | 198   | 288  | 648             |
| Total               | 128   | 117    | 245          | 223    | 102   | 325          | 85   | 83    | 168          | 251 | 385   | 636  | 1374            |
| #8 MERII            | )IAN  | Bus/   | Auto Dr      | op Off | =     |              |      |       |              |     |       |      |                 |
| Base                | 0     | 0      | 0            | 0      | 0     | 0            | 185  | 157   | 342          | 157 | 185   | 342  | 684             |
| Added               | 0     | 0      | 0            | 0      | 0     | 0            | 198  | 90    | 288          | 90  | 198   | 288  | 576             |
| Total               | 0     | 0      | 0            | 0      | 0     | 0            | 383  | 247   | 630          | 247 | 383   | 630  | 1260            |

| Tue Jun 20, | 2006 | 11:52:41 |
|-------------|------|----------|
|-------------|------|----------|

2024 No Project

| Pao | Δ. | 6. | _ 1 |
|-----|----|----|-----|
| rav | _  | Ο. | - т |

|                                      | <b></b>                  |             |  |  |  |  |  |  |  |  |
|--------------------------------------|--------------------------|-------------|--|--|--|--|--|--|--|--|
| Eagle Lodge EIR                      |                          |             |  |  |  |  |  |  |  |  |
| Signal Warrant                       | Summary Report           |             |  |  |  |  |  |  |  |  |
| Intersection                         | Base Met                 | Future Met  |  |  |  |  |  |  |  |  |
|                                      | [Del / Vol]              | [Del / Vol] |  |  |  |  |  |  |  |  |
| # 5 KELLY/LAKE MARY                  | ??? / ???                | No / No     |  |  |  |  |  |  |  |  |
| # 6 MERIDIAN / MAJESTIC PINES (EAST) | 333 / 333                | No / No     |  |  |  |  |  |  |  |  |
| # 7 MERIDIAN?MAJESTIC PINES (WEST)   | ??? / ???                | No / No     |  |  |  |  |  |  |  |  |
| # 8 MERIDIAN/Bus/Auto Drop Off       | <pre>\$3.5 \ 3.5.5</pre> | No / No     |  |  |  |  |  |  |  |  |

with less than four approaches.

\_\_\_\_\_\_ Eagle Lodge EIR Peak Hour Delay Signal Warrant Report \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 MERIDIAN / MAJESTIC PINES (EAST) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Future Volume Alternative: Peak Hour Warrant NOT Met \_\_\_\_\_|\_\_\_| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ~----| -----|----|-----|------| Approach[southbound][lanes=1][control=Stop] Signal Warrant Rule #1: [vehicle-hours=3.3] FAIL - Vehicle-hours less than 4 for one lane approach. Signal Warrant Rule #2: [approach volume=279] SUCCEED - Approach volume greater than or equal to 100 for one lane approach. Signal Warrant Rule #3: [approach count=3] [total volume=1109] SUCCEED - Total volume greater than or equal to 650 for intersection with less than four approaches.

| 2024 No Proje        | ect  |        | Tue  | Jun 2 | 0, 20 | 06 11:          | 52:41  |      |       |           | Page  | 7-5   |     |
|----------------------|------|--------|------|-------|-------|-----------------|--------|------|-------|-----------|-------|-------|-----|
|                      |      |        |      | Eagl  | e Lod | ge EIF          | 2      |      |       |           |       |       |     |
| ****                 | **** | Peak   | Hour | Delay | Sign  | al War<br>***** | rant 1 |      |       | *****     | ****  | ***** | * * |
| Intersection ******* |      |        |      |       |       |                 | ****   | **** | ***** | *****     | ****  | ****  | *   |
| Future Volume        |      |        |      |       | Warr  | ant NC          | T Met  |      | 1     | 1.1       |       |       | ,   |
| Approach:            | Nort | h Bour |      |       |       |                 |        |      |       | We<br>L - | st Bo |       | .   |
|                      |      |        |      |       |       |                 |        |      |       |           |       |       | .   |
| Control:             |      | p Sigr |      | Sto   | -     |                 |        |      | olled |           |       | olled |     |
| Lanes:               | 0 0  | 1! 0   | 0    | 0 0   | 1! 0  | 0               | -      | -    | 1 0   |           | 0     | 1 0   |     |
| Final Vol.:          | 0    | 0      | 0    | 0     | 0     | 0               | 0      | 403  | 0     | 0         | 260   | C     | )   |
| ApproachDel:         | xxx  | xxx    |      | XXX   | XXX   |                 | XXX    | XXX  |       | xx        | xxxx  |       |     |
|                      |      |        |      |       |       |                 |        |      |       |           |       |       | .   |

\_\_\_\_\_\_

Eagle Lodge EIR \_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #1 OLDM/MAIN \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 70 Critical Vol./Cap. (X): 0.848 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 17.4 Optimal Cycle:OPTIMIZED Level Of Service: -----|----|-----| 
 Control:
 Protected
 Protected
 Prot+Permit
 Prot+Permit

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 \_\_\_\_\_| Volume Module: -----| Saturation Flow Module: Adjustment: 0.93 1.00 0.83 1.00 1.00 1.00 1.00 0.90 0.81 0.90 0.90 1.00 Capacity Analysis Module: Vol/Sat: 0.17 0.00 0.06 0.00 0.00 0.00 0.00 0.15 0.48 0.06 0.12 0.00 Crit Moves: \*\*\*\* \*\*\* Green/Cycle: 0.20 0.00 0.20 0.00 0.00 0.00 0.56 0.56 0.69 0.63 0.00 Volume/Cap: 0.85 0.00 0.31 0.00 0.00 0.00 0.00 0.27 0.85 0.17 0.19 0.00 Delay/Veh: 44.1 0.0 24.5 0.0 0.0 0.0 0.0 7.9 20.6 4.0 5.5 0.0 1.00 AdjDel/Veh: 44.1 0.0 24.5 0.0 0.0 0.0 0.0 7.9 20.6 4.0 5.5 0.0 HCM2kAvg: 10 0 2 0 0 0 3 16 1 2

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\_\_\_\_\_\_\_ Eagle Lodge EIR

\_\_\_\_\_

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Intersection #2 MERIDIAN/OLDM

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Cycle (sec): 70 Critical Vol./Cap. (X): 0.851
Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): 34.8
Optimal Cycle:OPTIMIZED Level Of Service: C

| ******        | ****   | ****   | ***** | **** | ****           | ***** | **** | ****   | ***** | ***** | ****   | ***** |
|---------------|--------|--------|-------|------|----------------|-------|------|--------|-------|-------|--------|-------|
| Approach:     | No     | rth B  | ound  | So   | uth Bo         | ound  | E    | ast Bo | ound  | W     | est B  | ound  |
| Movement:     | L      | - T    | - R   | L    | - <b>T</b>     | - R   | L    | - T    | - R   | L     | - T    | - R   |
|               |        |        |       |      | ·              |       |      |        |       |       |        |       |
| Control:      | P      | rotect | ted   | P    | rotect         | ed    | Sp   |        | nase  | Sp    | lit Pl | hase  |
| Rights:       |        | Incl   | ude   |      | Incl           | ıde   |      | Incl   | ıde   |       | Incl   | ıde   |
| Min. Green:   | 0      | 0      | 0     | 0    | 0              | 0     | 0    | -      | 0     | _     | 0      | 0     |
| Lanes:        | 1      |        |       |      | 0 1            |       |      | 0 1    |       |       | 0 1    | 1 0   |
|               | 1      |        |       |      |                |       |      |        |       |       |        |       |
| Volume Module |        |        |       |      |                |       |      |        |       |       |        |       |
| Base Vol:     | 114    | 404    | 130   | 210  | 589            | 86    | 73   |        | 187   | 157   | 197    | 120   |
| Growth Adj:   |        | 1.00   | 1.00  |      | 1.00           | 1.00  | 1.00 |        | 1.00  |       | 1.00   | 1.00  |
| Initial Bse:  |        | 404    | 130   | 210  | 589            | 86    | 73   |        | 187   | 157   | 197    | 120   |
| Added Vol:    | 2      | 0      | 0     | 0    | 0              | 18    | 40   |        | 4     | 0     | 10     | 0     |
| PasserByVol:  | 0      | 0      | 0     | 0    | 0              | 0     | 0    |        | 0     | 0     | 0      | 0     |
| Initial Fut:  | 116    | 404    | 130   | 210  | 589            | 104   | 113  | 287    | 191   | 157   | 207    | 120   |
| User Adj:     | 1.00   | 1.00   | 1.00  | 1.00 | 1.00           | 1.00  | 1.00 |        | 1.00  | 1.00  | 1.00   | 1.00  |
| PHF Adj:      | 0.95   | 0.95   | 0.95  | 0.95 | 0.95           | 0.95  | 0.95 | 0.95   | 0.95  | 0.95  | 0.95   | 0.95  |
| PHF Volume:   | 122    | 425    | 137   | 221  | 620            | 109   | 119  | 302    | 201   | 165   | 218    | 126   |
| Reduct Vol:   | 0      | 0      | 0     | 0    | 0              | 0     | 0    | 0      | 0     | 0     | 0      | 0     |
| Reduced Vol:  | 122    | 425    | 137   | 221  | 620            | 109   | 119  | 302    | 201   | 165   | 218    | 126   |
| PCE Adj:      | 1.00   | 1.00   | 1.00  | 1.00 | 1.00           | 1.00  | 1.00 | 1.00   | 1.00  | 1.00  | 1.00   | 1.00  |
| MLF Adj:      | 1.00   | 1.00   | 1.00  | 1.00 | 1.00           | 1.00  | 1.00 | 1.00   | 1.00  | 1.00  | 1.00   | 1.00  |
| Final Vol.:   | 122    | 425    | 137   | 221  | 620            | 109   | 119  | 302    | 201   | 165   | 218    | 126   |
|               |        |        |       |      | <del>-</del> - |       |      |        |       |       |        |       |
| Saturation Fl | low Mo | odule: |       |      |                |       |      |        |       |       |        |       |
| Sat/Lane:     | 1900   | 1900   | 1900  | 1900 | 1900           | 1900  | 1900 | 1900   | 1900  | 1900  | 1900   | 1900  |
| Adjustment:   | 0.93   | 0.98   | 0.83  | 0.93 | 0.98           | 0.83  | 0.93 | 0.88   | 0.88  | 0.93  | 0.88   | 0.88  |
| Lanes:        | 1.00   | 1.00   | 1.00  | 1.00 | 1.00           | 1.00  | 1.00 | 1.20   | 0.80  | 1.00  | 1.27   | 0.73  |
| Final Sat.:   | 1769   | 1862   | 1583  | 1769 | 1862           | 1583  |      | 1997   | 1329  | 1769  |        | 1227  |
|               |        |        |       |      | <del>-</del>   |       |      |        |       |       |        |       |
| Capacity Anal | lysis  | Modul  | .e:   |      |                |       |      |        |       |       |        |       |
| Vol/Sat:      | 0.07   | 0.23   | 0.09  | 0.12 | 0.33           | 0.07  | 0.07 | 0.15   | 0.15  | 0.09  | 0.10   | 0.10  |
| Crit Moves:   | ****   |        |       |      | ***            |       |      | ****   |       |       |        | ***   |
| Green/Cycle:  | 0.08   | 0.31   | 0.31  | 0.17 | 0.39           | 0.39  | 0.18 | 0.18   | 0.18  | 0.12  | 0.12   | 0.12  |
| Volume/Cap:   | 0.85   | 0.75   | 0.28  | 0.75 | 0.85           | 0.18  | 0.38 | 0.85   | 0.85  | 0.77  | 0.85   | 0.85  |
| Delay/Veh:    | 67.3   | 27.3   | 18.8  | 37.8 | 28.8           | 14.1  | 26.1 | 39.2   | 39.2  | 45.6  | 45.8   | 45.8  |
| User DelAdj:  | 1.00   | 1.00   | 1.00  | 1.00 | 1.00           | 1.00  | 1.00 | 1.00   | 1.00  | 1.00  | 1.00   | 1.00  |
| AdjDel/Veh:   | 67.3   | 27.3   | 18.8  | 37.8 | 28.8           | 14.1  | 26.1 | 39.2   | 39.2  | 45.6  | 45.8   | 45.8  |
| HCM2kAvg:     | 5      | 10     | 2     | 7    | 15             | 2     | 3    | 8      | 8     | 6     | 6      | 6     |
| ******        | ****   | ****   | ***** | **** | ****           | ***** | **** | *****  | ****  | ****  | ****   | ***** |

```
2024 No Project
                              Tue Jun 20, 2006 11:52:41
                                                                               Page 10-1
 ----
                                   Eagle Lodge EIR
 Level Of Service Computation Report
              2000 HCM Operations Method (Future Volume Alternative)
********************
Intersection #3 MINARET/MERIDIAN
*******************
Cycle (sec): 85
                                             Critical Vol./Cap. (X): 0.896
Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): 45.7 Optimal Cycle:OPTIMIZED Level Of Service: D
******************************
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R

        Control:
        Split Phase
        Rights:
        Include
        Include

-----|----|-----|
Volume Module:
PHF Volume: 181 228 25 289 394 25 106 591 177 11 415 120
Saturation Flow Module:
Adjustment: 0.93 0.97 0.97 0.93 0.97 0.97 0.93 0.95 0.95 0.95 0.95 0.95
Lanes: 1.00 0.90 0.10 1.00 0.94 0.06 1.00 1.54 0.46 1.00 1.55 0.45 Final Sat.: 1769 1651 183 1769 1734 111 1769 2768 829 1769 2790 807
Capacity Analysis Module:
Vol/Sat: 0.10 0.14 0.14 0.16 0.23 0.23 0.06 0.21 0.21 0.01 0.15 0.15
Crit Moves:
                            ***
                                                ***
Green/Cycle: 0.15 0.15 0.15 0.25 0.25 0.25 0.24 0.24 0.24 0.17 0.17 0.17
Volume/Cap: 0.66 0.90 0.90 0.65 0.90 0.90 0.25 0.90 0.90 0.04 0.90 0.90
Delay/Veh: 39.9 63.7 63.7 31.6 50.2 50.2 26.6 43.4 43.4 29.8 50.8 50.8
AdjDel/Veh: 39.9 63.7 63.7 31.6 50.2 50.2 26.6 43.4 43.4 29.8 50.8 50.8 HCM2kAvg: 6 10 10 8 14 14 2 13 13 0 10 10
```

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\_\_\_\_\_\_

Eagle Lodge EIR Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #4 MINARET/MAIN \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 80 Critical Vol./Cap. (X): 0.976 Loss Time (sec): 12 (Y+R = 4 sec) Average Delay (sec/veh): 49.5
Optimal Cycle:OPTIMIZED Level Of Service: D D \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R \_\_\_\_\_|\_\_\_|\_\_\_| 
 Control:
 Split Phase
 Rights:
 Include
 -----| Volume Module: Initial Fut: 210 136 116 592 330 148 80 637 413 140 515 218 

PHF Volume: 221 143 122 623 347 156 84 671 435 147 542 229 -----| Saturation Flow Module: Adjustment: 0.91 0.96 0.82 0.95 0.95 0.95 0.93 0.98 0.83 0.90 0.95 0.81 Lanes: 1.00 1.00 1.00 2.00 0.69 0.31 1.00 2.00 1.00 1.00 2.00 1.00

Capacity Analysis Module: Vol/Sat: 0.13 0.08 0.08 0.17 0.28 0.28 0.05 0.18 0.27 0.09 0.15 0.15 Crit Moves: \*\*\*\* \*\*\*\* Green/Cycle: 0.13 0.13 0.13 0.28 0.28 0.28 0.28 0.28 0.28 0.15 0.15 Volume/Cap: 0.98 0.60 0.60 0.61 0.98 0.98 0.17 0.64 0.98 0.56 0.98 0.97 Delay/Veh: 87.5 37.0 37.9 25.8 61.8 61.8 21.9 26.5 64.8 34.0 65.7 84.3 AdjDel/Veh: 87.5 37.0 37.9 25.8 61.8 61.8 21.9 26.5 64.8 34.0 65.7 84.3 HCM2kAvq: 10 4 4 8 18 18 2 8 16 4 11 10 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Final Sat.: 1734 1825 1551 3609 1251 561 1769 3724 1583 1718 3618 1537 \_\_\_\_\_ Eagle Lodge EIR

\_\_\_\_\_\_

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

| **************************************                                                         |
|------------------------------------------------------------------------------------------------|
| Average Delay (sec/veh): 6.7 Worst Case Level Of Service: C[ 22.3]                             |
| Average Delay (sec/veh): 6.7 Worst Case Level Of Service: C[ 22.3]                             |
|                                                                                                |
| **************************************                                                         |
| Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R          |
| Movement: L - T - R L - T - R L - T - R L - T - R                                              |
| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled                                         |
| Rights: Include Include Include                                                                |
| Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0                                                  |
|                                                                                                |
| Volume Module:                                                                                 |
| Base Vol: 69 0 163 0 0 0 0 233 59 197 298 0 Growth Add: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0 |
|                                                                                                |
| Initial Bse: 69 0 163 0 0 0 0 233 59 197 298 0 Added Vol: 1 0 1 0 0 0 1 1 1 3 0                |
| PasserByVol: 0 0 0 0 0 0 0 0 0 0                                                               |
| Initial Fut: 70 0 164 0 0 0 0 234 60 198 301 0                                                 |
| User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                               |
| PHF Adj: 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95                                               |
| PHF Volume: 74 0 173 0 0 0 0 246 63 208 317 0                                                  |
| Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0                                                              |
| Final Vol.: 74 0 173 0 0 0 0 246 63 208 317 0                                                  |
| Critical Gap Module:                                                                           |
| Critical Gp: 6.4 xxxx 6.2 xxxxx xxxx xxxxx xxxxx xxxxx xxxx                                    |
| FollowUpTim: 3.5 xxxx 3.3 xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 2.2 xxxx xxxxx                    |
|                                                                                                |
| Capacity Module:                                                                               |
| Cnflict Vol: 1012 xxxx 278 xxxx xxxx xxxxx xxxx xxxx xxx                                       |
| Potent Cap.: 268 xxxx 766 xxxx xxxx xxxxx xxxx xxxx xx                                         |
| Move Cap.: 229 xxxx 766 xxxx xxxx xxxxx xxxx xxxx xxx                                          |
| Volume/Cap: 0.32 xxxx 0.23 xxxx xxxx xxxx xxxx xxxx xxxx xxxx x                                |
|                                                                                                |
| Level Of Service Module:  Oueue: xxxxx xxxx xxxxx xxxxx xxxx xxxxx xxxxx                       |
| Stopped Del:xxxxx xxxx xxxx xxxx xxxx xxxx xxxx x                                              |
| LOS by Move: * * * * * * * * * * * * * *                                                       |
| Movement: LT - LTR - RT                              |
| Shared Cap.: xxxx 450 xxxxx xxxx xxxx xxxx xxxx xxxx                                           |
| SharedQueue:xxxxx 3.2 xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx 0.6 xxxx xxxx                        |
| Shrd StpDel:xxxxx 22.3 xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxx                                |
| Shared LOS: * C * * * * * * A * *                                                              |
| ApproachDel: 22.3 xxxxxx xxxxxx xxxxxx                                                         |
| ApproachLOS: C * * *                                                                           |

\_\_\_\_\_\_ Eagle Lodge EIR

\_\_\_\_\_\_

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Intersection #6 MERIDIAN / MAJESTIC PINES (EAST)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| Average Delay |       |       |         |       |       | st Case  |      |                |       |       |       | 43.1]<br>****** |
|---------------|-------|-------|---------|-------|-------|----------|------|----------------|-------|-------|-------|-----------------|
| Approach:     | No    | rth B | ound    | So    | uth B | ound     | E    | ast B          | ound  | W     | est B | ound            |
| Movement:     |       |       | - R     |       |       | - R      |      |                | - R   |       |       | - R             |
|               |       |       |         |       |       |          |      |                |       |       |       |                 |
| Control:      | S     |       |         |       |       | ign      | Un   |                |       | Un    |       |                 |
| Rights:       |       |       | ude     |       | Incl  |          | 0    | Incl           |       | 0     | Incl  |                 |
| Lanes:        |       |       | 0 0     |       |       | 0 0      |      |                | 1 0   |       | 1 0   | 1 0             |
| Volume Module | 1     |       |         |       |       |          |      |                |       | 11    |       |                 |
| Base Vol:     | 0     | 0     | 0       | 200   | 0     | 55       | 135  | 81             | 0     | 0     | 114   | 180             |
| Growth Adj:   |       | 1.00  |         |       | 1.00  |          |      | 1.00           |       |       | 1.00  | 1.00            |
| Initial Bse:  | 0     | 0     | 0       | 200   | 0     |          | 135  | 81             | 0     | 0     | 114   | 180             |
| Added Vol:    | 0     | 0     | 0       | 0     | 0     | 10       | 23   | 176            | 0     | 0     | 80    | 0               |
| PasserByVol:  | 0     | 0     | 0       | 0     | 0     | 0        | 0    | 0              | 0     | 0     | 0     | 0               |
| Initial Fut:  | 0     | 0     | 0       | 200   | 0     | 65       | 158  | 257            | 0     | 0     | 194   | 180             |
| User Adi:     | 1.00  | 1.00  | 1.00    | 1.00  | 1.00  | 1.00     | 1.00 | 1.00           | 1.00  | 1.00  | 1.00  | 1.00            |
| PHF Adj:      | 0.95  | 0.95  | 0.95    | 0.95  | 0.95  | 0.95     | 0.95 | 0.95           | 0.95  | 0.95  | 0.95  | 0.95            |
| PHF Volume:   | 0     | 0     | 0       | 211   | 0     | 68       | 166  | 271            | 0     | 0     | 204   | 189             |
| Reduct Vol:   | 0     | 0     | 0       | 0     | 0     | 0        | 0    | 0              | 0     | 0     | 0     | 0               |
| Final Vol.:   | 0     | 0     | 0       | 211   | 0     | 68       | 166  | 271            | 0     | 0     | 204   | 189             |
| Critical Gap  | Modu. | le:   |         |       |       |          |      |                |       |       |       |                 |
| Critical Gp:> | xxxx  | XXXX  | XXXXX   | 6.8   | xxxx  | 6.9      | 4.1  | xxxx           | ххххх | XXXXX | XXXX  | KKKKK           |
| FollowUpTim:> |       |       |         |       |       |          | 2.2  | xxxx           | xxxxx | XXXXX | xxxx  | XXXXX           |
|               |       |       | <b></b> |       |       |          |      | <del>-</del> - |       |       |       |                 |
| Capacity Modu |       |       |         |       |       |          |      |                |       |       |       |                 |
| Cnflict Vol:  |       |       |         |       | xxxx  |          |      |                | xxxxx |       |       | XXXXX           |
| Potent Cap.:  |       |       |         |       | xxxx  |          |      |                | XXXXX |       |       | XXXXX           |
| -             |       |       | xxxxx   |       | XXXX  |          |      |                | XXXXX |       |       | XXXXX           |
|               |       |       | xxxx    |       | XXXX  | 0.08<br> |      | xxxx           | xxxx  |       | XXXX  | xxxx            |
| Level Of Serv |       |       |         |       |       |          |      |                |       |       |       |                 |
| Oueue: x      |       |       |         | xxxxx | xxxx  | xxxxx    | 0.5  | xxxx           | xxxxx | xxxxx | xxxx  | xxxxx           |
| Stopped Del:x |       |       |         |       |       |          |      |                |       | xxxxx |       |                 |
| LOS by Move:  |       |       | *       | *     | *     | *        | A    | *              | *     | *     | *     | *               |
| Movement:     |       | - LTR | - RT    | LT -  | LTR   | - RT     |      | - LTR          | - RT  | LT -  | LTR   | - RT            |
| Shared Cap.:  |       |       | xxxxx   | xxxx  |       | xxxxx    |      |                | xxxxx |       |       | xxxxx           |
| SharedQueue:x |       | xxxx  | xxxxx   | xxxxx |       | xxxxx    | 0.5  | xxxx           | xxxxx | 0.0   | xxxx  | xxxxx           |
| Shrd StpDel:x | xxxx  | xxxx  | xxxxx   |       |       | xxxxx    | 8.6  | xxxx           | xxxxx | 9.0   | xxxx  | xxxxx           |
| Shared LOS:   | *     | *     | *       | *     |       | *        | Α    | *              | *     | Α     | *     | *               |
| ApproachDel:  | XX    | xxxx  |         |       | 43.1  |          | XX   | xxxx           |       | XX    | XXXX  |                 |
| ApproachLOS:  |       | *     |         |       | E     |          |      | *              |       |       | *     |                 |

2024 No Project Tue Jun 20, 2006 11:52:41 Page 14-1 \_\_\_\_\_\_ Eagle Lodge EIR Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #7 MERIDIAN?MAJESTIC PINES (WEST) \*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap. (X): 0.349 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 9.7 Optimal Cycle: 0 Level Of Service: A \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R 
 Control:
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign
 Stop Sign
 Rights:
 Include
 Include</t \_\_\_\_\_| \_\_\_\_| \_\_\_\_\_| \_\_\_\_\_\_| \_\_\_\_\_| \_\_\_\_| \_\_\_\_| \_\_\_\_| \_\_\_\_| \_\_\_\_| \_\_\_\_| \_\_\_\_| \_\_\_\_\_| Saturation Flow Module: Lanes: 0.02 0.09 0.89 0.89 0.11 0.00 0.00 0.87 0.13 0.50 0.50 1.00 Final Sat.: 17 69 648 598 75 0 0 562 84 302 299 714 -----| Capacity Analysis Module: Vol/Sat: 0.18 0.18 0.18 0.35 0.35 xxxx xxxx 0.14 0.14 0.28 0.28 0.13 Crit Moves: \*\*\*\* \*\*\*\* AdjDel/Veh: 8.5 8.5 8.5 10.7 10.7 0.0 0.0 8.9 8.9 10.6 10.6 8.2 

\*\*\*\*\*\*\*\*\*\*\*\*

ApproachLOS: \*

#### Eagle Lodge EIR

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #8 MERIDIAN/Bus/Auto Drop Off \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.0 Worst Case Level Of Service: A[ 9.0] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \_\_\_\_\_ Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 1 0 1 0 1 0 \_\_\_\_\_\_|\_\_\_|\_\_\_|\_\_\_| Volume Module: Base Vol: 0 0 0 185 0 0 0 0 0 0 157 Initial Bse: 0 0 0 0 0 0 185 0 0 157 0 Final Vol.: 0 0 0 0 403 0 0 260 Critical Gap Module: Capacity Module: \_\_\_\_\_| Level Of Service Module: SharedQueue:xxxxx xxxx xxxxx xxxxx xxxxx 0.0 xxxx xxxxx 0.0 xxxx xxxxx Shared LOS: \* \* \* \* \* \* A \* A

# 2024 Plus Project LOS

2024 Plus Project Fri Jun 30, 2006 08:52:29 Page 1-1 Page 1-1

Mammoth Eagle Lodge EIR

\_\_\_\_\_

Scenario Report

Scenario: 2024 Plus Project

Command: W/O Proj
Volume: PM
Geometry: Default Geometry
Impact Fee: Default Impact Fee
Trip Generation: PM
Trip Distribution: Default Trip Distribution
Paths: Default Paths
Routes: Default Routes
Configuration: Future

## Mammoth Eagle Lodge EIR

## Trip Generation Report

#### Forecast for PM

| Zone<br># | Subzone A                  | mount | Units       |      | -          | Trips<br>Out | Total<br>Trips |              |
|-----------|----------------------------|-------|-------------|------|------------|--------------|----------------|--------------|
|           |                            |       |             | <br> |            |              |                |              |
| 2         | Base Lodge (<br>Zone 2 Sul |       | Base Lodge  |      | 80<br>80   | 323<br>323   | 403<br>403     | 44.1<br>44.1 |
| 4         | Hotel<br>Zone 4 Sul        |       | Eagle Lodge |      | 20<br>20   | 51<br>51     | 71<br>71       | 7.8<br>7.8   |
| 5         | Bus Auto Dr<br>Zone 5 Sul  |       | Drop Off    |      | 215<br>215 | 215<br>215   | 430<br>430     | 47.0<br>47.0 |
| 6         | TRUCKS Zone 6 Sub          |       | Trucks      |      | 5<br>5     | 5<br>5       | 10<br>10       | 1.1          |
| TOTAL     |                            |       |             | <br> | 320        | 594          | 914            | 100.0        |

|  | Fri | Jun | 30, | 2006 | 08:52:29 |
|--|-----|-----|-----|------|----------|
|--|-----|-----|-----|------|----------|

2024 Plus Project 

Page 3-1

## Mammoth Eagle Lodge EIR

- -Trip Distribution Report

## Percent Of Trips Default

|      |      |     |          |      | То   | Gates |      |      |     |      |      |
|------|------|-----|----------|------|------|-------|------|------|-----|------|------|
|      | 1    | 2   | 5        | 6    | 7    | 8     | 9    | 10   | 11  | 12   | 14   |
| Zone |      |     |          |      |      |       |      |      |     |      |      |
| 2    | 11.0 | 0.0 | 1.0      | 2.0  | 5.0  | 4.0   | 11.0 | 2.0  | 9.0 | 18.0 | 14.0 |
| 4    | 0.0  | 0.0 | 1.0      | 22.0 | 17.0 | 3.0   | 3.0  | 10.0 | 0.0 | 2.0  | 15.0 |
| 5    | 11.0 | 0.0 | 1.0      | 2.0  | 5.0  | 4.0   | 11.0 | 2.0  | 9.0 | 18.0 | 14.0 |
| 6    | 0.0  | 0.0 | 15.0     | 10.0 | 25.0 | 0.0   | 0.0  | 0.0  | 0.0 | 0.0  | 25.0 |
|      |      | То  | Gates    |      |      |       |      |      |     |      |      |
|      | 15   | 16  | 17       | 18   | 19   |       |      |      |     |      |      |
| Zone |      |     | <b>-</b> |      |      |       |      |      |     |      |      |
| 2    | 4.0  | 5.0 | 10.0     | 2.0  | 2.0  |       |      |      |     |      |      |
| 4    | 3.0  | 0.0 | 14.0     | 5.0  | 5.0  |       |      |      |     |      |      |
| 5    | 4.0  | 5.0 | 10.0     | 2.0  | 2.0  |       |      |      |     |      |      |
| 6    | 0.0  | 0.0 | 25.0     | 0.0  | 0.0  |       |      |      |     |      |      |

# Mammoth Eagle Lodge EIR

- -

| Turning | Movement | Report |
|---------|----------|--------|
|         | ₽M       |        |

| Volume<br>Type |        |        | Southbound<br>Left Thru Right |         |          |     | astbou<br>Thru | ınd<br>Right |     | estbo<br>Thru |     | Total<br>Volume |      |
|----------------|--------|--------|-------------------------------|---------|----------|-----|----------------|--------------|-----|---------------|-----|-----------------|------|
| #1 OLDN        | 1/MAI  | N      |                               |         |          |     |                |              |     |               |     |                 |      |
| Base           | 285    | 0      | 80                            | 0       | 0        | 0   | 0              | 495          | 698 | 84            | 399 | 0               | 2041 |
| Added          | 0      | 0      | 23                            | 0       | 0        | 0   | 0              | 0            | 0   | 12            | 0   | 0               | 35   |
| Total          | 285    | 0      | 103                           | 0       | 0        | 0   | 0              | 495          | 698 | 96            | 399 | 0               | 2076 |
| #2 MERI        | IDIAN  | /OLDM  |                               |         |          |     |                |              |     |               |     |                 |      |
| Base           | 113    | 404    | 130                           | 210     | 589      | 79  | 55             | 255          | 186 | 157           | 193 | 120             | 2491 |
| Added          | 8      | 0      | 0                             | 0       | 0        | 58  | 107            | 62           | 16  | 0             | 34  | 0               | 285  |
| Total          | 121    | 404    | 130                           | 210     | 589      | 137 | 162            | 317          | 202 | 157           | 227 | 120             | 2776 |
| #3 MINA        | ARET/N | MERID  | [AN                           |         |          |     |                |              |     |               |     |                 |      |
| Base           | 153    | 217    | 24                            | 275     | 374      | 2   | 50             | 433          | 125 | 10            | 338 | 114             | 2115 |
| Added          | 54     | 0      | 0                             | 0       | 0        | 56  | 107            | 246          | 98  | 0             | 132 | 0               | 693  |
| Total          | 207    | 217    | 24                            | 275     | 374      | 58  | 157            | 679          | 223 | 10            | 470 | 114             | 2808 |
| #4 MINA        | RET/N  | MIAN   |                               |         |          |     |                |              |     |               |     |                 |      |
| Base           | 194    | 131    | 99                            | 592     | 327      | 148 | 80             | 637          | 406 | 133           | 515 | 218             | 3480 |
| Added          | 25     | 22     | 37                            | 0       | 11       | 0   | 0              | 0            | 14  | 19            | 0   | 0               | 128  |
| Total          | 219    | 153    | 136                           | 592     | 338      | 148 | 80             | 637          | 420 | 152           | 515 | 218             | 3608 |
| #5 KELI        | LY/LAF | KE MAF | RY                            |         |          |     |                |              |     |               |     |                 |      |
| Base           | 69     | 0      | 163                           | 0       | 0        | 0   | 0              | 232          | 59  | 197           | 297 | 0               | 1017 |
| Added          | 3      | 0      | 6                             | 0       | 0        | 0   | 0              | 5            | 2   | 3             | 10  | 0               | 29   |
| Total          | 72     | 0      | 169                           | O       | 0        | 0   | 0              | 237          | 61  | 200           | 307 | 0               | 1046 |
| #6 MERI        | DIAN   | / MAC  | JESTIC                        | PINES   | (EAST    | ?)  |                |              |     |               |     |                 |      |
| Base           | 0      | 0      | 0                             | 200     | 0        | 55  | 134            | 50           | 0   | 0             | 98  | 180             | 717  |
| Added          | 0      | 0      | 0                             | 56      | 0        | 30  | 57             | 422          | 0   | 0             | 232 | 24              | 821  |
| In-Pro         | 0      | 0      | 0                             | -13     | 0        | 13  | 13             | 13           | 0   | 0             | 13  | -13             | 26   |
| Total          | 0      | 0      | 0                             | 243     | 0        | 98  | 204            | 485          | 0   | 0             | 343 | 191             | 1564 |
| #7 MERI        | DIAN?  | MAJES  | TIC PI                        | INES (V | VEST)    |     |                |              |     |               |     |                 |      |
| Base           | 3      | 1      | 110                           | 0       | 0        | 0   | 0              | 74           | 11  | 74            | 79  | 0               | 352  |
| Added          | 0      | 9      | 24                            | 479     | 59       | 0   | 0              | 0            | 0   | 0             | 0   | 71              | 642  |
| In-Pro         | 0      | 0      | 0                             | 26      | 0        | 0   | 0              | 0            | 0   | 0             | 0   | 26              | 52   |
| Total          | 3      | 10     | 134                           | 505     | 59       | 0   | 0              | 74           | 11  | 74            | 79  | 97              | 1046 |
| #8 MERI        | DIAN/  | Bus/A  | uto Di                        | op Off  | <u>:</u> |     |                |              |     |               |     |                 |      |
| Base           | 0      | 0      | 0                             | 0       | 0        | 0   | 0              | 184          | 0   | 0             | 153 | 0               | 337  |
| Added          | 0      | 0      | 0                             | 0       | 0        | 0   | 24             | 479          | 0   | 0             | 71  | 191             | 765  |
| In-Pro         | 0      | 0      | 0                             | 0       | 0        | 0   | 0              | 26           | 0   | 0             | 26  | 0               | 52   |
| Total          | 0      | 0      | 0                             | 0       | 0        | 0   | 24             | 689          | 0   | 0             | 250 | 191             | 1154 |
| #9 Maje        | stic/  | 'Hotel | Out                           |         |          |     |                |              |     |               |     |                 |      |
| Base           | 0      | 0      | 0                             | 0       | 0        | 0   | 0              | 314          | 0   | 0             | 255 | 0               | 569  |
| Added          | 0      | 0      | 56                            | 0       | 0        | 0   | 0              | 30           | 0   | 0             | 81  | 0               | 167  |
| Total          | 0      | 0      | 56                            | 0       | 0        | 0   | 0              | 344          | 0   | 0             | 336 | 0               | 736  |

Traffix 7.7.0515 (c) 2005 Dowling Assoc. Licensed to LSC DENVER

| Page | 4 | - | 2 |
|------|---|---|---|
|------|---|---|---|

| ZUZI IIU | 5 110                   | ,                |      |      |        |               |      |        |              |      |                 |       |        |  |  |
|----------|-------------------------|------------------|------|------|--------|---------------|------|--------|--------------|------|-----------------|-------|--------|--|--|
|          | Mammoth Eagle Lodge EIR |                  |      |      |        |               |      |        |              |      |                 |       |        |  |  |
| Volume   |                         | thbour<br>hru Ri |      |      | outhbo | ound<br>Right |      | astbo  | und<br>Right | ₩e   | Total<br>Volume |       |        |  |  |
| Type L   | erc 1.                  | iiru Ki          | Lync | петс | IIII a | Right         | nerc | IIII u | Kighe        | БСГС | IIILU           | Right | VOTAME |  |  |
| #10 Maje | stic/                   | Hotel            | In   |      |        |               |      |        |              |      |                 |       |        |  |  |
| Base     | 0                       | 0                | 0    | 0    | 0      | 0             | 0    | 314    | 0            | 0    | 255             | 0     | 569    |  |  |
| Added    | 0                       | 0                | 0    | 0    | 0      | 0             | 0    | 30     | 1            | 24   | 57              | 0     | 112    |  |  |
| Total    | 0                       | 0                | 0    | 0    | 0      | 0             | 0    | 344    | 1            | 24   | 312             | 0     | 681    |  |  |

# Mammoth Eagle Lodge EIR

\_\_\_\_\_\_\_

| Link | Volume | Report |
|------|--------|--------|
|      | PM     |        |

| Volume<br>Type     | NB Link<br>In Out Total |        | In      | SB L:  | ink<br>Total | In    | EB L | ink<br>Total | In   | WB L<br>Out | Total<br>Volume |      |      |
|--------------------|-------------------------|--------|---------|--------|--------------|-------|------|--------------|------|-------------|-----------------|------|------|
| 1100               | 111                     | ouc    | Tocar   |        | 040          | 10001 |      |              |      |             |                 |      |      |
| #1 OLDM            | /MAI                    | N      |         |        |              |       |      |              |      |             |                 |      |      |
| Base               | 365                     | 782    | 1147    | 0      | 0            | 0     | 1193 | 684          | 1877 | 483         | 575             | 1058 | 4082 |
| Added              | 23                      | 12     | 35      | 0      | 0            | 0     | 0    | 0            | 0    | 12          | 23              | 35   | 70   |
| Total              | 388                     | 794    | 1182    | 0      | 0            | 0     | 1193 | 684          | 1877 | 495         | 598             | 1093 | 4152 |
| #2 MERI            | DIAN                    | /OLDM  |         |        |              |       |      |              |      |             |                 |      |      |
| Base               | 647                     | 932    | 1579    | 878    | 579          | 1457  | 496  | 385          | 881  | 470         | 595             | 1065 | 4982 |
| Added              | 8                       | 16     | 24      | 58     | 107          | 165   | 185  | 100          | 285  | 34          | 62              | 96   | 570  |
| Total              | 655                     | 948    | 1603    | 936    | 686          | 1622  | 681  | 485          | 1166 | 504         | 657             | 1161 | 5552 |
| #3 MINA            | RET/                    | MERID: | IAN     |        |              |       |      |              |      |             |                 |      |      |
| Base               | 394                     | 509    | 903     | 651    | 381          | 1032  | 608  | 493          | 1101 | 462         | 732             | 1194 | 4230 |
| Added              | 54                      | 98     | 152     | 56     | 107          | 163   | 451  | 242          | 693  | 132         | 246             | 378  | 1386 |
| Total              | 448                     | 607    | 1055    | 707    | 488          | 1195  | 1059 | 735          | 1794 | 594         | 978             | 1572 | 5616 |
| #4 MINA            | RET/                    | MAIN   |         |        |              |       |      |              |      |             |                 |      |      |
| Base               | 424                     | 866    | 1290    | 1067   | 429          | 1496  | 1123 | 857          | 1980 | 866         | 1328            | 2194 | 6960 |
| Added              | 84                      | 44     | 128     | 11     | 22           | 33    | 14   | 25           | 39   | 19          | 37              | 56   | 256  |
| Total              | 508                     | 910    | 1418    | 1078   | 451          | 1529  | 1137 | 882          | 2019 | 885         | 1365            | 2250 | 7216 |
| #5 KELLY/LAKE MARY |                         |        |         |        |              |       |      |              |      |             |                 |      |      |
| Base               | 232                     | 256    | 488     | 0      | 0            | 0     | 291  | 366          | 657  | 494         | 395             | 889  | 2034 |
| Added              | 9                       | 5      | 14      | 0      | 0            | 0     | 7    | 13           | 20   | 13          | 11              | 24   | 58   |
| Total              | 241                     | 261    | 502     | 0      | 0            | 0     | 298  | 379          | 677  | 507         | 406             | 913  | 2092 |
| #6 MERI            | DIAN                    | / MA   | JESTIC  | PINES  | (EAST        | Г)    |      |              |      |             |                 |      |      |
| Base               | 0                       | 0      | 0       | 255    | 314          | 569   | 184  | 153          | 337  | 278         | 250             | 528  | 1434 |
| Added              | 0                       | 0      | 0       | 86     | 81           | 167   | 479  | 262          | 741  | 256         | 478             | 734  | 1642 |
| In-Pro             | 0                       | 0      | 0       | 0      | 0            | 0     | 26   | 26           | 52   | 0           | 0               | 0    | 52   |
| Total              | 0                       | 0      | 0       | 341    | 395          | 736   | 689  | 441          | 1130 | 534         | 728             | 1262 | 3128 |
| #7 MERI            | DIAN                    | MAJES  | STIC PI | NES (V | VEST)        |       |      |              |      |             |                 |      |      |
| Base               | 114                     | 85     | 199     | 0      | 1            | 1     | 85   | 82           | 167  | 153         | 184             | 337  | 704  |
| Added              | 33                      | 59     | 92      | 538    | 80           | 618   | 0    | 0            | 0    | 71          | 503             | 574  | 1284 |
| In-Pro             | 0                       | 0      | 0       | 26     | 26           | 52    | 0    | 0            | 0    | 26          | 26              | 52   | 104  |
| Total              | 147                     | 144    | 291     | 564    | 107          | 671   | 85   | 82           | 167  | 250         | 713             | 963  | 2092 |
| #8 MERI            | DIAN,                   | /Bus/A | Auto Dr | op Off | :            |       |      |              |      |             |                 |      |      |
| Base               | 0                       | 0      | 0       | 0      | 0            | 0     | 184  | 153          | 337  | 153         | 184             | 337  | 674  |
| Added              | 0                       | 0      | 0       | 0      | 215          | 215   | 503  | 71           | 574  | 262         | 479             | 741  | 1530 |
| In-Pro             | 0                       | 0      | 0       | 0      | 0            | 0     | 26   | 26           | 52   | 26          | 26              | 52   | 104  |
| Total              | 0                       | 0      | 0       | 0      | 215          | 215   | 713  | 250          | 963  | 441         | 689             | 1130 | 2308 |
| #9 Maje            | stic                    | /Hote] | Out     |        |              |       |      |              |      |             |                 |      |      |
| Base               | 0                       | 0      | 0       | 0      | 0            | 0     | 314  | 255          | 569  | 255         | 314             | 569  | 1138 |
| Added              | 56                      | 0      | 56      | 0      | 0            | 0     | 30   | 81           | 111  | 81          | 86              | 167  | 334  |
| Total              | 56                      | 0      | 56      | 0      | 0            | 0     | 344  | 336          | 680  | 336         | 400             | 736  | 1472 |

Traffix 7.7.0515 (c) 2005 Dowling Assoc. Licensed to LSC DENVER

| 2024 Plu                            | ıs Pro                | oject                   |                       | Fri Jun 30, 2006 08:52:29 |                         |             |                  |                         |                  |                  |                                      | Page 5-2          |                     |  |
|-------------------------------------|-----------------------|-------------------------|-----------------------|---------------------------|-------------------------|-------------|------------------|-------------------------|------------------|------------------|--------------------------------------|-------------------|---------------------|--|
| Mammoth Eagle Lodge EIR             |                       |                         |                       |                           |                         |             |                  |                         |                  |                  |                                      |                   |                     |  |
| Volume NB Link<br>Type In Out Total |                       |                         |                       |                           | SB Link<br>In Out Total |             |                  | EB Link<br>In Out Total |                  |                  | WB Link Total<br>In Out Total Volume |                   |                     |  |
| #10 Maje<br>Base<br>Added<br>Total  | estic,<br>0<br>0<br>0 | /Hotel<br>0<br>25<br>25 | . In<br>0<br>25<br>25 | 0<br>0<br>0               | 0<br>0<br>0             | 0<br>0<br>0 | 314<br>31<br>345 | 255<br>57<br>312        | 569<br>88<br>657 | 255<br>81<br>336 | 314<br>30<br>344                     | 569<br>111<br>680 | 1138<br>224<br>1362 |  |

2024 Plus Project Fri Jun 30, 2006 08:52:30 Page 6-1 Mammoth Eagle Lodge EIR \_\_\_\_\_\_ Signal Warrant Summary Report 

with less than four approaches.

Intersection #1 OLDM/MAIN

Mammoth Eagle Lodge EIR

\_\_\_\_\_\_

Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 

| ************************************** |             |         |       |       |        |      |       |                |      |              |       | ***** |  |
|----------------------------------------|-------------|---------|-------|-------|--------|------|-------|----------------|------|--------------|-------|-------|--|
| Approach:                              | North Bound |         |       |       | uth Bo | ound | E     | ast B          | ound | West Bound   |       |       |  |
| Movement:                              | L           | - T     | - R   | L     | - T    | - R  | L     | - T            | - R  | $\mathbf{L}$ | - T   | - R   |  |
|                                        |             |         |       |       |        |      | 1     |                |      | 1            |       |       |  |
| Control:                               | P           | rotect  | ted   | P     | rotect |      | Pr    | ot+Pe:         |      | Pro          | ot+Pe |       |  |
| Rights:                                |             | Incl    | ude   |       | Incl   |      |       | Incl           |      |              | Incl  |       |  |
| Min. Green:                            | 0           | -       | 0     | 0     | -      | 0    | -     | 0              | 0    | -            | 0     | 0     |  |
| Lanes:                                 | 1           | 0 0     | 0 1   | 0     | 0 0    | 0 0  | . 0   | 0 2            | 0 1  | . 1          | 0 2   | 0 0   |  |
|                                        |             |         |       |       |        |      |       |                |      |              |       |       |  |
| Volume Module                          |             |         |       |       |        |      |       |                |      |              |       | _     |  |
| Base Vol:                              | 285         | 0       | 80    | 0     | 0      | 0    | 0     | 495            | 698  | 84           | 399   | 0     |  |
| Growth Adj:                            |             | 1.00    | 1.00  | 1.00  | 1.00   | 1.00 |       | 1.00           | 1.00 | 1.00         |       | 1.00  |  |
| Initial Bse:                           | 285         | 0       | 80    | 0     | 0      | 0    | 0     | 495            | 698  | 84           | 399   | 0     |  |
| Added Vol:                             | 0           | 0       | 23    | 0     | 0      | 0    | 0     | 0              | 0    | 12           | 0     | 0     |  |
| In-Process:                            | 0           | 0       | 0     | 0     | 0      | 0    | 0     | 0              | 0    | 0            | 0     | 0     |  |
| Initial Fut:                           | 285         | 0       | 103   | 0     | 0      | 0    | 0     | 495            | 698  | 96           | 399   | 0     |  |
| User Adj:                              | 1.00        | 1.00    | 1.00  | 1.00  | 1.00   | 1.00 | 1.00  | 1.00           | 1.00 | 1.00         | 1.00  | 1.00  |  |
| PHF Adj:                               | 0.95        | 0.95    | 0.95  | 0.95  | 0.95   | 0.95 | 0.95  | 0.95           | 0.95 | 0.95         | 0.95  | 0.95  |  |
| PHF Volume:                            | 300         | 0       | 108   | 0     | 0      | 0    | 0     | 521            | 735  | 101          | 420   | 0     |  |
| Reduct Vol:                            | 0           | 0       | 0     | 0     | 0      | 0    | 0     | 0              | 0    | 0            | 0     | 0     |  |
| Reduced Vol:                           | 300         | 0       | 108   | 0     | 0      | 0    | 0     | 521            | 735  | 101          | 420   | 0     |  |
| PCE Adj:                               | 1.00        | 1.00    | 1.00  | 1.00  | 1.00   | 1.00 | 1.00  | 1.00           | 1.00 | 1.00         | 1.00  | 1.00  |  |
| MLF Adj:                               | 1.00        | 1.00    | 1.00  | 1.00  | 1.00   | 1.00 | 1.00  | 1.00           | 1.00 | 1.00         | 1.00  | 1.00  |  |
| Final Vol.:                            | 300         | 0       | 108   | 0     | 0      | 0    | 0     | 521            | 735  | 101          | 420   | 0     |  |
|                                        |             |         |       |       |        |      |       | <del>-</del> - |      |              |       |       |  |
| Saturation Fl                          | Low Mo      | odule:  | :     |       |        |      |       |                |      |              |       |       |  |
| Sat/Lane:                              | 1900        | 1900    | 1900  | 1900  | 1900   | 1900 |       | 1900           | 1900 |              | 1900  | 1900  |  |
| Adjustment:                            | 0.93        | 1.00    | 0.83  | 1.00  | 1.00   | 1.00 | 1.00  | 0.90           | 0.81 | 0.90         | 0.90  | 1.00  |  |
| Lanes:                                 | 1.00        | 0.00    | 1.00  | 0.00  | 0.00   | 0.00 |       | 2.00           | 1.00 |              | 2.00  | 0.00  |  |
| Final Sat.:                            | 1769        | 0       | 1583  | 0     | 0      | 0    | 0     | 3437           | 1537 | 1718         | 3437  | 0     |  |
|                                        | <b>-</b> -  | <b></b> |       |       |        |      |       |                |      |              |       |       |  |
| Capacity Anal                          | lysis       | Modu]   |       |       |        |      |       |                |      |              |       |       |  |
| Vol/Sat:                               | 0.17        | 0.00    | 0.07  | 0.00  | 0.00   | 0.00 | 0.00  | 0.15           | 0.48 | 0.06         | 0.12  | 0.00  |  |
| Crit Moves:                            | ****        |         |       |       |        |      |       |                | ***  | ****         |       |       |  |
| Green/Cycle:                           | 0.20        | 0.00    | 0.20  | 0.00  | 0.00   | 0.00 |       | 0.56           | 0.56 | 0.69         |       | 0.00  |  |
| Volume/Cap:                            | 0.85        | 0.00    | 0.34  | 0.00  | 0.00   | 0.00 |       | 0.27           | 0.85 | 0.18         |       | 0.00  |  |
| Delay/Veh:                             | 44.8        | 0.0     | 24.8  | 0.0   | 0.0    | 0.0  | 0.0   | 8.0            | 21.1 | 4.1          | 5.5   | 0.0   |  |
| User DelAdj:                           | 1.00        | 1.00    | 1.00  | 1.00  | 1.00   | 1.00 | 1.00  | 1.00           | 1.00 | 1.00         |       | 1.00  |  |
| AdjDel/Veh:                            | 44.8        | 0.0     | 24.8  | 0.0   | 0.0    | 0.0  | 0.0   | 8.0            | 21.1 | 4.1          | 5.5   | 0.0   |  |
| HCM2kAvg:                              | 10          | 0       | 2     | 0     | 0      | 0    | 0     | 3              | 17   | 1            | 2     | 0     |  |
| *********                              | ****        | *****   | ***** | ***** | ****   | **** | ***** | ****           | **** | * * * * *    | ****  | ***** |  |

Mammoth Eagle Lodge EIR

.\_\_\_\_ \_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #2 MERIDIAN/OLDM \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 75 Critical Vol./Cap. (X): Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Critical Vol./Cap. (X): 0.862 36.7 D Optimal Cycle:OPTIMIZED Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----| 
 Control:
 Protected
 Protected
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< Volume Module: Base Vol: 113 404 130 210 589 79 55 255 186 157 193 120 Initial Bse: 113 404 130 210 589 79 55 255 186 157 193 120 
 58
 107
 62
 16
 0
 34
 0

 0
 0
 0
 0
 0
 0
 Added Vol: 8 0 0 0 0 58 107 62 In-Process: 0 0 0 0 0 0 Final Vol.: 127 425 137 221 620 144 171 334 213 165 239 126 \_\_\_\_\_| Saturation Flow Module: -----| Capacity Analysis Module: Vol/Sat: 0.07 0.23 0.09 0.12 0.33 0.09 0.10 0.16 0.16 0.09 0.11 0.11 \*\*\*\* \*\*\* \*\*\* Crit Moves: \*\*\*\* Green/Cycle: 0.08 0.30 0.30 0.17 0.39 0.39 0.19 0.19 0.19 0.13 0.13 0.13 HCM2kAvg: 6 11 3 7 16 2 4 9 9 6 7 7 HCM2kAva:

Fri Jun 30, 2006 08:52:30 Page 10-1 2024 Plus Project \_\_\_\_\_ Mammoth Eagle Lodge EIR \_\_\_\_\_\_ Level Of Service Computation Report 2000 HCM Operations Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #3 MINARET/MERIDIAN \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 110 Critical Vol./Cap. (X): 0.989 Loss Time (sec): 16 (Y+R = 4 sec) Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_| 
 Control:
 Split Phase
 Split Phase
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Lanes:
 1
 0
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <td \_\_\_\_\_| Volume Module: Base Vol: 153 217 24 275 374 2 50 433 125 10 338 114 Initial Bse: 153 217 24 275 374 2 50 433 125 10 338 114 Reduced Vol: 218 228 25 289 394 61 165 715 235 11 495 120 MLF Adj: Final Vol.: 218 228 25 289 394 61 165 715 235 11 495 120 \_\_\_\_\_| Saturation Flow Module: 

| Lanes:        | 1.00  | 0.90         | 0.10  | 1.00  | 0.87 | 0.13  | 1.00 | 1.51  | 0.49 | 1.00 | 1.61 | 0.39 |
|---------------|-------|--------------|-------|-------|------|-------|------|-------|------|------|------|------|
| Final Sat.:   | 1769  | 1651         | 183   | 1769  | 1580 | 245   | 1769 | 2565  | 842  | 1769 | 2765 | 671  |
|               |       | <del>-</del> |       |       |      |       |      |       |      |      |      | ·    |
| Capacity Anal | lysis | Modu.        | le:   |       |      |       |      |       |      |      |      |      |
| Vol/Sat:      | 0.12  | 0.14         | 0.14  | 0.16  | 0.25 | 0.25  | 0.09 | 0.28  | 0.28 | 0.01 | 0.18 | 0.18 |
| Crit Moves:   |       |              | ***   |       |      | ***   |      |       | **** |      | ***  |      |
| Green/Cycle:  | 0.14  | 0.14         | 0.14  | 0.25  | 0.25 | 0.25  | 0.28 | 0.28  | 0.28 | 0.18 | 0.18 | 0.18 |
| Volume/Cap:   | 0.88  | 0.99         | 0.99  | 0.65  | 0.99 | 0.99  | 0.33 | 0.99  | 0.99 | 0.03 | 0.99 | 0.99 |
| Delay/Veh:    | 74.8  | 100          | 100.2 | 40.2  | 80.0 | 80.0  | 31.7 | 65.6  | 65.6 | 37.2 | 78.1 | 78.1 |
| User DelAdj:  | 1.00  | 1.00         | 1.00  | 1.00  | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 |
| AdjDel/Veh:   | 74.8  | 100          | 100.2 | 40.2  | 80.0 | 80.0  | 31.7 | 65.6  | 65.6 | 37.2 | 78.1 | 78.1 |
| HCM2kAvg:     | 11    | 13           | 13    | 10    | 21   | 21    | 5    | 22    | 22   | 0    | 15   | 15   |
| ********      | ***** | ****         | ***** | ***** | **** | ***** | **** | ***** | **** | **** | **** | **** |

| 2024 Plus Pr            | oject      | Fı               | ci Jun | 30, 2  | 2006 08 | 3:52:3 | 0          |          | Page        | 11-1  |
|-------------------------|------------|------------------|--------|--------|---------|--------|------------|----------|-------------|-------|
|                         |            | N                |        |        | le Lodg | je EIR |            |          |             |       |
| =                       |            | <br>Level (      |        |        | computa |        | <br>Report | :        |             |       |
|                         | 2000 HCM O | peratio          | ons Me | thod   | (Future | volu   | me Alt     | ernati   |             |       |
| ******                  |            |                  | ****   | ****   | *****   | *****  | ****       | *****    | ******      | ***** |
| Intersection            | #4 MINARE  | T/MAIN<br>****** | *****  | ****   | *****   | ****   | ****       | *****    | *****       | ***** |
| Cycle (sec):            | 8          | 0                |        | (      | Critica | al Vol | ./Cap.     | (X):     | 1.0         |       |
| Loss Time (s            | ec): 1     | 2 (Y+R           | = 4    | sec) A | Average | e Dela | y (sec     | :/veh):  | : 53        | . 1   |
| Optimal Cycl            | e:OPTIMIZE | D                |        |        | Level ( |        |            |          |             | D     |
| *****                   |            |                  |        |        |         |        |            |          |             |       |
| Approach:               | North B    |                  |        |        |         |        | ast Bo     |          | West B      |       |
| Movement:               | _ L - T    |                  |        |        | - R     |        |            | - R      |             |       |
|                         |            |                  |        |        |         |        |            |          |             |       |
| Control:                |            |                  |        |        |         |        |            |          | Split P     |       |
| Rights:                 | Incl       |                  |        |        |         |        |            | ıde<br>0 | Incl<br>0 0 |       |
| Min. Green:<br>Lanes:   | 0 0        | 0 1              | 2      |        | 1 0     |        |            | 0 1      |             |       |
| Lanes:                  |            |                  |        |        |         |        |            |          |             |       |
| Volume Modul            | 1          | <b>-</b>         |        |        |         | 1      |            |          | 1           | 1     |
| Base Vol:               |            | 99               | 592    | 327    | 148     | 80     | 637        | 406      | 133 515     | 218   |
| Growth Adi:             |            | 1.00             |        | 1.00   | 1.00    |        | 1.00       | 1.00     | 1.00 1.00   | 1.00  |
| Initial Bse:            |            | 99               | 592    | 327    | 148     | 80     |            | 406      | 133 515     | 218   |
| Added Vol:              | 25 22      | 37               | 0      | 11     | 0       | 0      |            | 14       | 19 0        | 0     |
| In-Process:             | 0 0        | 0                | 0      | 0      | 0       | 0      | 0          | 0        | 0 0         | 0     |
| Initial Fut:            |            | 136              | 592    | 338    | 148     | 80     | 637        | 420      | 152 515     | 218   |
| User Adj:               | 1.00 1.00  | 1.00             | 1.00   | 1.00   | 1.00    | 1.00   | 1.00       | 1.00     | 1.00 1.00   | 1.00  |
| PHF Adj:                | 0.95 0.95  | 0.95             | 0.95   | 0.95   | 0.95    | 0.95   | 0.95       | 0.95     | 0.95 0.95   | 0.95  |
| PHF Volume:             | 231 161    | 143              | 623    | 356    | 156     | 84     | 671        | 442      | 160 542     | 229   |
| Reduct Vol:             | 0 0        | 0                | 0      | 0      | 0       | 0      | 0          | 0        | 0 0         | 0     |
| Reduced Vol:            |            | 143              | 623    | 356    | 156     | 84     | 671        | 442      | 160 542     | 229   |
| PCE Adj:                | 1.00 1.00  | 1.00             |        | 1.00   | 1.00    |        | 1.00       | 1.00     | 1.00 1.00   | 1.00  |
| MLF Adj:                | 1.00 1.00  | 1.00             |        | 1.00   | 1.00    |        | 1.00       | 1.00     | 1.00 1.00   | 1.00  |
| Final Vol.:             | 231 161    | 143              | 623    | 356    | 156     | 84     |            | 442      | 160 542     | 229   |
| G. I I. i               | 1          |                  | 1      |        |         |        |            |          |             |       |
| Saturation F. Sat/Lane: | 1900 1900  | :<br>1900        | 1000   | 1900   | 1900    | 1900   | 1900       | 1900     | 1900 1900   | 1900  |
| Adjustment:             | 0.91 0.96  | 0.82             |        | 0.95   | 0.95    |        | 0.93       | 0.83     | 0.90 0.90   | 0.81  |
| Lanes:                  | 1.00 1.00  | 1.00             |        | 0.70   | 0.30    |        | 2.00       | 1.00     | 1.00 2.00   | 1.00  |
| Final Sat.:             |            | 1551             |        | 1260   | 552     |        | 3538       | 1583     | 1718 3437   | 1537  |
|                         |            |                  |        |        |         |        |            |          |             |       |
| Capacity Ana            |            |                  | 1      |        | '       | 1      |            |          | 1           | '     |
| Vol/Sat:                | 0.13 0.09  | 0.09             | 0.18   | 0.28   | 0.28    | 0.05   | 0.19       | 0.28     | 0.09 0.16   | 0.15  |
| Crit Moves:             | ***        |                  |        | ***    |         |        |            | ***      | ***         |       |
| <pre>Green/Cycle:</pre> | 0.13 0.13  | 0.13             | 0.28   | 0.28   | 0.28    | 0.28   | 0.28       | 0.28     | 0.16 0.16   | 0.16  |
| Volume/Cap:             | 1.00 0.67  | 0.70             |        | 1.00   | 1.00    |        | 0.68       | 1.00     | 0.59 1.00   | 0.95  |
| Delay/Veh:              | 94.8 39.9  | 43.1             | 26.5   |        | 69.3    |        | 27.6       | 72.4     | 34.8 73.1   | 77.1  |
| User DelAdj:            |            | 1.00             | 1.00   |        | 1.00    |        | 1.00       | 1.00     | 1.00 1.00   | 1.00  |
| AdjDel/Veh:             | 94.8 39.9  | 43.1             | 26.5   |        | 69.3    |        | 27.6       | 72.4     | 34.8 73.1   | 77.1  |
| HCM2kAvg:               | 11 5       | 5                | 8      | 19     | 19      | 2      | 9          | 17       | 5 12        | 10    |
| ******                  | *****      | *****            | ***    | ****   | ****    | ***    | ****       | ****     | *****       | ****  |

Mammoth Eagle Lodge EIR

Level Of Service Computation Report

| 20                                     | 00 HCM Ui                                                                                     | Level on signal | ized M  | ethod           | (Futu     | re Vol | ume A          | lternat    | ive)     |                 |            |
|----------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|---------|-----------------|-----------|--------|----------------|------------|----------|-----------------|------------|
| Intersection                           | 2000 HCM Unsignalized Method (Future Volume Alternative) ************************************ |                 |         |                 |           |        |                |            |          |                 |            |
| ************** Average Delay           | (sec/vel                                                                                      | 1):             | 7.0     | Wor             | st Cas    | e Leve | l Of a         | Service    | ::       | C [             | 23.4]      |
| ************************************** | ********* North l                                                                             |                 |         | *****<br>uth Bo |           |        | *****<br>ast B |            |          | *****<br>est Bo |            |
| Movement:                              | L - T                                                                                         | - R             | ${f L}$ | - T             | - R       | L      | - T            | - R        | L        | - T             | - R        |
| Control:                               | Stop S                                                                                        |                 | S       | top S:          |           | Un     |                | olled      | Un       |                 | olled      |
| Rights:<br>Lanes:<br>                  | 0 0 1                                                                                         | 0 0             | 0       | 0 0             | 0 0       | 0      | 0 0            | 1 0        | -        | 1 0             | 0 0        |
| Volume Module                          |                                                                                               |                 |         |                 |           |        |                |            | 1        |                 | I          |
| Base Vol:                              |                                                                                               | 163             | 0       | 0               | 0<br>1.00 | 0      | 232            | 59<br>1.00 | 197      | 297<br>1.00     | 0<br>1.00  |
| Growth Adj:<br>Initial Bse:            | 1.00 1.00                                                                                     | ) 1.00<br>) 163 | 0.00    | 0.11            | 0         | 0      | 232            | 59         | 197      | 297             | 0          |
| Added Vol:                             |                                                                                               | ) 6             | 0       | 0               | 0         | 0      | 5              | 2          | 3        | 10              | 0          |
| In-Process:                            |                                                                                               | 0               | 0       | 0               | 0         | 0      | 0              | 0          | 0        | 0               | 0          |
| Initial Fut:                           | 72 (                                                                                          |                 | 1 00    | 1 00            | 1.00      | 1 00   | 237            | 61<br>1.00 | 200      | 307             | 0<br>1.00  |
|                                        | 1.00 1.00                                                                                     |                 |         | 1.00            | 0.95      |        | 0.95           | 0.95       |          | 0.95            | 0.95       |
| PHF Adj:<br>PHF Volume:                | 76                                                                                            |                 | 0.23    | 0.55            | 0.55      | 0.00   | 249            | 64         | 211      | 323             | 0.55       |
| Reduct Vol:                            |                                                                                               | ) 0             | 0       | Ō               | 0         | 0      | 0              | 0          | 0        | 0               | 0          |
| Final Vol.:                            | 76 (                                                                                          | 178             | 0       | 0               | 0         | 0      | 249            | 64         | 211      | 323             | 0          |
| Critical Gap                           | Module:                                                                                       |                 |         |                 |           |        |                |            |          |                 |            |
| Critical Gp:                           | 6.4 xxx                                                                                       | 6.2             | xxxxx   | xxxx            | xxxxx     | xxxxx  | xxxx           | XXXXX      |          |                 | xxxxx      |
| FollowUpTim:                           | 3.5 xxxx                                                                                      |                 |         |                 |           |        |                | XXXXX      |          |                 | XXXXX      |
|                                        |                                                                                               |                 |         |                 |           |        |                |            |          |                 |            |
| Capacity Modu<br>Cnflict Vol:          |                                                                                               | 282             | vvvv    | ****            | xxxxx     | vvvv   | vvvv           | xxxxx      | 314      | xxxx            | xxxxx      |
| Potent Cap.:                           |                                                                                               |                 |         |                 | XXXXX     |        |                | XXXXX      |          |                 | xxxxx      |
| Move Cap.:                             |                                                                                               |                 |         |                 | XXXXX     |        |                | xxxxx      | 1247     | xxxx            | xxxxx      |
| Volume/Cap:                            | 0.34 xxxx                                                                                     | 0.23            |         | xxxx            |           | xxxx   | xxxx           | xxxx       | 0.17     | xxxx            | XXXX       |
|                                        |                                                                                               |                 |         |                 |           |        |                |            |          |                 |            |
| Level Of Serv                          |                                                                                               |                 |         |                 |           |        |                |            |          |                 |            |
|                                        | XXXX XXXX                                                                                     |                 |         |                 |           |        |                |            |          |                 | XXXXX      |
| Stopped Del:x                          |                                                                                               | XXXXX<br>*      | ****    |                 | **        | *      | xxxx<br>*      | **         | 8.5<br>A | *               | xxxxx<br>* |
| LOS by Move:                           | * *                                                                                           |                 |         | - LTR           |           |        | - LTR          |            |          | - LTR           |            |
| Movement:<br>Shared Cap.: :            | LT - LTE                                                                                      |                 |         |                 | - KI      |        |                | XXXXX      |          |                 | XXXXX      |
| SharedQueue:x                          | AAAA 3.                                                                                       | XXXXX           |         |                 |           |        |                |            |          |                 | xxxxx      |
| Shrd StpDel:x                          | xxxx 23.4                                                                                     | XXXXX           | xxxxx   | xxxx            | xxxxx     | xxxxx  | xxxx           | xxxxx      |          |                 | xxxxx      |
| Shared LOS:                            | * C                                                                                           | *               | *       | *               | *         | *      | *              | *          | Α        | *               | *          |
| ApproachDel:                           | 23.4                                                                                          | :               | xx      | (XXXX           |           | x      | xxxx           |            | xx       | xxxx            |            |
| ApproachLOS:                           | С                                                                                             |                 |         | *               |           |        | *              |            |          | *               |            |

ApproachLOS: \*

Mammoth Eagle Lodge EIR

Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)

\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 MERIDIAN / MAJESTIC PINES (EAST) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 87.3 Worst Case Level Of Service: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R L - T - R Lanes: -----| Volume Module: Initial Bse: 0 0 0 200 0 55 134 50 0 0 98 180 Added Vol: 0 0 0 56 0 30 57 422 0 0 232 24 In-Process: 0 0 0 0 -13 0 13 13 13 0 0 13 -13 Initial Fut: 0 0 0 243 0 98 204 485 0 0 343 191 PHF Volume: 0 0 0 256 0 103 215 511 0 0 361 201 Reduct Vol: 0 0 0 0 256 0 103 215 511 0 0 361 201 Final Vol.: 0 0 0 256 0 103 215 511 0 0 361 201 Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 6.8 xxxx 6.9 4.1 xxxx xxxxx xxxx xxxx xxxxx FollowUpTim:xxxxx xxxx xxxxx 3.5 xxxx 3.3 2.2 xxxx xxxx xxxxx xxxxx xxxxx \_\_\_\_\_| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 1146 xxxx 281 562 xxxx xxxxx xxxx xxxx xxxxx Potent Cap.: xxxx xxxxx xxxxx 196 xxxx 722 1019 xxxx xxxxx xxxx xxxx xxxxx xxxxx Move Cap.: xxxx xxxx xxxxx 160 xxxx 722 1019 xxxx xxxxx xxxx xxxx xxxxx Volume/Cap: xxxx xxxx xxxx 1.60 xxxx 0.14 0.21 xxxx xxxx xxxx xxxx xxxx -----| Level Of Service Module: LOS by Move: \* \* \* \* \* \* A \* \* \* \* \* Movement: LT - LTR - RT SharedQueue:xxxxx xxxxx xxxxx xxxxx 24.6 xxxxx 0.8 xxxx xxxxx 0.0 xxxx xxxxx Shrd StpDel:xxxxx xxxxx xxxxx xxxxx 395 xxxxx 9.5 xxxx xxxxx 9.0 xxxx xxxxx Shared LOS: \* \* \* \* F \* A \* \* A \* \* ApproachDel: xxxxxx 394.8 xxxxxx xxxxxx

F

Mammoth Eagle Lodge EIR \_\_\_\_\_

Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Intersection #7 MERIDIAN?MAJESTIC PINES (WEST) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Cycle (sec): Critical Vol./Cap. (X): 0.886 100 Loss Time (sec): 0 (Y+R = 4 sec) Average Delay (sec/veh): 23.6 Optimal Cycle: 0 Level Of Service: C

| Optimal Cycle: 0      |         |           |              | Level Of Service: C |        |          |             |         |            |             |           |      |
|-----------------------|---------|-----------|--------------|---------------------|--------|----------|-------------|---------|------------|-------------|-----------|------|
| Approach:             |         |           |              |                     |        |          |             |         |            |             | est Bo    |      |
| Movement:             | L       | - T       | - R          | L                   | - T    | - R      | $\mathbf L$ | - T     | - R        | L -         | - Т       | - R  |
|                       |         | <b></b> - |              |                     |        |          |             | <b></b> |            |             |           |      |
| Control:              | S       | top Si    | ign          | St                  | top S: | ign      | S.          | top S:  | ign<br>ide | St          | op S:     | ign  |
| Rights:               |         | Incl      |              |                     |        |          |             |         |            |             |           |      |
| Min. Green:           | -       | 0         | 0            |                     | 0      | 0        | 0           |         | _          | _           | 0         | 0    |
| Lanes:                |         | 0 1!      |              |                     |        | 0 0      |             |         | 1 0        | 0 1         |           |      |
| Volume Module         | 1       |           |              |                     |        |          |             |         |            |             |           |      |
| Base Vol:             | æ:<br>3 | 1         | 110          | 0                   | 0      | 0        | 0           | 74      | 11         | 74          | 79        | 0    |
| Growth Adj:           |         |           | 1.00         |                     | 1.00   | 1.00     | -           | 1.00    |            | 1.00        |           | 1.00 |
| Initial Bse:          |         |           | 110          | 0                   | 0      | 0        | 0           | 74      |            | 74          | 79        | 0    |
| Added Vol:            | 0       |           | 24           | 479                 | 59     | 0        | 0           | 0       | 0          | 0           | 0         | 71   |
| In-Process:           | 0       |           | 0            | 26                  | 0      | 0        | 0           | 0       | 0          | 0           | 0         | 26   |
| Initial Fut:          |         |           | 134          | 505                 | 59     | 0        | 0           | 74      | 11         | 74          | 79        | 97   |
| User Adj:             |         | 1.00      | 1.00         | 1.00                | 1.00   | 1.00     | 1.00        | 1.00    | 1.00       | 1.00        | 1.00      | 1.00 |
|                       |         | 0.95      | 0.95         | 0.95                | 0.95   | 0.95     | 0.95        | 0.95    | 0.95       | 0.95        | 0.95      | 0.95 |
| PHF Volume:           | 3       | 11        | 141          | 532                 | 62     | 0        | 0           | 78      | 12         | 78          | 83        | 102  |
| Reduct Vol:           | 0       | 0         | 0            | 0                   | 0      | 0        | 0           | 0       | 0          | 0           | 0         | 0    |
| Reduced Vol:          |         |           | 141          | 532                 | 62     | 0        | 0           | 78      |            | 78          | 83        | 102  |
| PCE Adj:              |         |           | 1.00         |                     | 1.00   | 1.00     |             | 1.00    |            | 1.00        |           | 1.00 |
| MLF Adj:              |         | 1.00      | 1.00         |                     | 1.00   | 1.00     |             | 1.00    |            | 1.00        |           | 1.00 |
| Final Vol.:           |         | 11        | 141          | 532                 | 62     |          | 0           |         | 12         |             | 83        | 102  |
|                       |         |           |              |                     |        | <b>-</b> |             |         |            |             | . – – – - |      |
| Saturation F          |         |           |              | 1 00                | 1 00   | 1.00     | 1 00        | 1.00    | 1.00       | 1.00        | 1 00      | 1.00 |
| Adjustment:           |         | 0.07      | 1.00<br>0.91 |                     | 1.00   | 0.00     |             | 0.87    |            |             |           | 1.00 |
| Lanes:<br>Final Sat.: |         |           | 582          |                     | 70     |          | 0.00        |         |            | 243         |           | 580  |
| Final Sat.:           |         |           | . <b>-</b> 1 | 1                   |        |          |             |         |            |             |           |      |
| Capacity Anal         |         |           |              | 1                   |        | 1        | 1           |         | '          | 1           |           | '    |
| Vol/Sat:              |         |           | 0.24         | 0.89                | 0.89   | xxxx     | xxxx        | 0.17    | 0.17       | 0.32        | 0.32      | 0.18 |
| Crit Moves:           |         |           | ****         | ***                 |        |          |             |         | ***        |             | ***       |      |
| Delay/Veh:            | 9.8     | 9.8       | 9.8          | 34.6                | 34.6   | 0.0      | 0.0         | 10.6    | 10.6       | 12.5        |           | 9.8  |
| Delay Adj:            | 1.00    | 1.00      | 1.00         | 1.00                | 1.00   | 1.00     |             | 1.00    | 1.00       | 1.00        |           | 1.00 |
| AdjDel/Veh:           |         |           | 9.8          | 34.6                | 34.6   | 0.0      |             | 10.6    | 10.6       | 12.5        |           | 9.8  |
| LOS by Move:          | Α       |           | Α            | D                   | D      | *        | *           | _       | В          | В           | В         | A    |
| ApproachDel:          |         | 9.8       |              |                     | 34.6   |          |             | 10.6    |            |             | 11.4      |      |
| Delay Adj:            |         | 1.00      |              |                     | 1.00   |          |             | 1.00    |            |             | 1.00      |      |
| ApprAdjDel:           |         | 9.8       |              |                     | 34.6   |          |             | 10.6    |            |             | 11.4      |      |
| LOS by Appr:          |         | A         |              |                     | D      |          |             | В       |            |             | В         |      |
| ******                | ****    | *****     | *****        | *****               | ****   | *****    | ****        |         |            | ~ * * * * * | , x x x x |      |

\_\_\_\_\_\_ Mammoth Eagle Lodge EIR

Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Intersection #8 MERIDIAN/Bus/Auto Drop Off

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

| Average Delay (sec/ve |              | 0.2 Worst Case Level Of Service: A[ 9.0 |                |                  |  |  |  |  |
|-----------------------|--------------|-----------------------------------------|----------------|------------------|--|--|--|--|
| Approach: North       |              | outh Bound                              | East Bound     | West Bound       |  |  |  |  |
| Movement: L - T       |              | - T - R                                 | L - T - R      | L - T - R        |  |  |  |  |
|                       |              |                                         |                |                  |  |  |  |  |
| Control: Stop         | Sign         | Stop Sign                               | Uncontrolled   | Uncontrolled     |  |  |  |  |
| Rights: Inc           | lude         | Include                                 | Include        | Include          |  |  |  |  |
| Lanes: 0 0 1          | ! 0 0 0      |                                         | 1 1            | 0 1 0 1 0        |  |  |  |  |
| l l                   |              |                                         |                |                  |  |  |  |  |
| Volume Module:        |              |                                         |                | 0 150 0          |  |  |  |  |
| Edebo (UL)            | •            | 0 0 0                                   | ·              |                  |  |  |  |  |
| Growth Adj: 1.00 1.0  |              | 0 1.00 1.00                             |                |                  |  |  |  |  |
|                       | •            | 0 0 0                                   |                |                  |  |  |  |  |
| 110000                | •            | 0 0 0                                   |                | •                |  |  |  |  |
| In Hoodbo.            | 0            | 0 0 0                                   | •              |                  |  |  |  |  |
| IIII CIGI I GO.       | •            | 0 0 0                                   |                |                  |  |  |  |  |
| User Adj: 1.00 1.0    |              | 0 1.00 1.00                             |                |                  |  |  |  |  |
| PHF Adj: 0.95 0.9     |              |                                         |                |                  |  |  |  |  |
| 1111 1010             | •            | 0 0 0                                   |                |                  |  |  |  |  |
| MCCCCC VOI.           | 0            | 0 0 0                                   | = -            |                  |  |  |  |  |
|                       | 0 0          | 0 0 0                                   | 25 725 0       | 0 263 201        |  |  |  |  |
| Critical Gap Module:  |              |                                         | 4 1            |                  |  |  |  |  |
| Critical Gp:xxxxx xxx |              |                                         |                | XXXXX XXXX XXXXX |  |  |  |  |
| FollowUpTim:xxxxx xxx | X XXXXX XXXX | x xxxx xxxxx                            | 2.2 xxxx xxxxx | XXXXX XXXX XXXXX |  |  |  |  |
|                       |              |                                         |                |                  |  |  |  |  |
| Capacity Module:      |              |                                         | 464 xxxx xxxxx | xxxx xxxx xxxxx  |  |  |  |  |
| Cnflict Vol: xxxx xxx |              |                                         |                |                  |  |  |  |  |
| Potent Cap.: xxxx xxx |              | x xxxx xxxxx<br>x xxxx                  |                |                  |  |  |  |  |
| Move Cap.: xxxx xxx   |              | x xxxx xxxxx<br>x xxxx xxxx             |                |                  |  |  |  |  |
| Volume/Cap: xxxx xxx  |              |                                         |                |                  |  |  |  |  |
| Level Of Service Modu |              |                                         | 1 1            | 1 1              |  |  |  |  |
| <b></b>               | X XXXXX XXXX | v xxxx xxxxx                            | 0.1 xxxx xxxxx | xxxxx xxxx xxxxx |  |  |  |  |
| Stopped Del:xxxxx xxx |              |                                         | •              | xxxxx xxxx xxxxx |  |  |  |  |
| LOS by Move: * *      |              | * *                                     | Δ * *          | * * *            |  |  |  |  |
| Movement: LT - LT     |              | - LTR - RT                              | LT - LTR - RT  | LT - LTR - RT    |  |  |  |  |
|                       | 0 xxxxx xxx  |                                         |                |                  |  |  |  |  |
| SharedQueue:xxxxx xxx |              |                                         |                |                  |  |  |  |  |
| Shrd StpDel:xxxxx xxx |              |                                         |                |                  |  |  |  |  |
| Shared LOS: * *       |              | * *                                     | A * *          | A * *            |  |  |  |  |
| ApproachDel: xxxxx    | x :          | xxxxxx                                  | xxxxxx         | xxxxxx           |  |  |  |  |
| ApproachLOS: *        |              | *                                       | *              | *                |  |  |  |  |

Mammoth Eagle Lodge EIR

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #9 Majestic/Hotel Out

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.8 Worst Case Level Of Service: B[ 10.7] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_ Volume Module: 0 255 Initial Bse: 0 0 0 0 0 0 0 314 0 0 255
Added Vol: 0 0 56 0 0 0 0 0 0 0 0 81
In-Process: 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 0 0 56 0 0 0 0 344 0 0 336 PHF Volume: 0 0 59 0 0 0 0 362 0 0 354 0 Reduct Vol: 0 0 0 59 0 0 0 0 362 0 0 354 0 Final Vol.: 0 0 59 0 0 0 0 362 0 0 354 0 Reduct Vol: 0 0 0 Final Vol.: 0 0 59 Critical Gap Module: \_\_\_\_\_| Capacity Module: \_\_\_\_\_| Level Of Service Module: 

\*

В

ApproachLOS:

### Mammoth Eagle Lodge EIR

\_\_\_\_\_\_\_\_\_\_\_ Level Of Service Computation Report

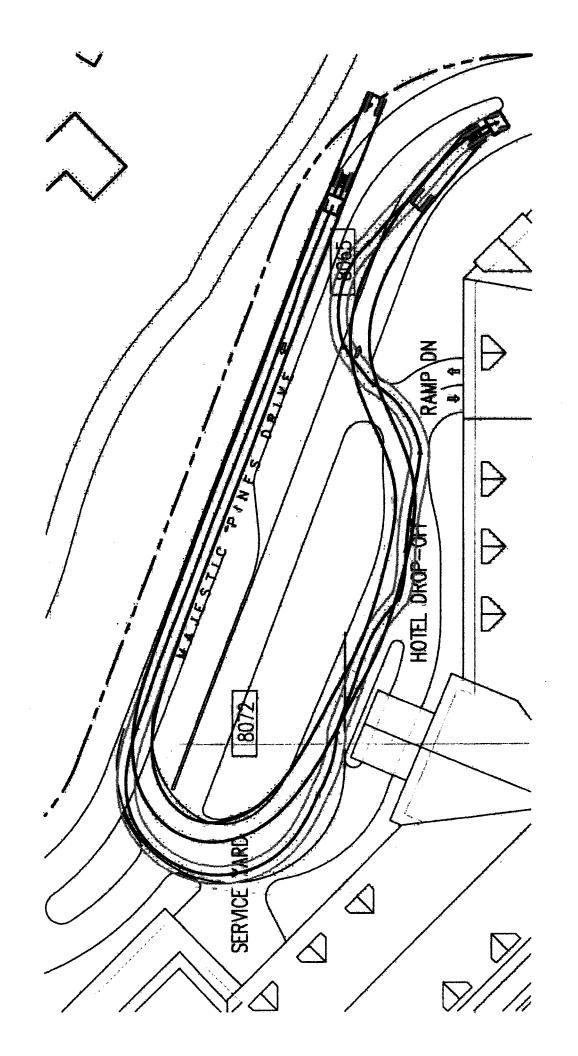
### 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #10 Majestic/Hotel In

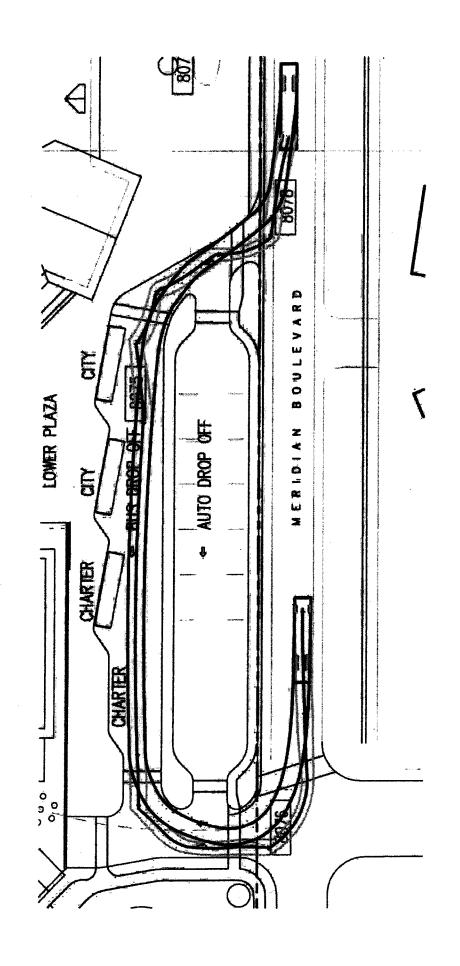
\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.3 Worst Case Level Of Service: A[ 8.0] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 

\_\_\_\_\_\_|\_\_\_\_|\_\_\_\_\_| Volume Module: 0 314 0 255

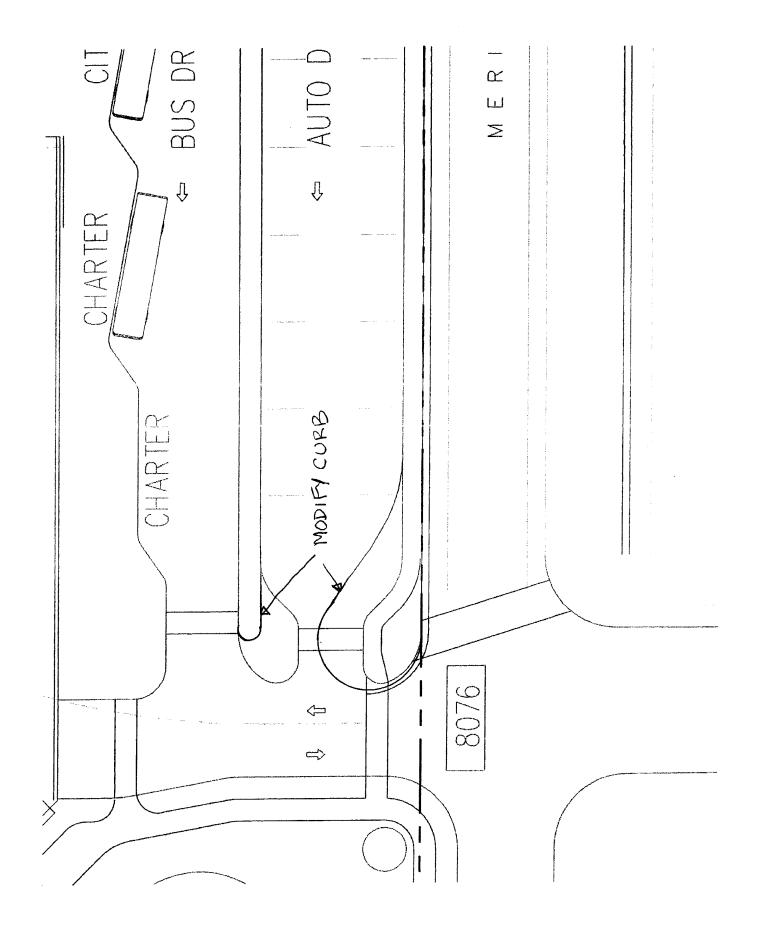
Initial Bse: 0 0 0 0 0 0 0 314 0 0 255
Added Vol: 0 0 0 0 0 0 0 0 30 1 24 57
In-Process: 0 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 0 0 0 0 0 0 0 344 1 24 312 PHF Volume: 0 0 0 0 0 0 0 362 1 25 328 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Final Vol.: 0 0 0 0 0 0 0 362 1 25 328 0

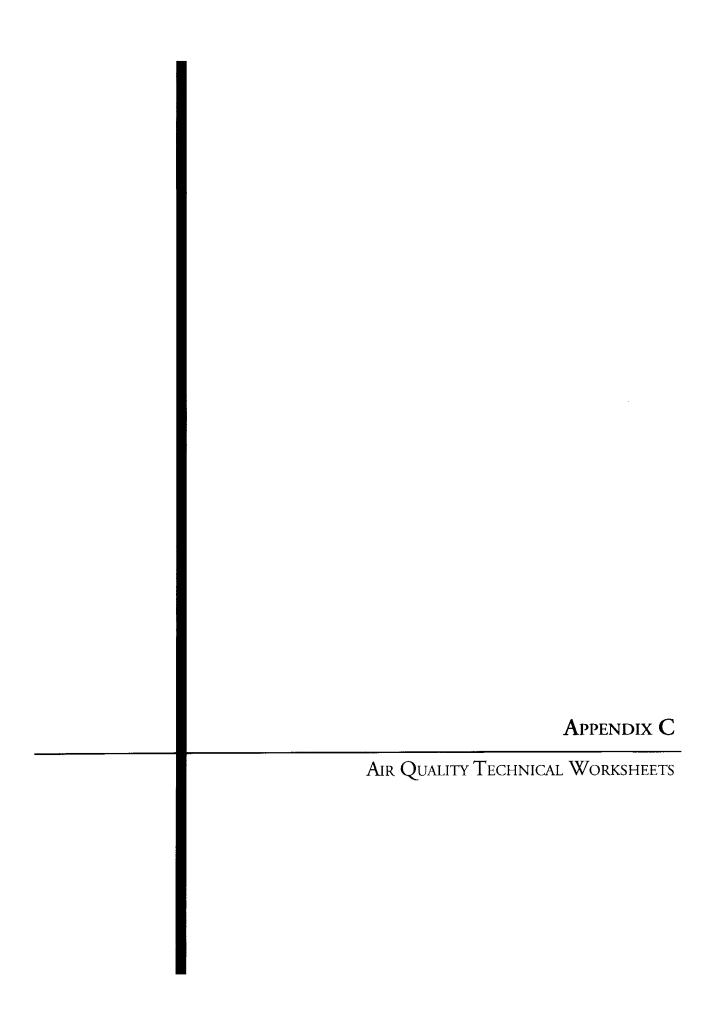
Critical Gap Module: \_\_\_\_\_|


Capacity Module: 


\_\_\_\_\_\_|\_\_|\_\_|\_\_| Level Of Service Module:

A \* \* LT - LTR - RT 


ApproachDel: xxxxxx xxxxxx \* \* ApproachLOS:


## Appendix C Truck Circulation Analysis





## Appendix D Modify Curb Improvement





# **Eagle Lodge**

## Draft Environmental Impact Report

Air Quality Assessment Files

Provided by PCR Services Corporation

September 2006

| C-1 | Project Construction Emissions     |
|-----|------------------------------------|
| C-2 | <b>Project Operation Emissions</b> |
| C-3 | Alternatives Operation Emissions   |

# Appendix C-1

- Construction Emissions Inventory
  - Regional Construction Emissions
    - o URBEMIS2002 Output Files

### Eagle Lodge-URBEMIS Outputs (Construction)

URBEMIS 2002 For Windows 8.7.0 File Name: V:\AQNOI SE DIVISIO N\Active Pr ojects\Eag le Lodge\C onstructio n\Construction (090507).urb Project Name: Eagle Lo dge Constr uction (Max Day) Project Location: Mountain Counties and Rural C On-Road Motor Vehicle Emissions Based on EMFAC2002 ounties On-Road Motor Vehicle Emissions Based on version 2. DETAIL REPORT (Tons/ Year) "ry, 2007" Construction Start Month and Ye ar: Janua Construction Duration: 24 cres Total Land Use Area to be Devel oped: 4 a Maximum Acreage Disturbed Per D ay: 4 acr es Single Family Units: 21 Multi-F amily Uni ts: 62 Retail/Office/Institutional/Ind ustrial S quare Foot age: 88000 CONSTRUCTION EMISSION ESTIMATES MITIGATE D (tons/ye ar) PM10 CO TOTAL HAUST DUST Source ROG NOxSO 2 EX \*\*\* 2007\*\*\* Phase 1 - Demolition Emissions Fugitive Dust - - Off-Road Diesel 0.05 0.09 0.09 0.05 0.29 0.42 0.01 0.01 0 On-Road Diesel 0.02 0.31 0.06 0 0.01 0.01 0 Worker Trips 0 0 Total tons/year 0.07 0.02 0 0 0 Total tons/year 0.6 0.5 0 0.11 0.02 0.09 Phase 2 - Site Grading Emission s Fugitive Dust - - - - Off-Road Diesel 1.26 8. 4.11 4.11 8.6 10.06 0.34 0.34 On-Road Diesel 0.06 1.15 0 0.03 0.22 0.03 Ω Worker Trips 0.01 0 0.06 10.34 9.75 0 4.48 0.37 Total tons/year 1.33 4.11 Phase 3 - Building Construction Bldg Const Off-Road Diesel 0.14 0.96 1.05 0.04 0.04 0 Bldg Const Worker Trips 0.01 0.01 0.13 0 0 0 0 Arch Coatings Off-Gas 0 Arch Coatings Worker Trips 0 0 Asphalt Off-Gas 0 -Asphalt Off-Road Diesel 0 0 0 Asphalt On-Road Diesel 0 Asphalt Worker Trips 0 0 Ω Ω Ω Ω 0 0 0 0 Ω Ω Total tons/year 0.15 0.97 1.18 0 0.04 0.04 0 Total all phases tons/yr 1.55 11.32 12.02 0 4.63 0.43 4.2 \*\*\* 2008\*\*\* Phase 1 - Demolition Emissions Fugitive Dust - - Off-Road Diesel 0 0 0 0 0 0 0 0 On-Road Diesel 0 0
Worker Trips 0 0
Total tons/year 0 Ω Ω 0 0 Ω Λ Ω Ω Ω 0 0 Total tons/year 0 0 0 Phase 2 - Site Grading Emission Fugitive Dust - - -0 0 Off-Road Diesel 0 0 0 0 0 0 On-Road Diesel 0 0
Worker Trips 0 0
Total tong/year 0 0 0 0 0 0 0 0 0 0 Total tons/year 0 0 0 Phase 3 - Building Construction 5.54 Bldg Const Off-Road Diesel 0.81 6.42 0.22 0.22 Ω Bldg Const Worker Trips 0.05 0.03 0.66 0 0.02 0 0.02

Arch Coatings Off-Gas 3.89

## Eagle Lodge-URBEMIS Outputs (Construction)

```
Arch Coatings Worker Trips
                            0.03
                                   0.02
                                          0.33
                                                        0.01
                                                                      0.01
Asphalt Off-Gas 0
Asphalt Off-Road Diesel
                            0.18
                                   1.3
                                                        0.06
                                                               0.06
                                                                       0
Asphalt On-Road Diesel 0
                            0
                                                 0
                                   0
                                          0
                                                        0
                                                               0
                                   0.02
Asphalt Worker Trips 0
                            0
                                          0
                                                 0
                                                        0
                                                               0
Total tons/year
                    4.96
                            6.89
                                   8.81
                                          0
                                                 0.31
                                                        0.28
                                                               0.03
Total all phases tons/yr
                            4.96
                                   6.89
                                          8.81
                                                        0.31
                                                               0.28
                                                                       0.03
Construction-Related Mitigation
                                   Measures
Phase 2: Soil Disturbance: App
                                   ly water
                                                 to exposed
                                                               surfaces 2
                                                                              x daily
Percent Reduction(ROG 0.0% N Ox 0.0% C O 0.0% SO2
                                                        0.0% PM10
                                                                      50%)
Phase 1 - Demolition Assumption
                                   s
                                   an '07
Start Month/Year for Phase 1: J
Phase 1 Duration: 1 months
Building Volume Total (cubic fe
                                   et): 7875
Building Volume Daily (cubic fe
                                   et): 1968
On-Road Truck Travel (VMT): 109
Off-Road Equipment
                                    Lo ad Factor
No. Type
                    Horse power
                                                        Hours/ Day
                                   0
1
    Excavators
                            18
                                          0.58 8
2
    Rubber Tired Loaders
                                   16
                                          5
                                                 0.465
Phase 2 - Site Grading Assumpti
Start Month/Year for Phase 2: F
                                   eb '07
Phase 2 Duration: 9 months
On-Road Truck Travel (VMT): 461
                                   0.23087098
Off-Road Equipment
      Type
                                          ad Factor
                                                        Hours/ Day
                     Horse
                            power
                                    Lo
                                   0.43
1
    Cranes
                    19
                            0
                                          8
1
    Excavators
                            18
                                   0
                                          0.58
1
    Graders
                    17
                            4
                                   0.575
                                          8
1
    Other Equipment
                            19
                                   0
                                          0.62
    Rubber Tired Dozers
                                                 0.59
                                   35
                                          2
                                          5
                                                 0.465
1
    Rubber Tired Loaders
                                                        8
                                   16
    Tractor/Loaders/Backh
                           oes
                                   7
                                          9
                                                 0.465
Phase 3 - Building Construction
                                 Assumpti
Start Month/Year for Phase 3: N
                                  ov '07
Phase 3 Duration: 14 months
Start Month/Year for SubPhase Building
                                          : Nov '07
SubPhase Building Duration: 1 4 months
Off-Road Equipment
No. Type
                                                        Hours/ Day
                                          ad Factor
                     Horse power
                                    Lo
    Excavators
                     18 0
                                          0.58 8
1
                                          2
    Rubber Tired Dozers
                                   35
                                                 0.59
                                                        8
    Tractor/Loaders/Backh
                          oes
                                   7
                                                 0.465
                                                        8
Start Month/Year for SubPhase Architec
                                          tural Coat
                                                        ings: Jul '
SubPhase Architectural Coatin gs Durati
                                          on: 6 mont
Start Month/Year for SubPhase Asphalt:
                                          Jul '08
SubPhase Asphalt Duration: 6 months
Acres to be Paved: 0.5
Off-Road Equipment
No. Type
                     Horse
                           power
                                   Lo
                                          ad Factor
                                                        Hours/ Day
2
    Paving Equipment
                            11
                                   1
                                          0.53 8
                                   7
                                                 0.465
    Tractor/Loaders/Backh
                            oes
                                          9
```

## Appendix C-2

- Operation Emissions Inventory
  - Regional Operation Emissions
    - o Regional Emission Summary Sheet
    - o Stationary Source Emissions
    - o Area Source Emissions
    - o URBEMIS2002 Output Files
  - Local Operation Emissions (CO Hotspots)
    - o One-hour CO Summary Sheet
    - o Eight-hour CO Summary Sheet
    - o CALINE4 Output Files
    - o EMFAC2002 Emission Rates
  - Local Operation Emissions (PM<sub>10</sub> Hotspots)
    - o GBUAPCD PM<sub>10</sub> Hotspot Spreadsheet Model

## Eagle Lodge (Hotel Option)

## Regional Emission Calculations (tons/year)

|                             | CO   | NOx  | PM10 | ROC  | SOx  |
|-----------------------------|------|------|------|------|------|
| Existing                    |      |      |      |      |      |
| Mobile                      | 25.3 | 3.4  | 2.5  | 2.1  | <0.1 |
| Area                        | 0.2  | <0.1 | <0.1 | <0.1 | <0.1 |
| Stationary                  | <0.1 | <0.1 | 0.4  | <0.1 | <0.1 |
| Total Existing              | 25.5 | 3.5  | 2.9  | 2.1  | <0.1 |
| Project (Winter Operations) |      |      |      |      |      |
| Mobile                      | 51.3 | 7.1  | 6.4  | 4.2  | <0.1 |
| Area                        | 2.4  | 0.5  | 0.3  | 1.8  | <0.1 |
| Stationary                  | 0.4  | <0.1 | 2.4  | <0.1 | 0.2  |
| Project (Summer Operations) |      |      |      |      |      |
| Mobile                      | 48.2 | 6.6  | 6.0  | 4.0  | <0.1 |
| Area                        | 0.5  | 0.4  | <0.1 | 0.4  | <0.1 |
| Stationary                  | 0.4  | <0.1 | 2.4  | <0.1 | 0.2  |
| Net Project                 |      |      |      |      |      |
| Net Mobile                  | 74.3 | 10.3 | 9.9  | 6.2  | <1   |
| Net Area                    | 2.8  | <1   | <1   | 2.1  | <1   |
| Net Stationary              | <1   | <1   | 4.3  | <1   | <1   |
| Total Net                   | 77.8 | 11.2 | 14.5 | 8.4  | 0.5  |

## **Electricity Usage**

|             |                    | Electricity             |            |                 |            | Emission I   | Factors (lbs | /MWh) <sup>b</sup> |             |
|-------------|--------------------|-------------------------|------------|-----------------|------------|--------------|--------------|--------------------|-------------|
|             |                    | Usage Rate <sup>a</sup> | Total El   | ectricity Usage | СО         | ROC          | NOx          | PM10               | SOx         |
| Land Use    | 1,000 Sqft         | (kWh\sq.ft\yr)          | (KWh\year) | (MWh\Day)       | <u>0.2</u> | <u>0.01</u>  | <u>1.15</u>  | <u>0.04</u>        | <u>0.12</u> |
| Existing    |                    |                         |            |                 | Emission   | ns from Elec | tricity Cons | umption (lb        | s/day)      |
| Retail      | 0.6                | 13.55                   | 8,130      | 0.022           | 0.004      | 0.000        | 0.026        | 0.001              | 0.003       |
| Hotel/Motel | 12.0               | 9.95                    | 119,400    | 0.327           | 0.065      | 0.003        | 0.376        | 0.013              | 0.039       |
|             | Total Existing     |                         | 127,530    | 0.349           | 0.07       | 0.00         | 0.40         | 0.01               | 0.04        |
| Project     |                    |                         |            |                 |            |              |              |                    |             |
| Hotel/Motel | 88.1               | 9.95                    | 876,595    | 2.402           | 0.480      | 0.024        | 2.762        | 0.096              | 0.288       |
|             | Total Project      |                         | 876,595    | 2.402           | 0.48       | 0.02         | 2.76         | 0.10               | 0.29        |
|             | Net Emissions From | Electricity Usage       |            |                 | 0.41       | 0.02         | 2.36         | 0.08               | 0.25        |

## **Summary of Stationary Emissions**

|                                    | <u>co</u> | ROC  | <u>NOx</u> | <u>PM10</u> | <u>SOx</u> |
|------------------------------------|-----------|------|------------|-------------|------------|
| Total Existing Emissions (lbs/day) | 0.07      | 0.00 | 0.40       | 0.01        | 0.04       |
| Total Project Emissions (lbs/day)  | 0.48      | 0.02 | 2.76       | 0.10        | 0.29       |
| Total Net Emissions (lbs/day)      | 0.41      | 0.02 | 2.36       | 0.08        | 0.25       |

<sup>&</sup>lt;sup>a</sup> Electricity Usage Rates from Table A9-11-A, <u>CEQA Air Quality Handbook</u>, SCAQMD, 1993.

<sup>&</sup>lt;sup>b</sup> Emission Factors from Table A9-11-B, <u>CEQA Air Quality Handbook</u>, SCAQMD, 1993.

## Operations - Existing.doc

07/17/2006 1:49 PM

URBEMIS 2002 For Windows 8.7.0

File Name: V:\AQNOISE DIVISION\Active Projects\Eagle

Lodge\Operations\Operations (Existing).urb

Project Name: Eagle Lodge Operations Existing Use
Project Location: Mountain Counties and Rural Counties
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

| AREA SOURCE EMISSION ESTIMATES | (Tons per | Year, | Unmitigated) |      |      |
|--------------------------------|-----------|-------|--------------|------|------|
| Source                         | ROG       | NOx   | CO           | SO2  | PM10 |
| Natural Gas                    | 0.00      | 0.03  | 0.02         | 0.00 | 0.00 |
| Hearth                         | 0.00      | 0.00  | 0.00         | 0.00 | 0.00 |
| Landscaping                    | 0.02      | 0.00  | 0.14         | 0.00 | 0.00 |
| Consumer Prdcts                | 0.00      | -     | =            | -    | =-   |
| Architectural Coatings         | 0.01      | -     | =            | -    | _    |
| TOTALS (tpy, unmitigated)      | 0.04      | 0.03  | 0.16         | 0.00 | 0.00 |
|                                |           |       |              |      |      |
|                                |           |       |              |      |      |

#### UNMITIGATED OPERATIONAL EMISSIONS

|                           | ROG  | NOx  | CO    | SO2  | PM10 |
|---------------------------|------|------|-------|------|------|
| Hotel                     | 2.05 | 3.44 | 25.25 | 0.02 | 2.47 |
| Convenience market (24 ho | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 |
| TOTAL EMISSIONS (tons/yr) | 2.05 | 3.44 | 25.25 | 0.02 | 2.47 |

Does not include correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2006 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

| Unit Type                          | Acreage | Trip | Rate                     |   | No.<br>Units  | Total<br>Trips |
|------------------------------------|---------|------|--------------------------|---|---------------|----------------|
| Hotel<br>Convenience market (24 ho |         |      | trips/1000<br>trips/1000 | _ | 12.00<br>0.60 | 1,272.50       |

Sum of Total Trips 1,272.50
Total Vehicle Miles Traveled 8,913.87

Vehicle Assumptions:

Fleet Mix:

| Vehicle Type             | Percent Type | Non-Catalyst | Catalyst | Diesel |
|--------------------------|--------------|--------------|----------|--------|
| Light Auto               | 55.60        | 2.20         | 97.30    | 0.50   |
| Light Truck < 3,750 lb   | s 15.10      | 4.00         | 93.40    | 2.60   |
| Light Truck 3,751- 5,75  | 0 15.90      | 1.90         | 96.90    | 1.20   |
| Med Truck 5,751-8,50     | 0 7.00       | 1.40         | 95.70    | 2.90   |
| Lite-Heavy 8,501-10,00   | 0 1.10       | 0.00         | 81.80    | 18.20  |
| Lite-Heavy 10,001-14,00  | 0 0.30       | 0.00         | 66.70    | 33.30  |
| Med-Heavy 14,001-33,00   | 0 1.00       | 10.00        | 20.00    | 70.00  |
| Heavy-Heavy 33,001-60,00 | 0 0.90       | 0.00         | 11.10    | 88.90  |
| Line Haul > 60,000 lb    | s 0.00       | 0.00         | 0.00     | 100.00 |
| Urban Bus                | 0.10         | 0.00         | 0.00     | 100.00 |
| Motorcycle               | 1.70         | 82.40        | 17.60    | 0.00   |
| School Bus               | 0.10         | 0.00         | 0.00     | 100.00 |
| Motor Home               | 1.20         | 0.00         | 91.70    | 8.30   |

## Operations - Existing.doc

#### Travel Conditions

|                                       | Residential |       |       | Commercial |          |          |  |
|---------------------------------------|-------------|-------|-------|------------|----------|----------|--|
|                                       | Home-       | Home- | Home- |            |          |          |  |
|                                       | Work        | Shop  | Other | Commute    | Non-Work | Customer |  |
| Urban Trip Length (miles)             | 10.8        | 7.3   | 7.5   | 9.5        | 7.4      | 7.4      |  |
| Rural Trip Length (miles)             | 16.8        | 7.1   | 7.9   | 14.7       | 6.6      | 6.6      |  |
| Trip Speeds (mph)                     | 35.0        | 35.0  | 35.0  | 35.0       | 35.0     | 35.0     |  |
| % of Trips - Residential              | 32.9        | 18.0  | 49.1  |            |          |          |  |
| % of Trips - Commercial (by land use) |             |       |       |            |          |          |  |
| Hotel                                 |             |       |       | 5.0        | 2.5      | 92.5     |  |
| Convenience market (24 ho             | ur)         |       |       | 2.0        | 1.0      | 97.0     |  |

Changes made to the default values for Land Use Trip Percentages

```
The Primary Trip % for City park changed from 70 to 100 The Diverted Trip % for City park changed from 25 to 0 The Pass-By Trip % for City park changed from 5 to 0 The Primary Trip % for Quality resturant changed from 50 to 100 The Diverted Trip % for Quality resturant changed from 40 to 0 The Pass-By Trip % for Quality resturant changed from 10 to 0
```

Changes made to the default values for Area

The landscape year changed from 2005 to 2006.

Changes made to the default values for Operations

The operational emission year changed from 2005 to 2006. The operational winter selection item changed from  $\,$  2 to 1. The operational summer temperature changed from  $\,$  60 to 70.

## Operations - Hotel Option (Winter).doc

07/17/2006 3:38 PM

URBEMIS 2002 For Windows 8.7.0

File Name: V:\AQNOISE DIVISION\Active Projects\Eagle

Lodge\Operations\Operations (Winter) - 2009.urb

Project Name: Eagle Lodge Operations (Winter) - 2009
Project Location: Mountain Counties and Rural Counties
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

| AREA SOURCE EMISSION ESTIMATES Source Natural Gas Hearth Landscaping Consumer Prdcts Architectural Coatings TOTALS (tpy, unmitigated) | (Tons per<br>ROG<br>0.07<br>1.93<br>0.07<br>0.74<br>0.77<br>3.59 | Year,<br>NOx<br>1.00<br>0.05<br>0.00 | Unmitigated) CO 0.79 3.53 0.48 4.79 | SO2<br>0.00<br>0.01<br>0.00<br>-<br>-<br>0.01 | PM10<br>0.00<br>0.53<br>0.00<br>-<br>-<br>0.53 |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------------------|------------------------------------------------|
| UNMITIGATED OPER                                                                                                                      | RATIONAL E                                                       | MISSION                              | IS                                  |                                               |                                                |
|                                                                                                                                       | Dog                                                              | 370                                  | go.                                 | 202                                           | DM1.0                                          |
|                                                                                                                                       | ROG                                                              | NOx                                  | CO                                  | SO2                                           | PM10                                           |
| Fireplace Emissions (assu                                                                                                             | 0.03                                                             | 0.00                                 | 0.00                                | 0.00                                          | 0.00                                           |
| Conference Room                                                                                                                       | 0.26                                                             | 0.33                                 | 2.42                                | 0.00                                          | 0.30                                           |
| Base Lodge Employee Trips                                                                                                             | 0.55                                                             | 0.95                                 | 6.78                                | 0.01                                          | 0.91                                           |
| Day Spa                                                                                                                               | 0.21                                                             | 0.36                                 | 2.61                                | 0.00                                          | 0.32                                           |
| Ice Rink                                                                                                                              | 0.25                                                             | 0.43                                 | 3.12                                | 0.00                                          | 0.39                                           |
| High turnover (sit-down)                                                                                                              | 0.77                                                             | 1.21                                 | 8.77                                | 0.01                                          | 1.09                                           |
| Hotel                                                                                                                                 | 2.20                                                             | 3.66                                 | 26.60                               | 0.02                                          | 3.30                                           |
| Convenience market (24 ho                                                                                                             | 4.20                                                             | 7.19                                 | 52.24                               | 0.04                                          | 6.46                                           |

TOTAL EMISSIONS (tons/yr) 8.46 14.14 102.54 0.07 12.78

Does not include correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2009 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

| Unit Type                 | Acreage | Trip  | Rate               | No.<br>Units | Total<br>Trips |
|---------------------------|---------|-------|--------------------|--------------|----------------|
| Fireplace Emissions (assu | 1.30    | 0.00  | trips/dwelling uni | t 83.00      | 0.00           |
| Conference Room           |         | 0.80  | trips/people       | 200.00       | 160.00         |
| Base Lodge Employee Trips |         | 1.83  | trips/employees    | 122.00       | 223.26         |
| Day Spa                   |         | 20.87 | trips/1000 sq. ft. | 8.00         | 166.96         |
| Ice Rink                  |         | 39.93 | trips/1000 sq. ft. | 5.00         | 199.65         |
| High turnover (sit-down)  |         | 2.81  | trips/seats        | 200.00       | 562.00         |
| Hotel                     |         | 8.00  | trips/rooms        | 213.00       | 1,704.00       |
| Convenience market (24 ho | 8       | 63.10 | trips/1000 sq. ft. | 4.00         | 3,452.40       |

Sum of Total Trips 6,468.27 Total Vehicle Miles Traveled 46,150.40

## Operations - Hotel Option (Winter).doc

#### Vehicle Assumptions:

#### Fleet Mix:

| Vehicle Type             | Percent Type | Non-Catalyst | Catalyst | Diesel |
|--------------------------|--------------|--------------|----------|--------|
| Light Auto               | 54.90        | 1.30         | 98.40    | 0.30   |
| Light Truck < 3,750 lb   | s 15.10      | 2.60         | 95.40    | 2.00   |
| Light Truck 3,751- 5,75  | 0 16.10      | 1.20         | 98.10    | 0.70   |
| Med Truck 5,751-8,50     | 0 7.30       | 1.40         | 95.90    | 2.70   |
| Lite-Heavy 8,501-10,00   | 0 1.10       | 0.00         | 81.80    | 18.20  |
| Lite-Heavy 10,001-14,00  | 0 0.30       | 0.00         | 66.70    | 33.30  |
| Med-Heavy 14,001-33,00   | 0 1.00       | 0.00         | 20.00    | 80.00  |
| Heavy-Heavy 33,001-60,00 | 0 0.90       | 0.00         | 11.10    | 88.90  |
| Line Haul > 60,000 lb    | s 0.00       | 0.00         | 0.00     | 100.00 |
| Urban Bus                | 0.20         | 0.00         | 50.00    | 50.00  |
| Motorcycle               | 1.60         | 75.00        | 25.00    | 0.00   |
| School Bus               | 0.10         | 0.00         | 0.00     | 100.00 |
| Motor Home               | 1.40         | 7.10         | 85.70    | 7.20   |

#### Travel Conditions

| Traver conditions         | Residential |       |       | Commercial |          |          |
|---------------------------|-------------|-------|-------|------------|----------|----------|
|                           | Home-       | Home- | Home- |            |          |          |
|                           | Work        | Shop  | Other | Commute    | Non-Work | Customer |
| Urban Trip Length (miles) | 10.8        | 7.3   | 7.5   | 9.5        | 7.4      | 7.4      |
| Rural Trip Length (miles) | 16.8        | 7.1   | 7.9   | 14.7       | 6.6      | 6.6      |
| Trip Speeds (mph)         | 35.0        | 35.0  | 35.0  | 35.0       | 35.0     | 35.0     |
| % of Trips - Residential  | 32.9        | 18.0  | 49.1  |            |          |          |
| % of Trips - Commercial ( | by land     | use)  |       |            |          |          |
| Conference Room           |             |       |       | 2.0        | 1.0      | 97.0     |
| Base Lodge Employee Trips |             |       |       | 100.0      | 0.0      | 0.0      |
| Day Spa                   |             |       |       | 5.0        | 2.5      | 92.5     |
| Ice Rink                  |             |       |       | 5.0        | 2.5      | 92.5     |
| High turnover (sit-down)  | rest.       |       |       | 5.0        | 2.5      | 92.5     |
| Hotel                     |             |       |       | 5.0        | 2.5      | 92.5     |
| Convenience market (24 ho | ur)         |       |       | 2.0        | 1.0      | 97.0     |

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Condominium/townhouse high rise have changed from the defaults 5.26/1.3 to 0/1.3

The Primary Trip % for City park changed from 70 to 100

The Diverted Trip % for City park changed from 25 to 0

The Pass-By Trip % for City park changed from 5 to 0

The Primary Trip % for Quality resturant changed from 50 to 100

The Diverted Trip % for Quality resturant changed from 40 to 0

The Pass-By Trip % for Quality resturant changed from 10 to 0

Changes made to the default values for  $\ensuremath{\mathsf{Area}}$ 

The landscape year changed from 2005 to 2009.

Changes made to the default values for Operations

The operational emission year changed from 2005 to 2009. The operational winter selection item changed from  $\,$  2 to 1. The operational summer temperature changed from  $\,$  60 to 70.

## Operations - Hotel Option (Summer).doc

07/17/2006 1:51 PM

URBEMIS 2002 For Windows 8.7.0

File Name: V:\AQNOISE DIVISION\Active Projects\Eagle

 ${\tt Lodge \backslash Operations \backslash Operations \ (Summer) - 2009.urb}$ 

Project Name: Eagle Lodge Operations (Summer) - 2009
Project Location: Mountain Counties and Rural Counties
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

| AREA SOURCE EMISSION ESTIMATES | (Tons per | Year, | Unmitigated) |      |      |
|--------------------------------|-----------|-------|--------------|------|------|
| Source                         | ROG       | NOx   | CO           | SO2  | PM10 |
| Natural Gas                    | 0.06      | 0.87  | 0.73         | 0.00 | 0.00 |
| Hearth                         | 0.00      | 0.00  | 0.00         | 0.00 | 0.00 |
| Landscaping                    | 0.05      | 0.00  | 0.36         | 0.00 | 0.00 |
| Consumer Prdcts                | 0.00      | _     | -            | -    | -    |
| Architectural Coatings         | 0.59      | -     | -            | _    | -    |
| TOTALS (tpy, unmitigated)      | 0.70      | 0.87  | 1.09         | 0.00 | 0.00 |
|                                |           |       |              |      |      |

#### UNMITIGATED OPERATIONAL EMISSIONS

|                           | ROG  | NOx   | CO    | SO2  | PM10  |
|---------------------------|------|-------|-------|------|-------|
| Conference Room           | 0.45 | 0.67  | 4.84  | 0.00 | 0.60  |
| Mountain Biking Employees | 0.11 | 0.20  | 1.40  | 0.00 | 0.19  |
| Day Spa                   | 0.21 | 0.36  | 2.61  | 0.00 | 0.32  |
| High turnover (sit-down)  | 0.77 | 1.21  | 8.77  | 0.01 | 1.09  |
| Hotel                     | 2.20 | 3.66  | 26.60 | 0.02 | 3.30  |
| Convenience market (24 ho | 4.20 | 7.19  | 52.24 | 0.04 | 6.46  |
| TOTAL EMISSIONS (tons/yr) | 7.94 | 13.29 | 96.46 | 0.07 | 11.97 |

Does not include correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2009 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

| Unit Type                                                                                                                 | Acreage | Trip                          | Rate                                                                                                      | No.<br>Units | Total<br>Trips                                              |
|---------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------|-----------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------|
| Conference Room<br>Mountain Biking Employees<br>Day Spa<br>High turnover (sit-down)<br>Hotel<br>Convenience market (24 ho |         | 1.84<br>20.87<br>2.81<br>8.00 | trips/people<br>trips/employees<br>trips/1000 sq. ft.<br>trips/seats<br>trips/rooms<br>trips/1000 sq. ft. |              | 320.00<br>46.00<br>166.96<br>562.00<br>1,704.00<br>3,452.40 |

Sum of Total Trips 6,251.36 Total Vehicle Miles Traveled 43,228.05

## Operations - Hotel Option (Summer).doc

#### Vehicle Assumptions:

#### Fleet Mix:

| Vehicle Type             | Percent Type | Non-Catalyst | Catalyst | Diesel |
|--------------------------|--------------|--------------|----------|--------|
| Light Auto               | 54.90        | 1.30         | 98.40    | 0.30   |
| Light Truck < 3,750 lk   | s 15.10      | 2.60         | 95.40    | 2.00   |
| Light Truck 3,751- 5,75  | 0 16.10      | 1.20         | 98.10    | 0.70   |
| Med Truck 5,751-8,50     | 0 7.30       | 1.40         | 95.90    | 2.70   |
| Lite-Heavy 8,501-10,00   | 0 1.10       | 0.00         | 81.80    | 18.20  |
| Lite-Heavy 10,001-14,00  | 0 0.30       | 0.00         | 66.70    | 33.30  |
| Med-Heavy 14,001-33,00   | 0 1.00       | 0.00         | 20.00    | 80.00  |
| Heavy-Heavy 33,001-60,00 | 0 0.90       | 0.00         | 11.10    | 88.90  |
| Line Haul > 60,000 lk    | os 0.00      | 0.00         | 0.00     | 100.00 |
| Urban Bus                | 0.20         | 0.00         | 50.00    | 50.00  |
| Motorcycle               | 1.60         | 75.00        | 25.00    | 0.00   |
| School Bus               | 0.10         | 0.00         | 0.00     | 100.00 |
| Motor Home               | 1.40         | 7.10         | 85.70    | 7.20   |

#### Travel Conditions

|         | Pacidential                     |                                                                             | Commercial                                                                                             |                                                                                                                                                             |                                                                                                                                                                                             |  |
|---------|---------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| TT      |                                 | TT a a                                                                      |                                                                                                        | Commercia.                                                                                                                                                  | L                                                                                                                                                                                           |  |
|         |                                 |                                                                             |                                                                                                        |                                                                                                                                                             |                                                                                                                                                                                             |  |
| Work    | Shop                            | Other                                                                       | Commute                                                                                                | Non-Work                                                                                                                                                    | Customer                                                                                                                                                                                    |  |
| 10.8    | 7.3                             | 7.5                                                                         | 9.5                                                                                                    | 7.4                                                                                                                                                         | 7.4                                                                                                                                                                                         |  |
| 16.8    | 7.1                             | 7.9                                                                         | 14.7                                                                                                   | 6.6                                                                                                                                                         | 6.6                                                                                                                                                                                         |  |
| 35.0    | 35.0                            | 35.0                                                                        | 35.0                                                                                                   | 35.0                                                                                                                                                        | 35.0                                                                                                                                                                                        |  |
| 32.9    | 18.0                            | 49.1                                                                        |                                                                                                        |                                                                                                                                                             |                                                                                                                                                                                             |  |
| by land | use)                            |                                                                             |                                                                                                        |                                                                                                                                                             |                                                                                                                                                                                             |  |
| -       |                                 |                                                                             | 2.0                                                                                                    | 1.0                                                                                                                                                         | 97.0                                                                                                                                                                                        |  |
|         |                                 |                                                                             | 100.0                                                                                                  | 0.0                                                                                                                                                         | 0.0                                                                                                                                                                                         |  |
|         |                                 |                                                                             | 5.0                                                                                                    | 2.5                                                                                                                                                         | 92.5                                                                                                                                                                                        |  |
| rest.   |                                 |                                                                             | 5.0                                                                                                    | 2.5                                                                                                                                                         | 92.5                                                                                                                                                                                        |  |
|         |                                 |                                                                             | 5.0                                                                                                    | 2.5                                                                                                                                                         | 92.5                                                                                                                                                                                        |  |
| ur)     |                                 |                                                                             | 2.0                                                                                                    | 1.0                                                                                                                                                         | 97.0                                                                                                                                                                                        |  |
|         | 16.8<br>35.0<br>32.9<br>by land | Work Shop<br>10.8 7.3<br>16.8 7.1<br>35.0 35.0<br>32.9 18.0<br>by land use) | Home- Home- Home- Work Shop Other 10.8 7.3 7.5 16.8 7.1 7.9 35.0 35.0 35.0 32.9 18.0 49.1 by land use) | Home- Home- Home- Work Shop Other Commute 10.8 7.3 7.5 9.5 16.8 7.1 7.9 14.7 35.0 35.0 35.0 35.0 32.9 18.0 49.1 by land use)    2.0 100.0 5.0 rest. 5.0 5.0 | Home- Home- Other Commute Non-Work 10.8 7.3 7.5 9.5 7.4 16.8 7.1 7.9 14.7 6.6 35.0 35.0 35.0 35.0 35.0 35.0 by land use)  Description:    2.0 1.0 100.0 0.0 5.0 2.5 5.0 2.5 5.0 2.5 5.0 2.5 |  |

Changes made to the default values for Land Use Trip Percentages

The Primary Trip % for City park changed from 70 to 100 The Diverted Trip % for City park changed from 25 to 0 The Pass-By Trip % for City park changed from 5 to 0 The Primary Trip % for Quality resturant changed from 50 to 100 The Diverted Trip % for Quality resturant changed from 40 to 0 The Pass-By Trip % for Quality resturant changed from 10 to 0

Changes made to the default values for Area

The landscape year changed from 2005 to 2009.

Changes made to the default values for Operations

The operational emission year changed from 2005 to 2009. The operational winter selection item changed from  $\,$  2 to 1. The operational summer temperature changed from  $\,$  60 to 70.

## Eagle Lodge (Condo Option)

## Regional Emission Calculations (tons/year)

| Existing       |
|----------------|
| Mobile         |
| Area           |
| Stationary     |
| Total Existing |
|                |
| Project        |
| Mobile         |
| Area           |
| Stationary     |
| Total Project  |
| Net Project    |
| Net Mobile     |
| Net Area       |
| Net Stationary |
| Total Net      |

| CO    | NOx  | PM10 | ROC  | SOx  |
|-------|------|------|------|------|
|       |      |      |      |      |
| 25.3  | 3.4  | 2.5  | 2.1  | <0.1 |
| 0.2   | <0.1 | <0.1 | <0.1 | <0.1 |
| <0.1  | <0.1 | 0.4  | <0.1 | <0.1 |
| 25.5  | 3.5  | 2.9  | 2.1  | <0.1 |
|       |      |      |      |      |
|       |      |      |      |      |
| 115.3 | 15.9 | 14.5 | 9.3  | <0.1 |
| 4.3   | 0.6  | 0.5  | 3.4  | <0.1 |
| 0.3   | <0.1 | 1.5  | <0.1 | 0.2  |
| 119.9 | 16.4 | 16.5 | 12.7 | 0.2  |
|       |      |      |      |      |
|       |      |      |      |      |
| 90.0  | 12.4 | 12.0 | 7.3  | <0.1 |
| 4.2   | 0.5  | 0.5  | 3.3  | <0.1 |
| 0.2   | <0.1 | 1.1  | <0.1 | 0.1  |
| 94.4  | 13.0 | 13.6 | 10.6 | 0.2  |

## **Electricity Usage**

|                  |                    | Electricity             |            |                 |            | Emission Factors (lbs/MWh) <sup>b</sup> |              |             |             |  |
|------------------|--------------------|-------------------------|------------|-----------------|------------|-----------------------------------------|--------------|-------------|-------------|--|
|                  |                    | Usage Rate <sup>a</sup> | Total E    | ectricity Usage | СО         | ROC                                     | NOx          | PM10        | SOx         |  |
| Land Use         | 1,000 Sqft         | (kWh\sq.ft\yr)          | (KWh\year) | (MWh\Day)       | <u>0.2</u> | <u>0.01</u>                             | <u>1.15</u>  | <u>0.04</u> | <u>0.12</u> |  |
| Existing         |                    |                         |            |                 | Emission   | ns from Elec                            | tricity Cons | umption (lb | s/day)      |  |
| Retail           | 0.6                | 13.55                   | 8,130      | 0.022           | 0.004      | 0.000                                   | 0.026        | 0.001       | 0.003       |  |
| Hotel/Motel      | 12.0               | 9.95                    | 119,400    | 0.327           | 0.065      | 0.003                                   | 0.376        | 0.013       | 0.039       |  |
|                  | Total Existing     |                         | 127,530    | 0.349           | 0.07       | 0.00                                    | 0.40         | 0.01        | 0.04        |  |
| Project          |                    |                         |            |                 |            |                                         |              |             |             |  |
| Residential (DU) | 83.0               | 5,627                   | 467,000    | 1.279           | 0.256      | 0.013                                   | 1.471        | 0.051       | 0.154       |  |
|                  | Total Project      |                         | 467,000    | 1.279           | 0.26       | 0.01                                    | 1.47         | 0.05        | 0.15        |  |
|                  | Net Emissions From | Electricity Usage       |            |                 | 0.19       | 0.01                                    | 1.07         | 0.04        | 0.11        |  |

## **Summary of Stationary Emissions**

|                                    | <u>co</u> | ROC  | <u>NOx</u> | PM10 | <u>SOx</u> |
|------------------------------------|-----------|------|------------|------|------------|
| Total Existing Emissions (lbs/day) | 0.07      | 0.00 | 0.40       | 0.01 | 0.04       |
| Total Project Emissions (lbs/day)  | 0.26      | 0.01 | 1.47       | 0.05 | 0.15       |
| Total Net Emissions (lbs/day)      | 0.19      | 0.01 | 1.07       | 0.04 | 0.11       |

<sup>&</sup>lt;sup>a</sup> Electricity Usage Rates from Table A9-11-A, <u>CEQA Air Quality Handbook</u>, SCAQMD, 1993.

<sup>&</sup>lt;sup>b</sup> Emission Factors from Table A9-11-B, <u>CEQA Air Quality Handbook</u>, SCAQMD, 1993.

## Operations - Condo Option.doc

09/06/2006 5:46 PM

URBEMIS 2002 For Windows 8.7.0

File Name: V:\AQNOISE DIVISION\Active Projects\Eagle
Lodge\Operations\Operations (Condo Scenario) - Winter + Summer 2009.urb
Project Name: Eagle Lodge Operations (Winter) - 2009
Project Location: Mountain Counties and Rural Counties
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

| AREA SOURCE EMISSION ESTIMATES Source Natural Gas Hearth Landscaping Consumer Prdcts Architectural Coatings TOTALS (tpy, unmitigated)                   | (Tons per ROG 0.04 1.93 0.06 0.74 0.58 3.35                 | Year, U<br>NOX<br>0.50<br>0.05<br>0.00                      | CO<br>0.37<br>3.53<br>0.42<br>-<br>-<br>4.31                 | SO2<br>0.00<br>0.01<br>0.00                         | PM10<br>0.00<br>0.53<br>0.00<br>-<br>-<br>0.53               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|
| UNMITIGATED OPE                                                                                                                                         | RATIONAL E                                                  | MISSIONS                                                    | ;                                                            |                                                     |                                                              |
| Condo/townhouse general<br>Conference Room<br>Base Lodge Employee Trips<br>Day Spa<br>Ice Rink<br>High turnover (sit-down)<br>Convenience market (24 ho | ROG<br>3.07<br>0.26<br>0.55<br>0.21<br>0.25<br>0.77<br>4.20 | NOx<br>5.41<br>0.33<br>0.95<br>0.36<br>0.43<br>1.21<br>7.19 | CO<br>39.35<br>2.42<br>6.78<br>2.61<br>3.12<br>8.77<br>52.24 | SO2<br>0.03<br>0.00<br>0.01<br>0.00<br>0.00<br>0.01 | PM10<br>5.04<br>0.30<br>0.91<br>0.32<br>0.39<br>1.09<br>6.46 |
| TOTAL EMISSIONS (tons/yr)                                                                                                                               | 9.31                                                        | 15.88                                                       | 115.29                                                       | 0.08                                                | 14.51                                                        |

Does not include correction for passby trips.

Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2009 Season: Annual

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

| Unit Type                                                                                                                                               | Acreage | Trip                                   | Rate                                                                                                                                    | No.<br>Units                               | Total<br>Trips                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------|
| Condo/townhouse general<br>Conference Room<br>Base Lodge Employee Trips<br>Day Spa<br>Ice Rink<br>High turnover (sit-down)<br>Convenience market (24 ho |         | 0.80<br>1.83<br>20.87<br>39.93<br>2.81 | trips/dwelling unit<br>trips/people<br>trips/employees<br>trips/1000 sq. ft.<br>trips/1000 sq. ft.<br>trips/seats<br>trips/1000 sq. ft. | 200.00<br>122.00<br>8.00<br>5.00<br>200.00 | 1,704.00<br>160.00<br>223.26<br>166.96<br>199.65<br>562.00<br>3,452.40 |

Sum of Total Trips 6,468.27 Total Vehicle Miles Traveled 52,419.59

### Operations - Condo Option.doc

#### Vehicle Assumptions:

#### Fleet Mix:

| Vehicle Type             | Percent Type | Non-Catalyst | Catalyst | Diesel |
|--------------------------|--------------|--------------|----------|--------|
| Light Auto               | 54.90        | 1.30         | 98.40    | 0.30   |
| Light Truck < 3,750 lk   | s 15.10      | 2.60         | 95.40    | 2.00   |
| Light Truck 3,751- 5,75  | 0 16.10      | 1.20         | 98.10    | 0.70   |
| Med Truck 5,751-8,50     | 7.30         | 1.40         | 95.90    | 2.70   |
| Lite-Heavy 8,501-10,00   | 0 1.10       | 0.00         | 81.80    | 18.20  |
| Lite-Heavy 10,001-14,00  | 0.30         | 0.00         | 66.70    | 33.30  |
| Med-Heavy 14,001-33,00   | 0 1.00       | 0.00         | 20.00    | 80.00  |
| Heavy-Heavy 33,001-60,00 | 0.90         | 0.00         | 11.10    | 88.90  |
| Line Haul > 60,000 lk    | os 0.00      | 0.00         | 0.00     | 100.00 |
| Urban Bus                | 0.20         | 0.00         | 50.00    | 50.00  |
| Motorcycle               | 1.60         | 75.00        | 25.00    | 0.00   |
| School Bus               | 0.10         | 0.00         | 0.00     | 100.00 |
| Motor Home               | 1.40         | 7.10         | 85.70    | 7.20   |

#### Travel Conditions

|                           | Residential |       |       | Commercial |          |          |
|---------------------------|-------------|-------|-------|------------|----------|----------|
|                           | Home-       | Home- | Home- |            |          |          |
|                           | Work        | Shop  | Other | Commute    | Non-Work | Customer |
| Urban Trip Length (miles) | 10.8        | 7.3   | 7.5   | 9.5        | 7.4      | 7.4      |
| Rural Trip Length (miles) | 16.8        | 7.1   | 7.9   | 14.7       | 6.6      | 6.6      |
| Trip Speeds (mph)         | 35.0        | 35.0  | 35.0  | 35.0       | 35.0     | 35.0     |
| % of Trips - Residential  | 32.9        | 18.0  | 49.1  |            |          |          |
| % of Trips - Commercial ( | by land     | use)  |       |            |          |          |
| Conference Room           |             |       |       | 2.0        | 1.0      | 97.0     |
| Base Lodge Employee Trips |             |       |       | 100.0      | 0.0      | 0.0      |
| Day Spa                   |             |       |       | 5.0        | 2.5      | 92.5     |
| Ice Rink                  |             |       |       | 5.0        | 2.5      | 92.5     |
| High turnover (sit-down)  | rest.       |       |       | 5.0        | 2.5      | 92.5     |
| Convenience market (24 ho | ur)         |       |       | 2.0        | 1.0      | 97.0     |

Changes made to the default values for Land Use Trip Percentages

The Trip Rate and/or Acreage values for Condominium/townhouse general have changed from the defaults 6.9/5.19 to 20.53012/5.19

The Primary Trip % for City park changed from 70 to 100

The Diverted Trip % for City park changed from 25 to 0

The Pass-By Trip % for City park changed from 5 to 0

The Primary Trip % for Quality resturant changed from 50 to 100

The Diverted Trip % for Quality resturant changed from 40 to 0

The Pass-By Trip % for Quality resturant changed from 10 to 0

Changes made to the default values for Area

The landscape year changed from 2005 to 2009.

Changes made to the default values for Operations

The operational emission year changed from 2005 to 2009. The operational winter selection item changed from  $\,$  2 to 1. The operational summer temperature changed from  $\,$  60 to 70.

## Eagle Lodge (Year 2009 Buildout)

CALINE4 Modeling Results and Estimated Local 1-Hour Carbon Monoxide Concentrations (ppm)

Projected Background 1-Hour CO Concentrations (ppm)<sup>a</sup>

Monitoring Station: Mono County

Year 1-Hr Concentration
2009 1.94

|                                           | Future With                                                        | hout Project                                        | Future With Project       |                                                     |                                                         |  |  |  |
|-------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|---------------------------|-----------------------------------------------------|---------------------------------------------------------|--|--|--|
| Intersection<br>and<br>Receptor Locations | Traffic CO<br>Contribution <sup>b</sup>                            | Estimated<br>Local CO<br>Concentration <sup>c</sup> | Traffic CO Contribution b | Estimated<br>Local CO<br>Concentration <sup>c</sup> | Exceedance of<br>Significance<br>Threshold <sup>d</sup> |  |  |  |
| Meridian Boulevard and East               | Meridian Boulevard and East of Majestic Pines Road North 2009 WKNE |                                                     |                           |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                      | 0.8<br>1.1<br>1.0<br>0.9                                           | 2.7<br>3.0<br>2.9<br>2.8                            | 1.3<br>1.6<br>1.5<br>1.4  | 3.2<br>3.5<br>3.4<br>3.3                            | NO<br>NO<br>NO<br>NO                                    |  |  |  |
| Meridian Boulevard and Wes                | t of Majestic Pines R                                              | oad North 2009 WKN                                  | IC                        |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                      | 0.9<br>0.9<br>1.0<br>1.1                                           | 2.8<br>2.8<br>2.9<br>3.0                            | 1.8<br>2.9<br>2.7<br>2.2  | 3.7<br>4.8<br>4.6<br>4.1                            | NO<br>NO<br>NO                                          |  |  |  |
| Minaret Road and Meridian E               | Soulevard 2009 WKN                                                 | IC                                                  |                           |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                      | 1.3<br>1.6<br>1.8<br>1.5                                           | 3.2<br>3.5<br>3.7<br>3.4                            | 1.7<br>1.9<br>2.1<br>1.7  | 3.6<br>3.8<br>4.0<br>3.6                            | NO<br>NO<br>NO<br>NO                                    |  |  |  |
| Old Mammoth Road and Mer                  | Old Mammoth Road and Meridian Boulevard 2009 WKNE                  |                                                     |                           |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                      | 2.3<br>2.2<br>2.5<br>2.4                                           | 4.2<br>4.1<br>4.4<br>4.3                            | 2.3<br>2.4<br>2.8<br>2.5  | 4.2<br>4.3<br>4.7<br>4.4                            | NO<br>NO<br>NO<br>NO                                    |  |  |  |

a Based on guidance provided by the AQMD Air Quality Analysis Guidance Handbook

b The 1-hour traffic contribution (ppm) is determined by inputing total traffic volumes into the CALINE4 model.

c The estimated local concentration is the traffic contribution + the background concentration.

d The California Ambient Air Quality Standard for 1-hour CO concentrations is 20 ppm.

## Eagle Lodge (Year 2009 Buildout)

CALINE4 Modeling Results and Estimated Local 8-Hour Carbon Monoxide Concentrations (ppm)

Projected Background 8-Hour CO Concentrations (ppm) <sup>a</sup>

Monitoring Station: Mono County

Year 8-Hr Concentration 2009 1.36

Average Persistence Factor = 0.70

|                                                                    | Future With                             | out Project                                         | Future With Project                     |                                                     |                                                         |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------------------|---------------------------------------------------------|--|--|--|
| Intersection<br>and<br>Receptor Locations                          | Traffic CO<br>Contribution <sup>b</sup> | Estimated<br>Local CO<br>Concentration <sup>c</sup> | Traffic CO<br>Contribution <sup>b</sup> | Estimated<br>Local CO<br>Concentration <sup>c</sup> | Exceedance of<br>Significance<br>Threshold <sup>d</sup> |  |  |  |
| Meridian Boulevard and East of Majestic Pines Road North 2009 WKND |                                         |                                                     |                                         |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                                               | 0.4<br>0.6<br>0.5<br>0.5                | 1.8<br>1.9<br>1.8<br>1.8                            | 0.7<br>0.8<br>0.8<br>0.8                | 2.1<br>2.2<br>2.2<br>2.1                            | NO<br>NO<br>NO<br>NO                                    |  |  |  |
| Meridian Boulevard and                                             | West of Majestic Pine                   | es Road North 2009 \                                | WKND                                    |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                                               | 0.4<br>0.5<br>0.5<br>0.6                | 1.8<br>1.8<br>1.8<br>1.9                            | 0.9<br>1.1<br>1.2<br>1.2                | 2.3<br>2.5<br>2.5<br>2.5                            | NO<br>NO<br>NO<br>NO                                    |  |  |  |
| Minaret Road and Merid                                             | lian Boulevard 2009 V                   | VKND                                                |                                         |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                                               | 0.7<br>0.8<br>0.9<br>0.8                | 2.1<br>2.2<br>2.3<br>2.2                            | 0.9<br>1.0<br>1.1<br>1.0                | 2.3<br>2.3<br>2.5<br>2.3                            | NO<br>NO<br>NO<br>NO                                    |  |  |  |
| Old Mammoth Road and                                               | d Meridian Boulevard                    | 2009 WKND                                           |                                         |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                                               | 1.1<br>1.1<br>1.2<br>1.1                | 2.5<br>2.5<br>2.5<br>2.5                            | 1.1<br>1.2<br>1.3<br>1.2                | 2.5<br>2.5<br>2.7<br>2.5                            | NO<br>NO<br>NO<br>NO                                    |  |  |  |

a Based on guidance provided by the AQMD Air Quality Analysis Guidance Handbook.

b The persistence factor is calculated as recommended in Table B.15 in the <u>Transportation Project-Level Carbon Monoxide Protocol</u> (Institute of Transportation Studies, UC Davis, Revised 1997). This is a generalized persistence factor likely to provide a conservative estimate in most situations.

c The estimated local concentration is the traffic contribution + the background concentration.

d The California Ambient Air Quality Standard for 8-hour CO concentrations is 9 ppm.

JOB: MERIDIAN BOULEVARD AND EAST MAJESTIC PINES ROAD NORTH WKND NP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | .5    | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |  |
|--------|-------|---------|-------|------|--------|-----|------|----|------|--|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |  |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |  |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |  |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |  |

#### II. LINK VARIABLES

|    | LINK        | *  | LINK  | COORDI | NATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|----|-------|--------|-------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *  | X1    | Y1     | X2    | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _* |       |        |       |       | _ * . |      |     |        |      |      |
| Α. | NF          | *  | 8     | -1500  | 8     | -500  | *     | AG   | 2   | 6.3    | .0   | 35.0 |
| в. | NA          | *  | 8     | -500   | 8     | 0     | *     | AG   | 2   | 16.4   | .0   | 33.0 |
| C. | ND          | *  | 8     | 0      | 8     | 500   | *     | AG   | 162 | 8.7    | .0   | 33.0 |
| D. | NE          | *  | 8     | 500    | 8     | 1500  | *     | AG   | 162 | 6.3    | .0   | 35.0 |
| E. | SF          | *  | -8    | 1500   | -8    | 500   | *     | AG   | 142 | 6.3    | .0   | 35.0 |
| F. | SA          | *  | -8    | 500    | -8    | 0     | *     | AG   | 22  | 16.4   | .0   | 33.0 |
| G. | SD          | *  | -8    | 0      | -8    | -500  | *     | AG   | 18  | 8.7    | .0   | 33.0 |
| Η. | SE          | *  | -8    | -500   | -8    | -1500 | *     | AG   | 18  | 6.3    | .0   | 35.0 |
| I. | WF          | *  | 1500  | 15     | 500   | 15    | *     | AG   | 251 | 6.3    | .0   | 50.0 |
| J. | WA          | *  | 500   | 15     | 0     | 15    | *     | AG   | 242 | 9.3    | .0   | 33.0 |
| Κ. | WD          | *  | 0     | 15     | -500  | 15    | *     | AG   | 157 | 6.7    | .0   | 33.0 |
| L. | WE          | *  | -500  | 15     | -1500 | 15    | *     | AG   | 157 | 6.3    | .0   | 50.0 |
| Μ. | EF          | *  | -1500 | -15    | -500  | -15   | *     | AG   | 310 | 6.3    | .0   | 50.0 |
| N. | EA          | *  | -500  | -15    | 0     | -15   | *     | AG   | 255 | 9.3    | .0   | 33.0 |
| Ο. | ED          | *  | 0     | -15    | 500   | -15   | *     | AG   | 368 | 6.7    | .0   | 33.0 |
| P. | EE          | *  | 500   | -15    | 1500  | -15   | *     | AG   | 368 | 6.3    | .0   | 50.0 |
| Q. | NL          | *  | 0     | -1900  | 0     | -1800 | *     | AG   | 0   | 16.4   | .0   | 33.0 |
| R. | SL          | *  | 0     | 0      | -8    | 500   | *     | AG   | 120 | 16.4   | .0   | 33.0 |
| s. | WL          | *  | 0     | 0      | 500   | 8     | *     | AG   | 9   | 9.3    | .0   | 33.0 |
| т. | EL          | *  | 0     | 0      | -500  | -8    | *     | AG   | 55  | 9.3    | .0   | 33.0 |

#### III. RECEPTOR LOCATIONS

|                                  | RECEPTOR                                      | *<br>*<br>_*_                         | COORDI<br>X                               | NATES<br>Y                          | (FT)<br>Z                              |
|----------------------------------|-----------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------|----------------------------------------|
| 1.<br>2.<br>3.<br>4.<br>5.<br>6. | NE3<br>SE3<br>SW3<br>NW3<br>NE7<br>SE7<br>SW7 | * * * * * * * * * * * * * * * * * * * | 25<br>25<br>-25<br>-25<br>38<br>38<br>-38 | 40<br>-40<br>-40<br>40<br>53<br>-53 | 6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0 |
| 8.                               | NW7                                           | *                                     | -38                                       | 53                                  | 6.0                                    |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

| R                                | ECEPTOR                                       | *<br>*<br>* | BRG<br>(DEG)                              | * * *         | PRED<br>CONC<br>(PPM)              | *<br>*<br>*   | A  | В  | С                          | CONC/:<br>(PPI<br>D |    | F                          | G  | H  |
|----------------------------------|-----------------------------------------------|-------------|-------------------------------------------|---------------|------------------------------------|---------------|----|----|----------------------------|---------------------|----|----------------------------|----|----|
| 1.<br>2.<br>3.<br>4.<br>5.<br>6. | NE3<br>SE3<br>SW3<br>NW3<br>NE7<br>SE7<br>SW7 | * * * * * * | 264.<br>355.<br>4.<br>95.<br>263.<br>353. | * * * * * * * | .8<br>1.1<br>1.0<br>.9<br>.6<br>.8 | * * * * * * * | .0 | .0 | .0<br>.3<br>.2<br>.0<br>.0 | .0                  | .0 | .0<br>.0<br>.1<br>.0<br>.0 | .0 | .0 |
| 8.                               | NW7                                           | *           | 96.                                       | *             | .7                                 | *             | .0 | .0 | .0                         | .0                  | .0 | .0                         | .0 | .0 |

| RECEPTOR         | *  | т.  | <b>T</b> | K   | т.  | М   | CONC/I<br>(PPI<br>N |     | P   | 0   | R   | S   | Т   |
|------------------|----|-----|----------|-----|-----|-----|---------------------|-----|-----|-----|-----|-----|-----|
| RECEPTOR         | *_ |     | J        |     | ь   | 141 |                     |     |     |     | т.  |     |     |
| 1. NE3<br>2. SE3 | *  | .0  | .0       | .2  | .0  | .1  | .1                  | .0  | .0  | .0  | .1  | .0  | .0  |
| 3. SW3           | *  | .0  | . 0      | . 0 | . 0 | .0  | .1                  | . 0 | . 0 | . 0 | . 4 | .0  | . 0 |
| 4. NW3           | *  | .0  | . 4      | .0  | .0  | .0  | .0                  | .0  | . 2 | .0  | . 1 | .0  | .0  |
| 5. NE7           | *  | .0  | .0       | .1  | .0  | .1  | .1                  | .0  | .0  | .0  | .1  | .0  | .0  |
| 6. SE7           | *  | . 0 | . 0      | . 0 | . 0 | .0  | . 0                 | . 1 | . 0 | . 0 | . 3 | . 0 | . 0 |
| 7. SW7           | *  | . 0 | . 0      | . 0 | . 0 | .0  | . 1                 | . 0 | . 0 | . 0 | . 3 | . 0 | . 0 |
| 8. NW7           | *  | . 0 | . 2      | .0  | .0  | . 0 | .0                  | .0  | . 1 | .0  | . 1 | . 0 | . 0 |

JOB: MERIDIAN BOULEVARD AND EAST MAJESTIC PINES ROAD NORTH WKND WP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | . 5   | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |
|--------|-------|---------|-------|------|--------|-----|------|----|------|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |

#### II. LINK VARIABLES

|    | LINK        | *   | LINK  | COORDI | NATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|-----|-------|--------|-------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *   | X1    | Y1     | X2    | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _*. |       |        |       |       | _ * . |      |     |        |      |      |
| A. | NF          | *   | 8     | -1500  | 8     | -500  | *     | AG   | 2   | 6.3    | .0   | 35.0 |
| в. | NA          | *   | 8     | -500   | 8     | 0     | *     | AG   | 2   | 16.9   | .0   | 33.0 |
| C. | ND          | *   | 8     | 0      | 8     | 500   | *     | AG   | 219 | 9.6    | .0   | 33.0 |
| D. | NE          | *   | 8     | 500    | 8     | 1500  | *     | AG   | 219 | 6.3    | .0   | 35.0 |
| E. | SF          | *   | -8    | 1500   | -8    | 500   | *     | AG   | 218 | 6.3    | .0   | 35.0 |
| F. | SA          | *   | -8    | 500    | -8    | 0     | *     | AG   | 55  | 16.9   | .0   | 33.0 |
| G. | SD          | *   | -8    | 0      | -8    | -500  | *     | AG   | 18  | 9.6    | .0   | 33.0 |
| н. | SE          | *   | -8    | -500   | -8    | -1500 | *     | AG   | 18  | 6.3    | .0   | 35.0 |
| I. | WF          | *   | 1500  | 15     | 500   | 15    | *     | AG   | 411 | 6.3    | .0   | 50.0 |
| J. | WA          | *   | 500   | 15     | 0     | 15    | *     | AG   | 402 | 9.3    | .0   | 33.0 |
| Κ. | WD          | *   | 0     | 15     | -500  | 15    | *     | AG   | 339 | 6.7    | .0   | 33.0 |
| L. | WE          | *   | -500  | 15     | -1500 | 15    | *     | AG   | 339 | 6.3    | .0   | 50.0 |
| Μ. | EF          | *   | -1500 | -15    | -500  | -15   | *     | AG   | 584 | 6.3    | .0   | 50.0 |
| N. | EA          | *   | -500  | -15    | 0     | -15   | *     | AG   | 483 | 9.3    | .0   | 33.0 |
| Ο. | ED          | *   | 0     | -15    | 500   | -15   | *     | AG   | 639 | 6.7    | .0   | 33.0 |
| P. | EE          | *   | 500   | -15    | 1500  | -15   | *     | AG   | 639 | 6.3    | .0   | 50.0 |
| Q. | NL          | *   | 0     | -1900  | 0     | -1800 | *     | AG   | 0   | 16.9   | .0   | 33.0 |
| R. | SL          | *   | 0     | 0      | -8    | 500   | *     | AG   | 163 | 16.9   | .0   | 33.0 |
| S. | WL          | *   | 0     | 0      | 500   | 8     | *     | AG   | 9   | 9.3    | .0   | 33.0 |
| т. | EL          | *   | 0     | 0      | -500  | -8    | *     | AG   | 101 | 9.3    | .0   | 33.0 |

#### III. RECEPTOR LOCATIONS

|                                  | RECEPTOR                                      | *<br>*<br>_*_                         | COORDI<br>X                               | NATES<br>Y                          | (FT)<br>Z                              |
|----------------------------------|-----------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------|----------------------------------------|
| 1.<br>2.<br>3.<br>4.<br>5.<br>6. | NE3<br>SE3<br>SW3<br>NW3<br>NE7<br>SE7<br>SW7 | * * * * * * * * * * * * * * * * * * * | 25<br>25<br>-25<br>-25<br>38<br>38<br>-38 | 40<br>-40<br>-40<br>40<br>53<br>-53 | 6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0 |
| 8.                               | NW7                                           | *                                     | -38                                       | 53                                  | 6.0                                    |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

| RI | ECEPTOR | *<br>*<br>* | BRG<br>(DEG) | * * * * | PRED<br>CONC<br>(PPM) | * * * | Α   | В  | С   | CONC/:<br>(PPI<br>D |    | F   | G  | Н   |
|----|---------|-------------|--------------|---------|-----------------------|-------|-----|----|-----|---------------------|----|-----|----|-----|
| 1. | NE3     | *           | 264.         | *       | 1.3                   | *     | .0  | .0 | .1  | .0                  | .0 | .0  | .0 | .0  |
| 2. | SE3     | *           | 355.         | *       | 1.6                   | *     | . 0 | .0 | . 4 | .0                  | .0 | . 2 | .0 | . 0 |
| 3. | SW3     | *           | 4.           | *       | 1.5                   | *     | . 0 | .0 | . 2 | .0                  | .0 | . 3 | .0 | .0  |
| 4. | NW3     | *           | 95.          | *       | 1.4                   | *     | . 0 | .0 | .1  | .0                  | .0 | .0  | .0 | .0  |
| 5. | NE7     | *           | 263.         | *       | 1.0                   | *     | . 0 | .0 | .1  | .0                  | .0 | .0  | .0 | .0  |
| 6. | SE7     | *           | 353.         | *       | 1.2                   | *     | . 0 | .0 | . 3 | .0                  | .0 | .1  | .0 | .0  |
| 7. | SW7     | *           | 6.           | *       | 1.2                   | *     | . 0 | .0 | . 2 | .0                  | .0 | . 2 | .0 | .0  |
| 8. | NW7     | *           | 96.          | *       | 1.1                   | *     | .0  | .0 | .1  | .0                  | .0 | .0  | .0 | .0  |

| RECEPTOR | * * | I   | J   | K   | L  | M   | CONC/I<br>(PPI<br>N |     | P   | Q  | R   | S   | Т   |
|----------|-----|-----|-----|-----|----|-----|---------------------|-----|-----|----|-----|-----|-----|
|          | *_  |     |     |     |    |     |                     |     |     |    |     |     |     |
| 1. NE3   | *   | . 0 | .0  | . 4 | .0 | . 2 | . 2                 | .0  | .0  | .0 | . 2 | . 0 | .0  |
| 2. SE3   | *   | . 0 | . 2 | .0  | .0 | .0  | .0                  | . 3 | .0  | .0 | . 5 | . 0 | . 0 |
| 3. SW3   | *   | . 0 | .0  | .0  | .0 | .0  | . 3                 | .0  | .0  | .0 | . 5 | . 0 | . 0 |
| 4. NW3   | *   | .1  | .6  | .0  | .0 | .0  | .0                  | . 2 | . 2 | .0 | . 2 | . 0 | . 0 |
| 5. NE7   | *   | . 0 | .0  | . 2 | .0 | . 2 | . 2                 | .0  | .0  | .0 | .1  | . 0 | . 0 |
| 6. SE7   | *   | . 0 | .1  | .0  | .0 | .0  | .0                  | . 2 | .0  | .0 | . 3 | . 0 | . 0 |
| 7. SW7   | *   | . 0 | .0  | .0  | .0 | .0  | . 2                 | .0  | .0  | .0 | . 3 | . 0 | . 0 |
| 8. NW7   | *   | . 0 | . 4 | .0  | .0 | .0  | .0                  | .1  | . 2 | .0 | .1  | . 0 | . 0 |

JOB: OLD MAMMOTH ROAD AND MERIDIAN BOULEVARD WKND NP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | .5    | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |  |
|--------|-------|---------|-------|------|--------|-----|------|----|------|--|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |  |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |  |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |  |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |  |

#### II. LINK VARIABLES

|    | LINK        | *   | LINK  | COORDI | NATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|-----|-------|--------|-------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *   | X1    | Y1     | X2    | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _*. |       |        |       |       | _ * - |      |     |        |      |      |
| Α. | NF          | *   | 15    | -1500  | 15    | -500  | *     | AG   | 502 | 6.3    | .0   | 35.0 |
| в. | NA          | *   | 15    | -500   | 15    | 0     | *     | AG   | 378 | 11.1   | .0   | 33.0 |
| C. | ND          | *   | 15    | 0      | 15    | 500   | *     | AG   | 594 | 7.4    | .0   | 33.0 |
| D. | NE          | *   | 15    | 500    | 15    | 1500  | *     | AG   | 594 | 6.3    | .0   | 35.0 |
| E. | SF          | *   | -15   | 1500   | -15   | 500   | *     | AG   | 640 | 6.3    | .0   | 35.0 |
| F. | SA          | *   | -15   | 500    | -15   | 0     | *     | AG   | 509 | 11.1   | .0   | 33.0 |
| G. | SD          | *   | -15   | 0      | -15   | -500  | *     | AG   | 652 | 8.0    | .0   | 33.0 |
| Η. | SE          | *   | -15   | -500   | -15   | -1500 | *     | AG   | 652 | 6.3    | .0   | 35.0 |
| I. | WF          | *   | 1500  | 23     | 500   | 23    | *     | AG   | 472 | 6.3    | .0   | 50.0 |
| J. | WA          | *   | 500   | 23     | 0     | 23    | *     | AG   | 350 | 12.1   | .0   | 45.0 |
| К. | WD          | *   | 0     | 23     | -500  | 23    | *     | AG   | 450 | 7.2    | .0   | 33.0 |
| L. | WE          | *   | -500  | 23     | -1500 | 23    | *     | AG   | 450 | 6.3    | .0   | 50.0 |
| Μ. | EF          | *   | -1500 | -23    | -500  | -23   | *     | AG   | 481 | 6.3    | .0   | 50.0 |
| N. | EA          | *   | -500  | -23    | 0     | -23   | *     | AG   | 340 | 12.1   | .0   | 45.0 |
| Ο. | ED          | *   | 0     | -23    | 500   | -23   | *     | AG   | 399 | 7.2    | .0   | 33.0 |
| P. | EE          | *   | 500   | -23    | 1500  | -23   | *     | AG   | 399 | 6.3    | .0   | 50.0 |
| Q. | NL          | *   | 0     | 0      | 15    | -500  | *     | AG   | 124 | 11.1   | .0   | 33.0 |
| R. | SL          | *   | 0     | 0      | -15   | 500   | *     | AG   | 131 | 11.1   | .0   | 33.0 |
| s. | WL          | *   | 0     | 0      | 500   | 15    | *     | AG   | 122 | 12.1   | .0   | 33.0 |
| т. | EL          | *   | 0     | 0      | -500  | -15   | *     | AG   | 141 | 12.1   | .0   | 33.0 |

#### III. RECEPTOR LOCATIONS

|                            | RECEPTOR                                      | *             | COORD:                                    | NATES<br>Y                          | (FT)<br>Z                              |
|----------------------------|-----------------------------------------------|---------------|-------------------------------------------|-------------------------------------|----------------------------------------|
| 1.<br>2.<br>3.<br>4.<br>5. | NE3<br>SE3<br>SW3<br>NW3<br>NE7<br>SE7<br>SW7 | * * * * * * * | 33<br>33<br>-33<br>-33<br>46<br>46<br>-46 | 48<br>-48<br>-48<br>48<br>61<br>-61 | 6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0 |
| 8.                         | NW7                                           | *             | -46                                       | 61                                  | 6.0                                    |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

| RECEPTOR                                                | * * *         | BRG<br>(DEG)                                     | * * *           | PRED<br>CONC<br>(PPM)                         | * * * | А                          | В                                | С                                | CONC/<br>(PP<br>D          |                            | F                                       | G                                | Н                                |
|---------------------------------------------------------|---------------|--------------------------------------------------|-----------------|-----------------------------------------------|-------|----------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------|-----------------------------------------|----------------------------------|----------------------------------|
| 1. NE3 2. SE3 3. SW3 4. NW3 5. NE7 6. SE7 7. SW7 8. NW7 | * * * * * * * | 185.<br>355.<br>5.<br>175.<br>186.<br>353.<br>6. | * * * * * * * * | 2.3<br>2.2<br>2.5<br>2.4<br>1.6<br>1.6<br>1.7 |       | .0 .0 .0 .2 .0 .0 .0 .0 .0 | .8<br>.2<br>.0<br>.3<br>.6<br>.0 | .2<br>.8<br>.2<br>.0<br>.0<br>.5 | .0<br>.0<br>.2<br>.0<br>.0 | .0<br>.2<br>.0<br>.0<br>.0 | .0<br>.3<br>1.0<br>.3<br>.0<br>.3<br>.7 | .3<br>.0<br>.3<br>.9<br>.2<br>.0 | .2<br>.0<br>.0<br>.0<br>.2<br>.0 |

|          | * |     |     |     |     |     | CONC/I | vI) |     |     |     |     |     |
|----------|---|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|
| RECEPTOR | * | I   | J   | K   | L   | M   | N      | 0   | P   | Q   | R   | S   | Т   |
|          | ^ |     |     |     |     |     |        |     |     |     |     |     |     |
| 1. NE3   | * | . 0 | . 3 | .0  | . 0 | .0  | . 0    | . 1 | . 0 | . 2 | .0  | . 0 | .0  |
| 2. SE3   | * | . 0 | . 2 | . 0 | . 0 | . 0 | . 0    | . 2 | . 0 | .0  | . 2 | . 0 | . 0 |
| 3. SW3   | * | . 0 | . 0 | .1  | . 0 | .0  | . 3    | . 0 | . 0 | .0  | . 2 | . 0 | .0  |
| 4. NW3   | * | .0  | . 0 | . 2 | .0  | .0  | . 2    | . 0 | .0  | . 2 | .0  | .0  | . 0 |
| 5. NE7   | * | .0  | . 2 | . 0 | .0  | .0  | . 0    | .1  | .0  | . 2 | .0  | .0  | . 0 |
| 6. SE7   | * | .0  | . 2 | . 0 | .0  | .0  | . 0    | .1  | .0  | .0  | .1  | .0  | . 0 |
| 7. SW7   | * | .0  | . 0 | .1  | .0  | .0  | . 2    | . 0 | .0  | .0  | . 2 | .0  | . 0 |
| 8. NW7   | * | .0  | .0  | . 2 | .0  | .0  | . 2    | .0  | .0  | .1  | . 0 | .0  | .0  |

JOB: OLD MAMMOTH ROAD AND MERIDIAN BOULEVARD WKND WP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | . 5   | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. (FT) |
|--------|-------|---------|-------|------|--------|-----|------|---------|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |         |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |         |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |         |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |         |

#### II. LINK VARIABLES

|    | LINK        | *   | LINK  | COORDI | NATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|-----|-------|--------|-------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *   | X1    | Y1     | X2    | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _*- |       |        |       |       | . * . |      |     |        |      |      |
| Α. | NF          | *   | 15    | -1500  | 15    | -500  | *     | AG   | 507 | 6.3    | .0   | 35.0 |
| В. | NA          | *   | 15    | -500   | 15    | 0     | *     | AG   | 378 | 11.1   | .0   | 33.0 |
| C. | ND          | *   | 15    | 0      | 15    | 500   | *     | AG   | 643 | 7.6    | .0   | 33.0 |
| D. | NE          | *   | 15    | 500    | 15    | 1500  | *     | AG   | 643 | 6.3    | .0   | 35.0 |
| E. | SF          | *   | -15   | 1500   | -15   | 500   | *     | AG   | 673 | 6.3    | .0   | 35.0 |
| F. | SA          | *   | -15   | 500    | -15   | 0     | *     | AG   | 542 | 11.6   | .0   | 33.0 |
| G. | SD          | *   | -15   | 0      | -15   | -500  | *     | AG   | 663 | 8.2    | .0   | 33.0 |
| Н. | SE          | *   | -15   | -500   | -15   | -1500 | *     | AG   | 663 | 6.3    | .0   | 35.0 |
| I. | WF          | *   | 1500  | 23     | 500   | 23    | *     | AG   | 492 | 6.3    | .0   | 50.0 |
| J. | WA          | *   | 500   | 23     | 0     | 23    | *     | AG   | 370 | 12.1   | .0   | 45.0 |
| К. | WD          | *   | 0     | 23     | -500  | 23    | *     | AG   | 508 | 7.2    | .0   | 33.0 |
| L. | WE          | *   | -500  | 23     | -1500 | 23    | *     | AG   | 508 | 6.3    | .0   | 50.0 |
| Μ. | EF          | *   | -1500 | -23    | -500  | -23   | *     | AG   | 571 | 6.3    | .0   | 50.0 |
| N. | EA          | *   | -500  | -23    | 0     | -23   | *     | AG   | 381 | 12.1   | .0   | 45.0 |
| Ο. | ED          | *   | 0     | -23    | 500   | -23   | *     | AG   | 429 | 7.2    | .0   | 33.0 |
| P. | EE          | *   | 500   | -23    | 1500  | -23   | *     | AG   | 429 | 6.3    | .0   | 50.0 |
| Q. | NL          | *   | 0     | 0      | 15    | -500  | *     | AG   | 129 | 11.1   | .0   | 33.0 |
| R. | SL          | *   | 0     | 0      | -15   | 500   | *     | AG   | 131 | 11.1   | .0   | 33.0 |
| S. | WL          | *   | 0     | 0      | 500   | 15    | *     | AG   | 122 | 12.1   | .0   | 33.0 |
| т. | EL          | *   | 0     | 0      | -500  | -15   | *     | AG   | 190 | 12.1   | .0   | 33.0 |

#### III. RECEPTOR LOCATIONS

|    |          | * | COORD | INATES | (FT) |
|----|----------|---|-------|--------|------|
|    | RECEPTOR | * | X     | Y      | Z    |
|    |          | * |       |        |      |
| 1. | NE3      | * | 33    | 48     | 6.0  |
| 2. | SE3      | * | 33    | -48    | 6.0  |
| 3. | SW3      | * | -33   | -48    | 6.0  |
| 4. | NW3      | * | -33   | 48     | 6.0  |
| 5. | NE7      | * | 46    | 61     | 6.0  |
| 6. | SE7      | * | 46    | -61    | 6.0  |
| 7. | SW7      | * | -46   | -61    | 6.0  |
| 8. | NW7      | * | -46   | 61     | 6.0  |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

| RI | ECEPTOR | * * | BRG<br>(DEG) | * * | PRED<br>CONC<br>(PPM) | * *   | A   | В   | С   | CONC/<br>(PP<br>D |     | F   | G   | Н   |
|----|---------|-----|--------------|-----|-----------------------|-------|-----|-----|-----|-------------------|-----|-----|-----|-----|
|    |         | *-  |              | - * |                       | _ * - |     |     |     |                   |     |     |     |     |
| 1. | NE3     | *   | 185.         | *   | 2.3                   | *     | . 0 | . 8 | . 3 | .0                | .0  | .0  | . 3 | . 2 |
| 2. | SE3     | *   | 355.         | *   | 2.4                   | *     | . 0 | . 2 | .9  | .0                | . 2 | . 4 | .0  | .0  |
| 3. | SW3     | *   | 5.           | *   | 2.8                   | *     | . 0 | .0  | . 3 | . 2               | .0  | 1.1 | . 3 | .0  |
| 4. | NW3     | *   | 175.         | *   | 2.5                   | *     | . 2 | . 3 | .0  | .0                | .0  | . 4 | 1.0 | .0  |
| 5. | NE7     | *   | 186.         | *   | 1.6                   | *     | . 0 | .6  | .0  | .0                | .0  | .0  | . 2 | . 2 |
| 6. | SE7     | *   | 353.         | *   | 1.7                   | *     | . 0 | .0  | .6  | .0                | . 2 | . 3 | .0  | .0  |
| 7. | SW7     | *   | 6.           | *   | 1.9                   | *     | . 0 | .0  | . 2 | . 2               | .0  | . 8 | .0  | .0  |
| 8. | NW7     | *   | 173.         | *   | 1.7                   | *     | .1  | . 2 | .0  | .0                | .0  | .0  | .7  | .0  |

| DEGEDEAD | * | _   | -   |     | _   |     | CONC/I | vI) | _   |     | _   | -   | _   |
|----------|---|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|
| RECEPTOR | * | T   | J   | K   | L   | M   | N      | 0   | P   | Q   | R   | S   | Т   |
| 1. NE3   | * | .0  | .3  | .0  |     | .0  | .0     | 1   |     | . 2 |     | .0  | .0  |
|          |   |     |     |     | . 0 |     |        | . 1 | . 0 |     | .0  |     |     |
| 2. SE3   | * | . 0 | . 2 | . 0 | . 0 | . 0 | . 0    | . 2 | . 0 | . 0 | . 2 | . 0 | . 0 |
| 3. SW3   | * | . 0 | . 0 | .1  | . 0 | . 0 | . 3    | . 0 | . 0 | .0  | . 2 | . 0 | .1  |
| 4. NW3   | * | . 0 | . 0 | . 2 | . 0 | .0  | . 2    | . 0 | . 0 | . 2 | .0  | . 0 | .1  |
| 5. NE7   | * | . 0 | . 2 | . 0 | . 0 | .0  | . 0    | .1  | . 0 | . 2 | .0  | . 0 | . 0 |
| 6. SE7   | * | .0  | . 2 | .0  | .0  | .0  | .0     | . 2 | .0  | .0  | . 1 | .0  | .0  |
| 7. SW7   | * | .0  | .0  | .1  | .0  | .0  | . 2    | .0  | .0  | .0  | . 2 | .0  | .0  |
| 8. NW7   | * | . 0 | . 0 | . 2 | . 0 | .0  | . 2    | . 0 | . 0 | .1  | .0  | . 0 | . 0 |

JOB: MINARET ROAD AND MERIDIAN BOULEVARD WKND NP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | .5    | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |  |
|--------|-------|---------|-------|------|--------|-----|------|----|------|--|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |  |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |  |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |  |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |  |

#### II. LINK VARIABLES

|    | LINK        | *   | LINK  | COORDI | NATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|-----|-------|--------|-------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *   | X1    | Y1     | X2    | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _*- |       |        |       |       | . * . |      |     |        |      |      |
| Α. | NF          | *   | 15    | -1500  | 15    | -500  | *     | AG   | 174 | 6.3    | .0   | 35.0 |
| в. | NA          | *   | 15    | -500   | 15    | 0     | *     | AG   | 136 | 12.7   | .0   | 33.0 |
| C. | ND          | *   | 15    | 0      | 15    | 500   | *     | AG   | 344 | 7.6    | .0   | 33.0 |
| D. | NE          | *   | 15    | 500    | 15    | 1500  | *     | AG   | 344 | 6.3    | .0   | 35.0 |
| Ε. | SF          | *   | -15   | 1500   | -15   | 500   | *     | AG   | 416 | 6.3    | .0   | 35.0 |
| F. | SA          | *   | -15   | 500    | -15   | 0     | *     | AG   | 250 | 12.7   | .0   | 33.0 |
| G. | SD          | *   | -15   | 0      | -15   | -500  | *     | AG   | 255 | 7.6    | .0   | 33.0 |
| н. | SE          | *   | -15   | -500   | -15   | -1500 | *     | AG   | 255 | 6.3    | .0   | 35.0 |
| I. | WF          | *   | 1500  | 23     | 500   | 23    | *     | AG   | 377 | 6.3    | .0   | 50.0 |
| J. | WA          | *   | 500   | 23     | 0     | 23    | *     | AG   | 354 | 10.3   | .0   | 45.0 |
| Κ. | WD          | *   | 0     | 23     | -500  | 23    | *     | AG   | 316 | 6.8    | .0   | 33.0 |
| L. | WE          | *   | -500  | 23     | -1500 | 23    | *     | AG   | 316 | 6.3    | .0   | 50.0 |
| Μ. | EF          | *   | -1500 | -23    | -500  | -23   | *     | AG   | 498 | 6.3    | .0   | 50.0 |
| N. | EA          | *   | -500  | -23    | 0     | -23   | *     | AG   | 405 | 10.3   | .0   | 45.0 |
| Ο. | ED          | *   | 0     | -23    | 500   | -23   | *     | AG   | 550 | 6.9    | .0   | 33.0 |
| P. | EE          | *   | 500   | -23    | 1500  | -23   | *     | AG   | 550 | 6.3    | .0   | 50.0 |
| Q. | NL          | *   | 0     | 0      | 15    | -500  | *     | AG   | 38  | 12.7   | .0   | 33.0 |
| R. | SL          | *   | 0     | 0      | -15   | 500   | *     | AG   | 166 | 12.7   | .0   | 33.0 |
| s. | WL          | *   | 0     | 0      | 500   | 15    | *     | AG   | 23  | 10.3   | .0   | 33.0 |
| Т. | EL          | *   | 0     | 0      | -500  | -15   | *     | AG   | 93  | 10.3   | .0   | 33.0 |

#### III. RECEPTOR LOCATIONS

|    |          | * | COORD | INATES | (FT) |
|----|----------|---|-------|--------|------|
|    | RECEPTOR | * | X     | Y      | Z    |
|    |          | * |       |        |      |
| 1. | NE3      | * | 33    | 48     | 6.0  |
| 2. | SE3      | * | 33    | -48    | 6.0  |
| 3. | SW3      | * | -33   | -48    | 6.0  |
| 4. | NW3      | * | -33   | 48     | 6.0  |
| 5. | NE7      | * | 46    | 61     | 6.0  |
| 6. | SE7      | * | 46    | -61    | 6.0  |
| 7. | SW7      | * | -46   | -61    | 6.0  |
| 8. | NW7      | * | -46   | 61     | 6.0  |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

| RI       | ECEPTOR    | *<br>*<br>* | BRG<br>(DEG) | * * * | PRED<br>CONC<br>(PPM) | * * * - * - | A  | В  | С  | CONC/<br>(PP:<br>D |    | F   | G   | Н  |
|----------|------------|-------------|--------------|-------|-----------------------|-------------|----|----|----|--------------------|----|-----|-----|----|
| 1.<br>2. | NE3<br>SE3 | *           | 262.<br>354. | *     | 1.3                   | *           | .0 | .0 | .2 | .0                 | .0 | .1  | .0  | .0 |
| 3.<br>4. | SW3<br>NW3 | *           | 4.<br>95.    | *     | 1.8                   | *           | .0 | .0 | .1 | .2                 | .1 | .6  | .0  | .0 |
| 5.       | NE7        | *           | 260.         | *     | 1.0                   | *           | .0 | .0 | .1 | .0                 | .0 | .1  | . 0 | .0 |
| 6.<br>7. | SE7<br>SW7 | *           | 352.<br>6.   | *     | 1.2                   | *           | .0 | .0 | .4 | .0                 | .0 | . 2 | .0  | .0 |
| 8.       | NW7        | *           | 96.          | *     | 1.2                   | *           | .0 | .0 | .1 | .0                 | .0 | . 2 | .0  | .0 |

| DEGEDEOD | * | CONC/LINK (PPM) I J K L M N O P O R S T |     |     |     |     |     |     |     |     |     |     |     |
|----------|---|-----------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| RECEPTOR | * | 1                                       | J   | r.  | ь   | Ivi | IN  | U   | Р   | Q   | R   | 5   | 1   |
|          | * |                                         |     |     |     |     |     |     |     |     |     |     |     |
| 1. NE3   | * | . 0                                     | .0  | . 3 | . 0 | .1  | . 2 | . 0 | . 0 | . 0 | . 1 | . 0 | .0  |
| 2. SE3   | * | . 0                                     | . 1 | . 0 | . 0 | .0  | . 0 | . 2 | . 0 | . 0 | . 3 | . 0 | .0  |
| 3. SW3   | * | . 0                                     | . 0 | .0  | .0  | .0  | . 3 | .0  | .0  | .0  | . 3 | .0  | .0  |
| 4. NW3   | * | . 0                                     | .6  | .0  | .0  | .0  | .0  | .0  | . 2 | .0  | . 1 | .0  | .0  |
| 5. NE7   | * | . 0                                     | .0  | . 2 | .0  | .0  | . 2 | .0  | .0  | .0  | . 1 | .0  | .0  |
| 6. SE7   | * | . 0                                     | .1  | .0  | .0  | .0  | .0  | . 2 | .0  | .0  | . 2 | .0  | .0  |
| 7. SW7   | * | . 0                                     | .0  | .0  | .0  | .0  | . 2 | .0  | .0  | .0  | . 2 | .0  | .0  |
| 8. NW7   | * | . 0                                     | . 4 | .0  | .0  | . 0 | .0  | .0  | . 2 | .0  | . 1 | .0  | . 0 |

JOB: MINARET ROAD AND MERIDIAN BOULEVARD WKND WP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | . 5   | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |
|--------|-------|---------|-------|------|--------|-----|------|----|------|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |

#### II. LINK VARIABLES

|    | LINK        | *   | LINK  | COORDI | NATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|-----|-------|--------|-------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *   | X1    | Y1     | X2    | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _*. |       |        |       |       | _ * . |      |     |        |      |      |
| A. | NF          | *   | 15    | -1500  | 15    | -500  | *     | AG   | 209 | 6.3    | .0   | 35.0 |
| в. | NA          | *   | 15    | -500   | 15    | 0     | *     | AG   | 136 | 13.3   | .0   | 33.0 |
| C. | ND          | *   | 15    | 0      | 15    | 500   | *     | AG   | 400 | 8.2    | .0   | 33.0 |
| D. | NE          | *   | 15    | 500    | 15    | 1500  | *     | AG   | 400 | 6.3    | .0   | 35.0 |
| E. | SF          | *   | -15   | 1500   | -15   | 500   | *     | AG   | 450 | 6.3    | .0   | 35.0 |
| F. | SA          | *   | -15   | 500    | -15   | 0     | *     | AG   | 284 | 13.3   | .0   | 33.0 |
| G. | SD          | *   | -15   | 0      | -15   | -500  | *     | AG   | 310 | 7.8    | .0   | 33.0 |
| н. | SE          | *   | -15   | -500   | -15   | -1500 | *     | AG   | 310 | 6.3    | .0   | 35.0 |
| I. | WF          | *   | 1500  | 23     | 500   | 23    | *     | AG   | 453 | 6.3    | .0   | 50.0 |
| J. | WA          | *   | 500   | 23     | 0     | 23    | *     | AG   | 430 | 9.9    | .0   | 45.0 |
| Κ. | WD          | *   | 0     | 23     | -500  | 23    | *     | AG   | 461 | 6.8    | .0   | 33.0 |
| L. | WE          | *   | -500  | 23     | -1500 | 23    | *     | AG   | 461 | 6.3    | .0   | 50.0 |
| Μ. | EF          | *   | -1500 | -23    | -500  | -23   | *     | AG   | 727 | 6.3    | .0   | 50.0 |
| N. | EA          | *   | -500  | -23    | 0     | -23   | *     | AG   | 578 | 9.9    | .0   | 45.0 |
| Ο. | ED          | *   | 0     | -23    | 500   | -23   | *     | AG   | 668 | 6.8    | .0   | 33.0 |
| P. | EE          | *   | 500   | -23    | 1500  | -23   | *     | AG   | 668 | 6.3    | .0   | 50.0 |
| Q. | NL          | *   | 0     | 0      | 15    | -500  | *     | AG   | 73  | 13.3   | .0   | 33.0 |
| R. | SL          | *   | 0     | 0      | -15   | 500   | *     | AG   | 166 | 13.3   | .0   | 33.0 |
| s. | WL          | *   | 0     | 0      | 500   | 15    | *     | AG   | 23  | 9.9    | .0   | 33.0 |
| т. | EL          | *   | 0     | 0      | -500  | -15   | *     | AG   | 149 | 9.9    | .0   | 33.0 |

#### III. RECEPTOR LOCATIONS

|          | * | COORD | INATES | (FT) |
|----------|---|-------|--------|------|
| RECEPTOR | * | X     | Y      | Z    |
|          | * |       |        |      |
| 1. NE3   | * | 33    | 48     | 6.0  |
| 2. SE3   | * | 33    | -48    | 6.0  |
| 3. SW3   | * | -33   | -48    | 6.0  |
| 4. NW3   | * | -33   | 48     | 6.0  |
| 5. NE7   | * | 46    | 61     | 6.0  |
| 6. SE7   | * | 46    | -61    | 6.0  |
| 7. SW7   | * | -46   | -61    | 6.0  |
| 8. NW7   | * | -46   | 61     | 6.0  |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

| RECEPTOR | * * | BRG<br>(DEG) | * * | PRED<br>CONC<br>(PPM) | * *   | A  | В   | C   | CONC/<br>(PP<br>D |    | F   | G  | Н  |
|----------|-----|--------------|-----|-----------------------|-------|----|-----|-----|-------------------|----|-----|----|----|
|          | *-  |              | _*. |                       | _ * _ |    |     |     |                   |    |     |    |    |
| 1. NE3   | *   | 262.         | *   | 1.7                   | *     | .0 | .0  | . 2 | .0                | .0 | . 2 | .0 | .0 |
| 2. SE3   | *   | 354.         | *   | 1.9                   | *     | .0 | . 1 | .6  | .0                | .1 | .3  | .0 | .0 |
| 3. SW3   | *   | 5.           | *   | 2.1                   | *     | .0 | .0  | . 2 | .1                | .0 | .7  | .1 | .0 |
| 4. NW3   | *   | 95.          | *   | 1.7                   | *     | .0 | .0  | .1  | .0                | .0 | .3  | .0 | .0 |
| 5. NE7   | *   | 260.         | *   | 1.3                   | *     | .0 | .0  | . 2 | .0                | .0 | . 2 | .0 | .0 |
| 6. SE7   | *   | 352.         | *   | 1.4                   | *     | .0 | .0  | . 4 | .0                | .0 | .3  | .0 | .0 |
| 7. SW7   | *   | 6.           | *   | 1.6                   | *     | .0 | .0  | . 2 | .1                | .0 | .5  | .0 | .0 |
| 8. NW7   | *   | 96.          | *   | 1.4                   | *     | .0 | .0  | .1  | .0                | .0 | . 2 | .0 | .0 |

|          | * | CONC/LINK (PPM) |     |     |     |     |     |     |     |     |     |     |     |  |
|----------|---|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| RECEPTOR | * | I               | J   | K   | L   | M   | N   | 0   | P   | Q   | R   | S   | Т   |  |
| 1 200    | * |                 |     |     |     |     |     |     |     |     |     |     |     |  |
| 1. NE3   | ^ | . 0             | . 0 | . 5 | .0  | . 2 | . 3 | .0  | . 0 | .0  | . 1 | .0  | . 1 |  |
| 2. SE3   | * | . 0             | . 2 | . 0 | . 0 | .0  | .0  | . 3 | . 0 | . 0 | . 3 | . 0 | . 0 |  |
| 3. SW3   | * | . 0             | . 0 | . 1 | .0  | . 0 | . 4 | .0  | . 0 | .0  | . 3 | . 0 | . 0 |  |
| 4. NW3   | * | .1              | . 7 | . 0 | .0  | .0  | .0  | .0  | . 3 | .0  | .1  | . 0 | . 0 |  |
| 5. NE7   | * | . 0             | . 0 | . 3 | .0  | .1  | . 3 | .0  | . 0 | .0  | .1  | .0  | . 1 |  |
| 6. SE7   | * | .0              | . 2 | . 0 | .0  | .0  | .0  | . 2 | . 0 | .0  | . 2 | . 0 | . 0 |  |
| 7. SW7   | * | .0              | .0  | .1  | . 0 | .0  | . 3 | . 0 | .0  | . 0 | . 2 | .0  | .0  |  |
| 8. NW7   | * | .1              | . 5 | .0  | . 0 | .0  | .0  | . 0 | . 3 | . 0 | .1  | .0  | .0  |  |

JOB: MERIDIAN BOULEVARD AND WEST MAJESTIC PINES ROAD NORTH WKND NP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | .5    | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |  |
|--------|-------|---------|-------|------|--------|-----|------|----|------|--|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |  |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |  |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |  |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |  |

#### II. LINK VARIABLES

|    | LINK        | *   | LINK    | COORD   | NATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|-----|---------|---------|-------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *   | X1      | Y1      | X2    | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _*- |         |         |       |       | _ * . |      |     |        |      |      |
| A. | NF          | *   | 8       | -1500   | 8     | -500  | *     | AG   | 62  | 6.3    | .0   | 35.0 |
| в. | NA          |     |         |         | 8     |       | *     | AG   | 59  | 10.3   | .0   | 33.0 |
| C. | ND          |     |         | 0       | 8     | 500   | *     | AG   | 101 | 6.8    | .0   | 33.0 |
| D. | NE          | *   | 8       | 500     | 8     | 1500  | *     | AG   | 101 | 6.3    | .0   | 35.0 |
| Ε. | SF          | *   | 0       | 1500    |       | 500   |       | AG   | 223 | 6.3    | .0   | 35.0 |
| F. | SA          | *   | 0       | 500     |       | 0     | *     | AG   | 25  | 10.3   | .0   | 33.0 |
| G. | SD          | *   | -8      | 0       | -8    | -500  | *     | AG   | 74  | 6.8    | .0   | 33.0 |
| Η. | SE          | *   | -8      | -500    | -8    | -1500 | *     | AG   | 74  | 6.3    | .0   | 35.0 |
| I. | WF          | *   | 1000    | 8       |       |       |       | AG   | 156 | 6.3    | .0   | 35.0 |
| J. | WA          |     |         | 8       |       |       |       | AG   | 110 | 13.3   | .0   | 33.0 |
| Κ. | WD          | *   |         | 8       |       |       |       | AG   | 23  | 7.4    | .0   | 33.0 |
| L. | WE          | *   | -500    | 8       | -1500 | 8     | *     | AG   | 23  | 6.3    | .0   | 35.0 |
| Μ. | EF          | *   | -1500   | -8      | -500  | -8    | *     | AG   | 18  | 6.3    | .0   | 35.0 |
| N. | EA          |     | -500    |         | 0     |       |       | AG   | 18  | 13.3   | .0   | 33.0 |
| Ο. | ED          |     | 0       |         | 500   | -8    |       | AG   | 261 | 7.6    | .0   | 33.0 |
| Ρ. | EE          |     | 500     |         | 1500  | -8    | *     | AG   | 261 | 6.3    | .0   | 35.0 |
| Q. | NL          |     | 0       | 0       | 8     | -500  | *     | AG   | 3   | 10.3   | .0   | 33.0 |
| R. | SL          |     | 0       |         | -8    | 500   | *     | AG   | 198 | 10.3   | .0   | 33.0 |
| s. | WL          | *   | 0       | 0       | 500   | 8     | *     | AG   | 46  | 13.3   | .0   | 33.0 |
| т. | EL          | *   | -1900   | 0       | -1800 | 0     | *     | AG   | 0   | 13.3   | .0   | 33.0 |
|    | POLLUTANT:  | Ca  | arbon 1 | Monoxio | le    |       |       |      |     |        |      |      |

#### III. RECEPTOR LOCATIONS

|                            | RECEPTOR                               | *<br>*<br>_*  | COORD:                             | INATES<br>Y                         | (FT)<br>Z                |
|----------------------------|----------------------------------------|---------------|------------------------------------|-------------------------------------|--------------------------|
| 1.<br>2.<br>3.<br>4.<br>5. | NE3<br>SE3<br>SW3<br>NW3<br>NE7<br>SE7 | * * * * * * * | 25<br>25<br>-25<br>-25<br>38<br>38 | 25<br>-25<br>-25<br>25<br>38<br>-38 | 6.0<br>6.0<br>6.0<br>6.0 |
| 7.<br>8.                   | SW7<br>NW7                             | *             | -38<br>-38                         | -38<br>38                           | 6.0<br>6.0               |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

|    |         | *  | BRG   | *     | PRED<br>CONC | *     |    |    | (   | CONC/I |    |    |    |    |
|----|---------|----|-------|-------|--------------|-------|----|----|-----|--------|----|----|----|----|
| RI | ECEPTOR | *  | (DEG) | *     | (PPM)        | *     | A  | В  | C   | D      | E  | F  | G  | Н  |
|    |         | ^- |       | - ^ - |              | - ^ - |    |    |     |        |    |    |    |    |
| 1. | NE3     | *  | 94.   | *     | . 9          | *     | .0 | .0 | .0  | .0     | .0 | .0 | .0 | .0 |
| 2. | SE3     | *  | 355.  | *     | . 9          | *     | .0 | .0 | . 2 | .0     | .0 | .0 | .0 | .0 |
| 3. | SW3     | *  | 86.   | *     | 1.0          | *     | .0 | .0 | .0  | .0     | .0 | .0 | .0 | .0 |
| 4. | NW3     | *  | 94.   | *     | 1.1          | *     | .0 | .0 | .0  | .0     | .0 | .0 | .0 | .0 |
| 5. | NE7     | *  | 96.   | *     | .6           | *     | .0 | .0 | .0  | .0     | .0 | .0 | .0 | .0 |

RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

|          | * | CONC/LINK (PPM) |     |    |    |    |    |     |    |    |     |    |     |  |
|----------|---|-----------------|-----|----|----|----|----|-----|----|----|-----|----|-----|--|
| RECEPTOR | * | I               | J   | K  | L  | M  | N  | 0   | P  | Q  | R   | S  | T   |  |
|          | * |                 |     |    |    |    |    |     |    |    |     |    |     |  |
| 1. NE3   | * | .0              | . 4 | .0 | .0 | .0 | .0 | . 2 | .1 | .0 | .0  | .1 | . 0 |  |
| 2. SE3   | * | .0              | . 0 | .0 | .0 | .0 | .0 | .1  | .0 | .0 | . 3 | .0 | . 0 |  |
| 3. SW3   | * | .0              | . 2 | .0 | .0 | .0 | .0 | . 4 | .0 | .0 | .0  | .1 | . 0 |  |
| 4. NW3   | * | .0              | . 4 | .0 | .0 | .0 | .0 | . 2 | .1 | .0 | .1  | .1 | . 0 |  |
| 5. NE7   | * | .0              | . 2 | .0 | .0 | .0 | .0 | .1  | .0 | .0 | .0  | .0 | . 0 |  |
| 6. SE7   | * | .0              | . 0 | .0 | .0 | .0 | .0 | .1  | .0 | .0 | . 2 | .0 | . 0 |  |

JOB: MERIDIAN BOULEVARD AND WEST MAJESTIC PINES ROAD NORTH WKND WP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | .5    | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |
|--------|-------|---------|-------|------|--------|-----|------|----|------|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |

#### II. LINK VARIABLES

|    | LINK        | *     | LINK    | COORDI  | NATES | (FT)  | *   |      |     | EF     | H    | W    |
|----|-------------|-------|---------|---------|-------|-------|-----|------|-----|--------|------|------|
|    | DESCRIPTION | *     | X1      | Y1      | X2    | Y2    | *   | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _ * - |         |         |       |       | -*- |      |     |        |      |      |
| Α. | NF          | *     | 8       | -1500   | 8     | -500  | *   | AG   | 81  | 6.3    | .0   | 35.0 |
| В. | NA          | *     | 8       | -500    | 8     | 0     | *   | AG   | 78  | 9.3    | .0   | 33.0 |
| C. | ND          |       |         | 0       |       |       | *   | AG   | 106 | 6.7    | .0   | 33.0 |
| D. | NE          | *     | 8       | 500     | 8     | 1500  | *   | AG   | 106 | 6.3    | .0   | 35.0 |
| Ε. | SF          | *     | -8      | 1500    | -8    | 500   | *   | AG   | 564 | 6.3    | .0   | 35.0 |
| F. | SA          | *     | -8      | 500     | -8    | 0     | *   | AG   | 59  | 9.3    | .0   | 33.0 |
| G. | SD          | *     | -8      | 0       | -8    | -500  | *   | AG   | 101 | 6.7    | .0   | 33.0 |
| Η. | SE          | *     | -8      | -500    | -8    | -1500 | *   | AG   | 101 | 6.3    | .0   | 35.0 |
| I. | WF          | *     | 1500    | 8       | 500   | 8     | *   | AG   | 155 | 6.3    | .0   | 35.0 |
| J. | WA          | *     | 500     | 8       | 0     | 8     | *   | AG   | 116 | 15.5   | .0   | 33.0 |
| Κ. | WD          | *     | 0       | 8       | -500  | 8     | *   | AG   | 22  | 8.4    | .0   | 33.0 |
| L. | WE          | *     | -500    | 8       | -1500 | 8     | *   | AG   | 22  | 6.3    | .0   | 35.0 |
| Μ. | EF          | *     | -1500   | -8      | -500  | -8    | *   | AG   | 18  | 6.3    | .0   | 35.0 |
| N. | EA          | *     | -500    | -8      | 0     | -8    | *   | AG   | 18  | 15.5   | .0   | 33.0 |
| Ο. | ED          | *     | 0       | -8      | 500   | -8    | *   | AG   | 589 | 17.6   | .0   | 33.0 |
| P. | EE          | *     | 500     | -8      | 1500  | -8    | *   | AG   | 589 | 6.3    | .0   | 35.0 |
| Q. | NL          | *     | 0       | 0       | 8     | -500  | *   | AG   | 3   | 9.3    | .0   | 33.0 |
| R. | SL          | *     | 0       | 0       | -8    | 500   | *   | AG   | 505 | 9.9    | .0   | 33.0 |
| s. | WL          | *     | 0       | 0       | 500   | 8     | *   | AG   | 39  | 15.5   | .0   | 33.0 |
| Т. | EL          | *     | -1900   | 0       | -1800 | 0     | *   | AG   | 0   | 15.5   | .0   | 33.0 |
|    | POLLUTANT:  | Ca    | arbon 1 | Monoxid | le    |       |     |      |     |        |      |      |

#### III. RECEPTOR LOCATIONS

|                            | RECEPTOR                               | *<br>*<br>_*  | COORD:                             | INATES<br>Y                         | (FT)<br>Z                |
|----------------------------|----------------------------------------|---------------|------------------------------------|-------------------------------------|--------------------------|
| 1.<br>2.<br>3.<br>4.<br>5. | NE3<br>SE3<br>SW3<br>NW3<br>NE7<br>SE7 | * * * * * * * | 25<br>25<br>-25<br>-25<br>38<br>38 | 25<br>-25<br>-25<br>25<br>38<br>-38 | 6.0<br>6.0<br>6.0<br>6.0 |
| 7.<br>8.                   | SW7<br>NW7                             | *             | -38<br>-38                         | -38<br>38                           | 6.0<br>6.0               |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

|    |         | *  | BRG   | *     | PRED  | *     |    | _  |    | CONC/I | M) | _  | a  |    |
|----|---------|----|-------|-------|-------|-------|----|----|----|--------|----|----|----|----|
| RI | ECEPTOR | *  | (DEG) | *     | (PPM) | *     | A  | В  | С  | D      | E  | F  | G  | Н  |
|    |         | ×- |       | - × . |       | - × - |    |    |    |        |    |    |    |    |
| 1. | NE3     | *  | 96.   | *     | 1.8   | *     | .0 | .0 | .0 | .0     | .0 | .0 | .0 | .0 |
| 2. | SE3     | *  | 85.   | *     | 2.9   | *     | .0 | .0 | .0 | .0     | .0 | .0 | .0 | .0 |
| 3. | SW3     | *  | 86.   | *     | 2.7   | *     | .0 | .0 | .0 | .0     | .0 | .0 | .0 | .0 |
| 4. | NW3     | *  | 96.   | *     | 2.2   | *     | .0 | .0 | .0 | .0     | .0 | .0 | .0 | .0 |
| 5. | NE7     | *  | 99.   | *     | 1.3   | *     | .0 | .0 | .0 | .0     | .0 | .0 | .0 | .0 |

RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

|          | * | CONC/LINK<br>(PPM) |     |    |     |     |     |     |     |     |     |     |     |
|----------|---|--------------------|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| RECEPTOR | * | I                  | J   | K  | L   | M   | N   | 0   | P   | Q   | R   | S   | Т   |
| 1. NE3   | * | . 0                | . 5 | .0 | . 0 | . 0 | . 0 | 1.1 | . 1 | . 0 | . 0 | . 1 | . 0 |
| 2. SE3   | * | . 0                | . 2 | .0 | . 0 | .0  | .0  | 2.4 | .1  | . 0 | . 0 | . 1 | . 0 |
| 3. SW3   | * | .0                 | . 2 | .0 | .0  | . 0 | .0  | 2.1 | .1  | .0  | . 0 | .1  | .0  |
| 4. NW3   | * | .0                 | . 4 | .0 | .0  | . 0 | .0  | 1.1 | .1  | .0  | . 3 | .1  | .0  |
| 5. NE7   | * | .0                 | . 3 | .0 | .0  | . 0 | .0  | . 9 | .0  | .0  | . 0 | .0  | .0  |
| 6. SE7   | * | .0                 | . 2 | .0 | .0  | . 0 | .0  | 1.2 | .0  | .0  | . 0 | .0  | .0  |

Title : Mono County Avg 2009 Winter Default Title

Version : Emfac2002 V2.2 Apr 23 2003

Run Date : 06/28/06 14:07:34

Scen Year: 2009 -- Model Years: 1965 to 2009

Season : Winter

Year: 2009 -- Model Years 1965 to 2009 Inclusive -- Winter

Emfac2002 Emission Factors: V2.2 Apr 23 2003

Pollutant Name: Carbon Monoxide Temperature: 27F Relative Humidity: 50%

| Speed |       |        |        |        |        |        |        |
|-------|-------|--------|--------|--------|--------|--------|--------|
| MPH   | LDA   | LDT    | MDT    | HDT    | UBUS   | MCY    | ALL    |
|       |       |        |        |        |        |        |        |
| 3     | 9.498 | 17.946 | 14.768 | 35.841 | 40.226 | 54.809 | 17.560 |
| 4     | 9.104 | 17.066 | 14.109 | 35.841 | 40.226 | 54.809 | 16.934 |
| 5     | 8.739 | 16.257 | 13.505 | 35.841 | 40.226 | 54.809 | 16.359 |
| 6     | 8.400 | 15.509 | 12.826 | 32.931 | 36.847 | 52.521 | 15.486 |
| 7     | 8.085 | 14.820 | 12.205 | 30.322 | 33.827 | 50.430 | 14.689 |
| 8     | 7.792 | 14.184 | 11.634 | 27.980 | 31.125 | 48.520 | 13.961 |
| 9     | 7.519 | 13.597 | 11.110 | 25.874 | 28.704 | 46.775 | 13.294 |
| 10    | 7.265 | 13.053 | 10.627 | 23.979 | 26.530 | 45.183 | 12.682 |
| 11    | 7.027 | 12.549 | 10.183 | 22.270 | 24.576 | 43.733 | 12.121 |
| 12    | 6.804 | 12.082 | 9.772  | 20.727 | 22.817 | 42.412 | 11.604 |
| 13    | 6.595 | 11.648 | 9.393  | 19.332 | 21.231 | 41.214 | 11.129 |
| 14    | 6.400 | 11.244 | 9.041  | 18.070 | 19.800 | 40.128 | 10.690 |
| 15    | 6.216 | 10.868 | 8.716  | 16.926 | 18.507 | 39.148 | 10.286 |
| 16    | 6.043 | 10.518 | 8.415  | 15.889 | 17.338 | 38.268 | 9.912  |
| 17    | 5.881 | 10.192 | 8.135  | 14.947 | 16.278 | 37.481 | 9.566  |
| 18    | 5.728 | 9.887  | 7.874  | 14.092 | 15.318 | 36.783 | 9.246  |
| 19    | 5.583 | 9.602  | 7.632  | 13.313 | 14.446 | 36.168 | 8.950  |
| 20    | 5.447 | 9.337  | 7.407  | 12.605 | 13.655 | 35.635 | 8.675  |
| 21    | 5.318 | 9.088  | 7.198  | 11.960 | 12.936 | 35.178 | 8.420  |
| 22    | 5.197 | 8.856  | 7.003  | 11.372 | 12.282 | 34.795 | 8.184  |
| 23    | 5.082 | 8.639  | 6.821  | 10.836 | 11.687 | 34.485 | 7.965  |
| 24    | 4.974 | 8.436  | 6.652  | 10.348 | 11.146 | 34.244 | 7.762  |
| 25    | 4.871 | 8.247  | 6.494  | 9.903  | 10.654 | 34.073 | 7.574  |
| 26    | 4.775 | 8.070  | 6.348  | 9.497  | 10.207 | 33.969 | 7.400  |
| 27    | 4.683 | 7.904  | 6.211  | 9.127  | 9.800  | 33.934 | 7.239  |
| 28    | 4.596 | 7.750  | 6.085  | 8.790  | 9.430  | 33.965 | 7.090  |
| 29    | 4.515 | 7.607  | 5.967  | 8.484  | 9.095  | 34.064 | 6.953  |
| 30    | 4.437 | 7.473  | 5.858  | 8.206  | 8.791  | 34.232 | 6.826  |
| 31    | 4.365 | 7.350  | 5.757  | 7.955  | 8.516  | 34.469 | 6.711  |
| 32    | 4.296 | 7.235  | 5.664  | 7.727  | 8.268  | 34.778 | 6.605  |
| 33    | 4.232 | 7.129  | 5.579  | 7.522  | 8.045  | 35.160 | 6.509  |
| 34    | 4.171 | 7.032  | 5.501  | 7.338  | 7.846  | 35.618 | 6.422  |
| 35    | 4.114 | 6.944  | 5.429  | 7.174  | 7.669  | 36.155 | 6.344  |
| 36    | 4.061 | 6.863  | 5.365  | 7.029  | 7.513  | 36.775 | 6.275  |
| 37    | 4.012 | 6.791  | 5.308  | 6.901  | 7.376  | 37.481 | 6.214  |
| 38    | 3.966 | 6.726  | 5.256  | 6.790  | 7.258  | 38.280 | 6.162  |
| 39    | 3.924 | 6.669  | 5.212  | 6.696  | 7.157  | 39.175 | 6.118  |
| 40    | 3.885 | 6.620  | 5.173  | 6.616  | 7.074  | 40.173 | 6.083  |

### Eagle Lodge (Year 2024 Buildout)

CALINE4 Modeling Results and Estimated Local 1-Hour Carbon Monoxide Concentrations (ppm)

Projected Background 1-Hour CO Concentrations (ppm) a

Monitoring Station: Central LA

Year 1-Hr Concentration
2024 1.94

|                                           | Future With                             | nout Project                                        | Future With Project                     |                                                     |                                                         |  |  |  |
|-------------------------------------------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------------------|---------------------------------------------------------|--|--|--|
| Intersection<br>and<br>Receptor Locations | Traffic CO<br>Contribution <sup>b</sup> | Estimated<br>Local CO<br>Concentration <sup>c</sup> | Traffic CO<br>Contribution <sup>b</sup> | Estimated<br>Local CO<br>Concentration <sup>c</sup> | Exceedance of<br>Significance<br>Threshold <sup>d</sup> |  |  |  |
| Meridian Boulevard and East               | of Majestic Pines Ro                    | oad North 2024 WKN                                  | С                                       |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                      | 0.3<br>0.4<br>0.3<br>0.3                | 2.2<br>2.3<br>2.2<br>2.2                            | 0.4<br>0.6<br>0.5<br>0.4                | 2.3<br>2.5<br>2.4<br>2.3                            | NO<br>NO<br>NO<br>NO                                    |  |  |  |
| Meridian Boulevard and Wes                | t of Majestic Pines R                   | oad North 2024 WKN                                  | IC                                      |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                      | 0.3<br>0.3<br>0.3<br>0.3                | 2.2<br>2.2<br>2.2<br>2.2                            | 0.4<br>0.7<br>0.7<br>0.5                | 2.3<br>2.6<br>2.6<br>2.4                            | NO<br>NO<br>NO<br>NO                                    |  |  |  |
| Minaret Road and Meridian E               | Boulevard 2024 WKN                      | С                                                   |                                         |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                      | 0.5<br>0.5<br>0.6<br>0.6                | 2.4<br>2.4<br>2.5<br>2.5                            | 0.6<br>0.7<br>0.7<br>0.7                | 2.5<br>2.6<br>2.6<br>2.6                            | NO<br>NO<br>NO<br>NO                                    |  |  |  |
| Old Mammoth Road and Mer                  | ridian Boulevard 202                    | 4 WKNE                                              |                                         |                                                     |                                                         |  |  |  |
| NE<br>SE<br>SW<br>NW                      | 0.7<br>0.6<br>0.7<br>0.7                | 2.6<br>2.5<br>2.6<br>2.6                            | 0.6<br>0.5<br>0.6<br>0.8                | 2.5<br>2.4<br>2.5<br>2.7                            | NO<br>NO<br>NO<br>NO                                    |  |  |  |

a Based on guidance provided by the AQMD Air Quality Analysis Guidance Handbook

b The 1-hour traffic contribution (ppm) is determined by inputing total traffic volumes into the CALINE4 model.

c The estimated local concentration is the traffic contribution + the background concentration.

d The California Ambient Air Quality Standard for 1-hour CO concentrations is 20 ppm.

### Eagle Lodge (Year 2024 Buildout)

CALINE4 Modeling Results and Estimated Local 8-Hour Carbon Monoxide Concentrations (ppm)

Projected Background 8-Hour CO Concentrations (ppm) <sup>a</sup>

Monitoring Station: Central LA

Year
2024

8-Hr Concentration
1.36

Average Persistence Factor = 0.70

|                                           | Future With                             | out Project                                         |                                         | Future With Project                                 |                                                         |
|-------------------------------------------|-----------------------------------------|-----------------------------------------------------|-----------------------------------------|-----------------------------------------------------|---------------------------------------------------------|
| Intersection<br>and<br>Receptor Locations | Traffic CO<br>Contribution <sup>b</sup> | Estimated<br>Local CO<br>Concentration <sup>c</sup> | Traffic CO<br>Contribution <sup>b</sup> | Estimated<br>Local CO<br>Concentration <sup>c</sup> | Exceedance of<br>Significance<br>Threshold <sup>d</sup> |
| Meridian Boulevard and                    | East of Majestic Pine                   | es Road North 2024 V                                | VKND                                    |                                                     |                                                         |
| NE<br>SE<br>SW<br>NW                      | 0.1<br>0.2<br>0.2<br>0.2                | 1.5<br>1.6<br>1.6<br>1.6                            | 0.2<br>0.3<br>0.3<br>0.3                | 1.6<br>1.6<br>1.6<br>1.6                            | NO<br>NO<br>NO<br>NO                                    |
| Meridian Boulevard and                    | West of Majestic Pine                   | es Road North 2024 \                                | WKND                                    |                                                     |                                                         |
| NE<br>SE<br>SW<br>NW                      | 0.1<br>0.1<br>0.1<br>0.1                | 1.5<br>1.5<br>1.5<br>1.5                            | 0.2<br>0.3<br>0.3<br>0.3                | 1.6<br>1.6<br>1.6<br>1.6                            | NO<br>NO<br>NO<br>NO                                    |
| Minaret Road and Merid                    | lian Boulevard 2024 V                   | VKND                                                |                                         |                                                     |                                                         |
| NE<br>SE<br>SW<br>NW                      | 0.3<br>0.3<br>0.3<br>0.3                | 1.6<br>1.6<br>1.6<br>1.6                            | 0.3<br>0.4<br>0.4<br>0.4                | 1.6<br>1.7<br>1.7<br>1.7                            | NO<br>NO<br>NO<br>NO                                    |
| Old Mammoth Road and                      | d Meridian Boulevard                    | 2024 WKND                                           |                                         |                                                     |                                                         |
| NE<br>SE<br>SW<br>NW                      | 0.4<br>0.3<br>0.4<br>0.4                | 1.7<br>1.6<br>1.7<br>1.7                            | 0.4<br>0.3<br>0.3<br>0.4                | 1.7<br>1.6<br>1.6<br>1.7                            | NO<br>NO<br>NO<br>NO                                    |

a Based on guidance provided by the AQMD Air Quality Analysis Guidance Handbook.

b The persistence factor is calculated as recommended in Table B.15 in the <u>Transportation Project-Level Carbon Monoxide Protocol</u> (Institute of Transportation Studies, UC Davis, Revised 1997). This is a generalized persistence factor likely to provide a conservative estimate in most situations.

c The estimated local concentration is the traffic contribution + the background concentration.

d The California Ambient Air Quality Standard for 8-hour CO concentrations is 9 ppm.

JOB: MERIDIAN BOULEVARD AND EAST MAJESTIC PINES ROAD WKND NP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | .5    | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |  |
|--------|-------|---------|-------|------|--------|-----|------|----|------|--|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |  |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |  |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |  |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |  |

#### II. LINK VARIABLES

|    | LINK        | *     | LINK  | COORDI | NATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|-------|-------|--------|-------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *     | X1    | Y1     | X2    | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _ * . |       |        |       |       | _ * - |      |     |        |      |      |
| Α. | NF          | *     | 8     | -1500  | 8     | -500  | *     | AG   | 0   | 1.6    | .0   | 35.0 |
| в. | NA          | *     | 8     | -500   | 8     | 0     | *     | AG   | 0   | 3.0    | .0   | 33.0 |
| C. | ND          | *     | 8     | 0      | 8     | 500   | *     | AG   | 338 | 2.3    | .0   | 33.0 |
| D. | NE          | *     | 8     | 500    | 8     | 1500  | *     | AG   | 338 | 1.6    | .0   | 35.0 |
| E. | SF          | *     | -8    | 1500   | -8    | 500   | *     | AG   | 265 | 1.6    | .0   | 35.0 |
| F. | SA          | *     | -8    | 500    | -8    | 0     | *     | AG   | 65  | 3.0    | .0   | 33.0 |
| G. | SD          | *     | -8    | 0      | -8    | -500  | *     | AG   | 0   | 2.0    | .0   | 33.0 |
| Η. | SE          | *     | -8    | -500   | -8    | -1500 | *     | AG   | 0   | 1.6    | .0   | 35.0 |
| I. | WF          | *     | 1500  | 15     | 500   | 15    | *     | AG   | 374 | 1.6    | .0   | 50.0 |
| J. | WA          | *     | 500   | 15     | 0     | 15    | *     | AG   | 374 | 2.2    | .0   | 33.0 |
| Κ. | WD          | *     | 0     | 15     | -500  | 15    | *     | AG   | 259 | 1.7    | .0   | 33.0 |
| L. | WE          | *     | -500  | 15     | -1500 | 15    | *     | AG   | 259 | 1.6    | .0   | 50.0 |
| Μ. | EF          | *     | -1500 | -15    | -500  | -15   | *     | AG   | 415 | 1.6    | .0   | 50.0 |
| N. | EA          | *     | -500  | -15    | 0     | -15   | *     | AG   | 257 | 2.2    | .0   | 33.0 |
| Ο. | ED          | *     | 0     | -15    | 500   | -15   | *     | AG   | 457 | 1.7    | .0   | 33.0 |
| P. | EE          | *     | 500   | -15    | 1500  | -15   | *     | AG   | 457 | 1.6    | .0   | 50.0 |
| Q. | NL          | *     | 0     | -1900  | 0     | -1800 | *     | AG   | 0   | 3.0    | .0   | 33.0 |
| R. | SL          | *     | 0     | 0      | -8    | 500   | *     | AG   | 200 | 3.0    | .0   | 33.0 |
| S. | WL          | *     | 0     | 0      | 500   | 8     | *     | AG   | 0   | 2.2    | .0   | 33.0 |
| Т. | EL          | *     | 0     | 0      | -500  | -8    | *     | AG   | 158 | 2.2    | .0   | 33.0 |

#### III. RECEPTOR LOCATIONS

|    |          | *  | COORD | INATES | (FT) |
|----|----------|----|-------|--------|------|
| ]  | RECEPTOR | *  | X     | Y      | Z    |
|    |          | _* |       |        |      |
| 1. | NE3      | *  | 25    | 40     | 6.0  |
| 2. | SE3      | *  | 25    | -40    | 6.0  |
| 3. | SW3      | *  | -25   | -40    | 6.0  |
| 4. | NW3      | *  | -25   | 40     | 6.0  |
| 5. | NE7      | *  | 38    | 53     | 6.0  |
| 6. | SE7      | *  | 38    | -53    | 6.0  |
| 7. | SW7      | *  | -38   | -53    | 6.0  |
| 8. | NW7      | *  | -38   | 53     | 6.0  |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

| RE | CEPTOR | * * | BRG<br>(DEG) | * * * | PRED<br>CONC<br>(PPM) | * * | A  | В  | С   | CONC/<br>(PP<br>D |    | F  | G  | Н  |
|----|--------|-----|--------------|-------|-----------------------|-----|----|----|-----|-------------------|----|----|----|----|
|    |        | *-  |              | -*.   |                       | -*- |    |    |     |                   |    |    |    |    |
| 1. | NE3    | *   | 355.         | *     | . 3                   | *   | .0 | .0 | . 2 | .0                | .0 | .0 | .0 | .0 |
| 2. | SE3    | *   | 356.         | *     | . 4                   | *   | .0 | .0 | . 2 | .0                | .0 | .0 | .0 | .0 |
| 3. | SW3    | *   | 4.           | *     | . 3                   | *   | .0 | .0 | .0  | .0                | .0 | .0 | .0 | .0 |
| 4. | NW3    | *   | 95.          | *     | . 3                   | *   | .0 | .0 | .0  | .0                | .0 | .0 | .0 | .0 |
| 5. | NE7    | *   | 263.         | *     | . 2                   | *   | .0 | .0 | .0  | .0                | .0 | .0 | .0 | .0 |
| 6. | SE7    | *   | 354.         | *     | . 3                   | *   | .0 | .0 | .1  | .0                | .0 | .0 | .0 | .0 |
| 7. | SW7    | *   | 6.           | *     | . 3                   | *   | .0 | .0 | .0  | .0                | .0 | .0 | .0 | .0 |
| 8. | NW7    | *   | 96.          | *     | .3                    | *   | .0 | .0 | .0  | .0                | .0 | .0 | .0 | .0 |

|          | * |     |     |     |     | (   | CONC/I |     |     |     |     |     |     |
|----------|---|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|
| RECEPTOR | * | I   | J   | K   | L   | M   | N      | 0   | P   | Q   | R   | S   | T   |
| 1. NE3   | * | . 0 | . 0 | . 0 | . 0 | . 0 | . 0    | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| 2. SE3   | * | .0  | .0  | .0  | .0  | .0  | .0     | . 0 | . 0 | .0  | .0  | .0  | .0  |
| 3. SW3   | * | .0  | .0  | .0  | .0  | .0  | .0     | .0  | .0  | .0  | .0  | .0  | . 0 |
| 4. NW3   | * | .0  | .1  | .0  | .0  | .0  | .0     | .0  | .0  | .0  | .0  | .0  | . 0 |
| 5. NE7   | * | .0  | .0  | .0  | .0  | .0  | .0     | .0  | .0  | .0  | .0  | .0  | . 0 |
| 6. SE7   | * | .0  | .0  | .0  | .0  | .0  | .0     | .0  | .0  | .0  | .0  | .0  | . 0 |
| 7. SW7   | * | .0  | .0  | .0  | .0  | .0  | .0     | .0  | .0  | .0  | .0  | .0  | . 0 |
| 8. NW7   | * | . 0 | . 0 | . 0 | . 0 | .0  | .0     | .0  | .0  | . 0 | .0  | . 0 | . 0 |

JOB: MERIDIAN BOULEVARD AND EAST MAJESTIC PINES ROAD NORTH WKND WP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | .5    | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |  |
|--------|-------|---------|-------|------|--------|-----|------|----|------|--|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |  |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |  |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |  |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |  |

#### II. LINK VARIABLES

|    | LINK        | *    | LINK        | COORD | NATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|------|-------------|-------|-------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *    | X1          | Y1    | X2    | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _*-  |             |       |       |       | _ * . |      |     |        |      |      |
| Α. | NF          | *    | 8           | -1500 | 8     | -500  | *     | AG   | 0   | 1.6    | .0   | 35.0 |
| в. | NA          | *    | 8           | -500  | 8     | 0     | *     | AG   | 0   | 3.1    | .0   | 33.0 |
| C. | ND          | *    | 8           | 0     | 8     | 500   | *     | AG   | 395 | 3.0    | .0   | 33.0 |
| D. | NE          | *    | 8           | 500   | 8     | 1500  | *     | AG   | 395 | 1.6    | .0   | 35.0 |
| E. | SF          | *    | -8          | 1500  | -8    | 500   | *     | AG   | 341 | 1.6    | .0   | 35.0 |
| F. | SA          | *    | -8          | 500   | -8    | 0     | *     | AG   | 98  | 3.1    | .0   | 33.0 |
| G. | SD          | *    | -8          | 0     | -8    | -500  | *     | AG   | 0   | 2.0    | .0   | 33.0 |
| н. | SE          | *    | -8          | -500  | -8    | -1500 | *     | AG   | 0   | 1.6    | .0   | 35.0 |
| I. | WF          | *    | 1500        | 15    | 500   | 15    | *     | AG   | 534 | 1.6    | .0   | 50.0 |
| J. | WA          | *    | 500         | 15    | 0     | 15    | *     | AG   | 534 | 2.2    | .0   | 33.0 |
| к. | WD          | *    | 0           | 15    | -500  | 15    | *     | AG   | 441 | 1.7    | .0   | 33.0 |
| L. | WE          | *    | -500        | 15    | -1500 | 15    | *     | AG   | 441 | 1.6    | .0   | 50.0 |
| Μ. | EF          | *    | -1500       | -15   | -500  | -15   | *     | AG   | 689 | 1.6    | .0   | 50.0 |
| N. | EA          | *    | -500        | -15   | 0     | -15   | *     | AG   | 485 | 2.2    | .0   | 33.0 |
| Ο. | ED          | *    | 0           | -15   | 500   | -15   | *     | AG   | 728 | 1.7    | .0   | 33.0 |
| P. | EE          | *    | 500         | -15   | 1500  | -15   | *     | AG   | 728 | 1.6    | .0   | 50.0 |
| 0. | NL          | *    | 0           | -1900 | 0     | -1800 | *     | AG   | 0   | 3.1    | .0   | 33.0 |
|    | SL          | *    |             |       | -8    |       |       | AG   | 243 | 3.1    | . 0  | 33.0 |
| s. | WL          | *    | 0           | 0     | 500   | 8     | *     | AG   | 0   | 2.2    | . 0  | 33.0 |
| т. | EL          | *    | 0           | 0     | -500  | -8    | *     | AG   | 204 | 2.2    | . 0  | 33.0 |
|    | T DECEDED   | T 00 | 33 m T O 37 | ,     |       |       |       |      |     |        |      |      |

III. RECEPTOR LOCATIONS

| RECEPTOR                                                                     | *                               | COORD<br>X                                | INATES<br>Y                                | (FT)<br>Z                              |
|------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------------|
| 1. NE3<br>2. SE3<br>3. SW3<br>4. NW3<br>5. NE7<br>6. SE7<br>7. SW7<br>8. NW7 | * * * * * * * * * * * * * * * * | 25<br>25<br>-25<br>-25<br>38<br>38<br>-38 | 40<br>-40<br>-40<br>40<br>53<br>-53<br>-53 | 6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0 |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

|    |         | *       | BRG   | * | PRED<br>CONC | * |    |    |     | CONC/ |    |    |    |    |
|----|---------|---------|-------|---|--------------|---|----|----|-----|-------|----|----|----|----|
| R  | ECEPTOR | *<br>*_ | (DEG) | * | (PPM)        | * | A  | В  | C   | D     | E  | F  | G  | H  |
| 1. | NE3     | *       | 264.  | * | . 4          | * | .0 | .0 | .0  | .0    | .0 | .0 | .0 | .0 |
| 2. | SE3     | *       | 356.  | * | . 6          | * | .0 | .0 | . 2 | .0    | .0 | .0 | .0 | .0 |
| 3. | SW3     | *       | 5.    | * | .5           | * | .0 | .0 | .1  | .0    | .0 | .0 | .0 | .0 |
| 4. | NW3     | *       | 95.   | * | . 4          | * | .0 | .0 | .0  | .0    | .0 | .0 | .0 | .0 |
| 5. | NE7     | *       | 263.  | * | . 3          | * | .0 | .0 | .0  | .0    | .0 | .0 | .0 | .0 |
| 6. | SE7     | *       | 353.  | * | . 4          | * | .0 | .0 | . 2 | .0    | .0 | .0 | .0 | .0 |
| 7. | SW7     | *       | 6.    | * | . 4          | * | .0 | .0 | .0  | .0    | .0 | .0 | .0 | .0 |
| 8. | NW7     | *       | 96.   | * | . 4          | * | .0 | .0 | .0  | .0    | .0 | .0 | .0 | .0 |

|          | * |     | CONC/LINK<br>(PPM) |     |     |     |     |     |     |     |     |     |     |  |  |
|----------|---|-----|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|
| RECEPTOR | * | I   | J                  | K   | L   | M   | N   | 0   | P   | Q   | R   | S   | T   |  |  |
|          | * |     |                    |     |     |     |     |     |     |     |     |     |     |  |  |
| 1. NE3   | * | .0  | .0                 | . 1 | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  |  |  |
| 2. SE3   | * | .0  | .0                 | .0  | .0  | .0  | .0  | .0  | .0  | .0  | . 1 | .0  | .0  |  |  |
| 3. SW3   | * | .0  | .0                 | .0  | .0  | .0  | .0  | .0  | .0  | .0  | . 1 | . 0 | .0  |  |  |
| 4. NW3   | * | .0  | . 2                | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  | . 0 | .0  |  |  |
| 5. NE7   | * | .0  | .0                 | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  | . 0 | .0  |  |  |
| 6. SE7   | * | .0  | .0                 | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  | . 0 | .0  |  |  |
| 7. SW7   | * | .0  | .0                 | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  |  |  |
| 8. NW7   | * | . 0 | . 1                | .0  | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |  |  |

JOB: OLD MAMMOTH ROAD AND MERIDIAN BOULEVARD WKND NP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | .5    | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |
|--------|-------|---------|-------|------|--------|-----|------|----|------|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |

#### II. LINK VARIABLES

|    | LINK        | *   | LINK  | COORDI | NATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|-----|-------|--------|-------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *   | X1    | Y1     | X2    | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _*. |       |        |       |       | _ * - |      |     |        |      |      |
| Α. | NF          | *   | 15    | -1500  | 15    | -500  | *     | AG   | 650 | 1.6    | .0   | 35.0 |
| в. | NA          | *   | 15    | -500   | 15    | 0     | *     | AG   | 534 | 2.4    | .0   | 33.0 |
| C. | ND          | *   | 15    | 0      | 15    | 500   | *     | AG   | 637 | 1.8    | .0   | 33.0 |
| D. | NE          | *   | 15    | 500    | 15    | 1500  | *     | AG   | 637 | 1.6    | .0   | 35.0 |
| Ε. | SF          | *   | -15   | 1500   | -15   | 500   | *     | AG   | 903 | 1.6    | .0   | 35.0 |
| F. | SA          | *   | -15   | 500    | -15   | 0     | *     | AG   | 693 | 2.4    | .0   | 33.0 |
| G. | SD          | *   | -15   | 0      | -15   | -500  | *     | AG   | 937 | 2.1    | .0   | 33.0 |
| Η. | SE          | *   | -15   | -500   | -15   | -1500 | *     | AG   | 937 | 1.6    | .0   | 35.0 |
| I. | WF          | *   | 1500  | 23     | 500   | 23    | *     | AG   | 484 | 1.6    | .0   | 50.0 |
| J. | WA          | *   | 500   | 23     | 0     | 23    | *     | AG   | 327 | 2.7    | .0   | 45.0 |
| К. | WD          | *   | 0     | 23     | -500  | 23    | *     | AG   | 427 | 1.8    | .0   | 33.0 |
| L. | WE          | *   | -500  | 23     | -1500 | 23    | *     | AG   | 427 | 1.6    | .0   | 50.0 |
| Μ. | EF          | *   | -1500 | -23    | -500  | -23   | *     | AG   | 591 | 1.6    | .0   | 50.0 |
| N. | EA          | *   | -500  | -23    | 0     | -23   | *     | AG   | 478 | 2.7    | .0   | 45.0 |
| Ο. | ED          | *   | 0     | -23    | 500   | -23   | *     | AG   | 627 | 1.9    | .0   | 33.0 |
| P. | EE          | *   | 500   | -23    | 1500  | -23   | *     | AG   | 627 | 1.6    | .0   | 50.0 |
| Q. | NL          | *   | 0     | 0      | 15    | -500  | *     | AG   | 116 | 2.4    | .0   | 33.0 |
| R. | SL          | *   | 0     | 0      | -15   | 500   | *     | AG   | 210 | 2.4    | .0   | 33.0 |
| s. | WL          | *   | 0     | 0      | 500   | 15    | *     | AG   | 157 | 2.7    | .0   | 33.0 |
| Т. | EL          | *   | -1900 | 0      | -1800 | 0     | *     | AG   | 113 | 2.7    | .0   | 33.0 |

#### III. RECEPTOR LOCATIONS

| RECEPTOR                                                | *<br>*<br>*     | COORD<br>X                                | INATES<br>Y                                | (FT)<br>Z                              |
|---------------------------------------------------------|-----------------|-------------------------------------------|--------------------------------------------|----------------------------------------|
| 1. NE3 2. SE3 3. SW3 4. NW3 5. NE7 6. SE7 7. SW7 8. NW7 | * * * * * * * * | 33<br>33<br>-33<br>-33<br>46<br>46<br>-46 | 48<br>-48<br>-48<br>48<br>61<br>-61<br>-61 | 6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0 |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

| RECEPTOR                                                | *<br>*<br>*   | BRG<br>(DEG)                                     | * * *           | PRED<br>CONC<br>(PPM)      | *<br>*<br>* | A  | В                                | С                          | CONC/<br>(PP:<br>D |    | F                                | G                                | Н  |
|---------------------------------------------------------|---------------|--------------------------------------------------|-----------------|----------------------------|-------------|----|----------------------------------|----------------------------|--------------------|----|----------------------------------|----------------------------------|----|
| 1. NE3 2. SE3 3. SW3 4. NW3 5. NE7 6. SE7 7. SW7 8. NW7 | * * * * * * * | 185.<br>355.<br>5.<br>175.<br>186.<br>353.<br>6. | * * * * * * * * | .7<br>.6<br>.7<br>.5<br>.4 | *           | .0 | .2<br>.0<br>.0<br>.0<br>.2<br>.0 | .0<br>.2<br>.0<br>.0<br>.0 | .0                 | .0 | .0<br>.0<br>.3<br>.0<br>.0<br>.0 | .1<br>.0<br>.1<br>.3<br>.0<br>.0 | .0 |

| D. G. | * | _   | -   |     | -   |    | CONC/I |     | _   |     | _   | -   |    |
|-------------------------------------------|---|-----|-----|-----|-----|----|--------|-----|-----|-----|-----|-----|----|
| RECEPTOR                                  |   | Τ   | J   | K   | L   | M  | N      | O   | P   | Q   | R   | S   | Т  |
|                                           | ~ |     |     |     |     |    |        |     |     |     |     |     |    |
| 1. NE3                                    | * | . 0 | . 0 | . 0 | . 0 | .0 | . 0    | . 0 | . 0 | . 0 | . 0 | . 0 | .0 |
| 2. SE3                                    | * | . 0 | .0  | .0  | .0  | .0 | . 0    | .0  | .0  | .0  | .0  | .0  | .0 |
| 3. SW3                                    | * | . 0 | .0  | .0  | .0  | .0 | . 0    | .0  | .0  | .0  | .0  | .0  | .0 |
| 4. NW3                                    | * | . 0 | .0  | .0  | .0  | .0 | . 0    | .0  | .0  | .0  | .0  | .0  | .0 |
| 5. NE7                                    | * | . 0 | .0  | .0  | .0  | .0 | . 0    | .0  | .0  | .0  | .0  | .0  | .0 |
| 6. SE7                                    | * | . 0 | .0  | .0  | .0  | .0 | . 0    | .0  | .0  | .0  | .0  | .0  | .0 |
| 7. SW7                                    | * | .0  | .0  | .0  | .0  | .0 | .0     | .0  | .0  | .0  | .0  | .0  | .0 |
| 8. NW7                                    | * | . 0 | .0  | .0  | .0  | .0 | . 0    | .0  | .0  | .0  | .0  | .0  | .0 |

JOB: OLD MAMMOTH ROAD AND MERIDIAN BOULEVARD WKND WP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | . 5   | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |
|--------|-------|---------|-------|------|--------|-----|------|----|------|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |
| MIXH=  | 1000. | M       | AMB=  | . 0  | PPM    |     |      |    |      |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |

#### II. LINK VARIABLES

|    | LINK        | *     | LINK  | COORDI | NATES | (FT)  | *     |      |      | EF     | H    | W    |
|----|-------------|-------|-------|--------|-------|-------|-------|------|------|--------|------|------|
|    | DESCRIPTION | *     | X1    | Y1     | X2    | Y2    | *     | TYPE | VPH  | (G/MI) | (FT) | (FT) |
|    |             | _ * . |       |        |       |       | _ * - |      |      |        |      |      |
| Α. | NF          | *     | 15    | -1500  | 15    | -500  | *     | AG   | 727  | 1.6    | .0   | 35.0 |
| В. | NA          | *     | 15    | -500   | 15    | 0     | *     | AG   | 525  | 2.3    | .0   | 33.0 |
| C. | ND          | *     | 15    | 0      | 15    | 500   | *     | AG   | 241  | 1.7    | .0   | 33.0 |
| D. | NE          | *     | 15    | 500    | 15    | 1500  | *     | AG   | 241  | 1.6    | .0   | 35.0 |
| E. | SF          | *     | -15   | 1500   | -15   | 500   | *     | AG   | 936  | 1.6    | .0   | 35.0 |
| F. | SA          | *     | -15   | 500    | -15   | 0     | *     | AG   | 726  | 2.3    | .0   | 33.0 |
| G. | SD          | *     | -15   | 0      | -15   | -500  | *     | AG   | 1036 | 2.1    | .0   | 33.0 |
| Η. | SE          | *     | -15   | -500   | -15   | -1500 | *     | AG   | 1036 | 1.6    | .0   | 35.0 |
| I. | WF          | *     | 1500  | 23     | 500   | 23    | *     | AG   | 407  | 1.6    | .0   | 50.0 |
| J. | WA          | *     | 500   | 23     | 0     | 23    | *     | AG   | 277  | 2.8    | .0   | 45.0 |
| Κ. | WD          | *     | 0     | 23     | -500  | 23    | *     | AG   | 496  | 1.9    | .0   | 33.0 |
| L. | WE          | *     | -500  | 23     | -1500 | 23    | *     | AG   | 496  | 1.6    | .0   | 50.0 |
| Μ. | EF          | *     | -1500 | -23    | -500  | -23   | *     | AG   | 479  | 1.6    | .0   | 50.0 |
| N. | EA          | *     | -500  | -23    | 0     | -23   | *     | AG   | 479  | 2.8    | .0   | 45.0 |
| Ο. | ED          | *     | 0     | -23    | 500   | -23   | *     | AG   | 776  | 2.0    | .0   | 33.0 |
| P. | EE          | *     | 500   | -23    | 1500  | -23   | *     | AG   | 776  | 1.6    | .0   | 50.0 |
| Q. | NL          | *     | 0     | 0      | 15    | -500  | *     | AG   | 202  | 2.3    | .0   | 33.0 |
| R. | SL          | *     | 0     | 0      | -15   | 500   | *     | AG   | 210  | 2.3    | .0   | 33.0 |
| S. | WL          | *     | 0     | 0      | 500   | 15    | *     | AG   | 130  | 2.8    | .0   | 33.0 |
| т. | EL          | *     | -1900 | 0      | -1800 | 0     | *     | AG   | 0    | 2.8    | .0   | 33.0 |

#### III. RECEPTOR LOCATIONS

|          | *   | COORD | INATES | (FT) |
|----------|-----|-------|--------|------|
| RECEPTOR | *   | X     | Y      | Z    |
|          | -*- |       |        |      |
| 1. NE3   | *   | 33    | 48     | 6.0  |
| 2. SE3   | *   | 33    | -48    | 6.0  |
| 3. SW3   | *   | -33   | -48    | 6.0  |
| 4. NW3   | *   | -33   | 48     | 6.0  |
| 5. NE7   | *   | 46    | 61     | 6.0  |
| 6. SE7   | *   | 46    | -61    | 6.0  |
| 7. SW7   | *   | -46   | -61    | 6.0  |
| 8. NW7   | *   | -46   | 61     | 6.0  |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

| R                                | ECEPTOR                                       | * * *         | BRG<br>(DEG)                                | * * * | PRED<br>CONC<br>(PPM)            | * * *   | A  | В                          | С  | CONC/<br>(PP<br>D |    | F                    | G                          | Н  |
|----------------------------------|-----------------------------------------------|---------------|---------------------------------------------|-------|----------------------------------|---------|----|----------------------------|----|-------------------|----|----------------------|----------------------------|----|
| 1.<br>2.<br>3.<br>4.<br>5.<br>6. | NE3<br>SE3<br>SW3<br>NW3<br>NE7<br>SE7<br>SW7 | * * * * * * * | 185.<br>353.<br>83.<br>175.<br>186.<br>276. | * *   | .6<br>.5<br>.6<br>.8<br>.5<br>.4 | * * * * | .0 | .2<br>.0<br>.0<br>.0<br>.1 | .0 | .0                | .0 | .0<br>.1<br>.0<br>.0 | .1<br>.0<br>.2<br>.4<br>.0 | .0 |
| 8.                               | NW7                                           | *             | 174.                                        | *     | .5                               |         | .0 | .0                         | .0 | .0                | .0 | .0                   | . 2                        | .0 |

|          | * |     |     |     |     |     | CONC/I |     |     |     |     |     |     |
|----------|---|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|
| RECEPTOR | * | I   | J   | K   | L   | M   | N      | 0   | P   | Q   | R   | S   | T   |
|          | × |     |     |     |     |     |        |     |     |     |     |     |     |
| 1. NE3   | * | . 0 | .0  | .0  | .0  | . 0 | .0     | . 0 | . 0 | . 0 | .0  | . 0 | . 0 |
| 2. SE3   | * | . 0 | .0  | .0  | .0  | .0  | .0     | . 0 | .0  | . 0 | .0  | . 0 | .0  |
| 3. SW3   | * | .0  | .0  | .0  | .0  | .0  | .0     | . 2 | . 0 | .0  | .0  | .0  | .0  |
| 4. NW3   | * | .0  | .0  | .0  | .0  | .0  | .0     | . 0 | . 0 | .0  | .0  | .0  | .0  |
| 5. NE7   | * | . 0 | . 0 | . 0 | . 0 | . 0 | . 0    | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| 6. SE7   | * | . 0 | . 0 | . 0 | . 0 | . 0 | .1     | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| 7. SW7   | * | . 0 | . 0 | . 0 | . 0 | . 0 | . 0    | . 2 | . 0 | . 0 | . 0 | . 0 | . 0 |
| 8. NW7   | * | . 0 | . 0 | . 0 | . 0 | . 0 | . 0    | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |

JOB: MINARET ROAD AND MERIDIAN BOULEVARD WKND NP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | . 5   | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. (FT) |
|--------|-------|---------|-------|------|--------|-----|------|---------|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |         |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |         |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |         |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |         |

#### II. LINK VARIABLES

|    | LINK        | *  | LINK  | COORDI | NATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|----|-------|--------|-------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *  | X1    | Y1     | X2    | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _* |       |        |       |       | _ * - |      |     |        |      |      |
| Α. | NF          | *  | 15    | -1500  | 15    | -500  | *     | AG   | 413 | 1.6    | .0   | 35.0 |
| в. | NA          | *  | 15    | -500   | 15    | 0     | *     | AG   | 241 | 2.6    | .0   | 33.0 |
| C. | ND          | *  | 15    | 0      | 15    | 500   | *     | AG   | 432 | 1.8    | .0   | 33.0 |
| D. | NE          | *  | 15    | 500    | 15    | 1500  | *     | AG   | 432 | 1.6    | .0   | 35.0 |
| E. | SF          | *  | -15   | 1500   | -15   | 500   | *     | AG   | 673 | 1.6    | .0   | 35.0 |
| F. | SA          | *  | -15   | 500    | -15   | 0     | *     | AG   | 398 | 2.6    | .0   | 33.0 |
| G. | SD          | *  | -15   | 0      | -15   | -500  | *     | AG   | 552 | 2.1    | .0   | 33.0 |
| Η. | SE          | *  | -15   | -500   | -15   | -1500 | *     | AG   | 552 | 1.6    | .0   | 35.0 |
| I. | WF          | *  | 1500  | 23     | 500   | 23    | *     | AG   | 518 | 1.6    | .0   | 50.0 |
| J. | WA          | *  | 500   | 23     | 0     | 23    | *     | AG   | 508 | 2.5    | .0   | 45.0 |
| К. | WD          | *  | 0     | 23     | -500  | 23    | *     | AG   | 590 | 1.8    | .0   | 33.0 |
| L. | WE          | *  | -500  | 23     | -1500 | 23    | *     | AG   | 590 | 1.6    | .0   | 50.0 |
| Μ. | EF          | *  | -1500 | -23    | -500  | -23   | *     | AG   | 830 | 1.6    | .0   | 50.0 |
| N. | EA          | *  | -500  | -23    | 0     | -23   | *     | AG   | 729 | 2.5    | .0   | 45.0 |
| Ο. | ED          | *  | 0     | -23    | 500   | -23   | *     | AG   | 860 | 1.8    | .0   | 33.0 |
| P. | EE          | *  | 500   | -23    | 1500  | -23   | *     | AG   | 860 | 1.6    | .0   | 50.0 |
| Q. | NL          | *  | 0     | 0      | 15    | -500  | *     | AG   | 172 | 2.6    | .0   | 33.0 |
| R. | SL          | *  | 0     | 0      | -15   | 500   | *     | AG   | 275 | 2.7    | .0   | 33.0 |
| S. | WL          | *  | 0     | 0      | 500   | 15    | *     | AG   | 10  | 2.5    | .0   | 33.0 |
| т. | EL          | *  | 0     | 0      | -500  | -15   | *     | AG   | 101 | 2.5    | .0   | 33.0 |

#### III. RECEPTOR LOCATIONS

|                            | RECEPTOR                               | *<br>*<br>_* | COORDI<br>X                        | INATES<br>Y                         | (FT)<br>Z                       |
|----------------------------|----------------------------------------|--------------|------------------------------------|-------------------------------------|---------------------------------|
| 1.<br>2.<br>3.<br>4.<br>5. | NE3<br>SE3<br>SW3<br>NW3<br>NE7<br>SE7 | * * * * *    | 33<br>33<br>-33<br>-33<br>46<br>46 | 48<br>-48<br>-48<br>48<br>61<br>-61 | 6.0<br>6.0<br>6.0<br>6.0<br>6.0 |
| 7.<br>8.                   | SW7<br>NW7                             | *            | -46<br>-46                         | -61<br>61                           | 6.0<br>6.0                      |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

| RECEPTOR                                                | *<br>*<br>*     | BRG<br>(DEG)                                     | * * *           | PRED<br>CONC<br>(PPM)            | * * *     | Α  | В  | С                          | CONC/<br>(PP<br>D |    | F                          | G  | H  |
|---------------------------------------------------------|-----------------|--------------------------------------------------|-----------------|----------------------------------|-----------|----|----|----------------------------|-------------------|----|----------------------------|----|----|
| 1. NE3 2. SE3 3. SW3 4. NW3 5. NE7 6. SE7 7. SW7 8. NW7 | * * * * * * * * | 262.<br>355.<br>4.<br>175.<br>262.<br>276.<br>6. | * * * * * * * * | .5<br>.6<br>.6<br>.4<br>.4<br>.4 | * * * * * | .0 | .0 | .0<br>.1<br>.0<br>.0<br>.0 | .0                | .0 | .0<br>.0<br>.2<br>.0<br>.0 | .0 | .0 |

|          | * |     |     |     |     |     | CONC/I | vI) |     |     |     |     |     |
|----------|---|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|
| RECEPTOR | * | I   | J   | K   | L   | M   | N      | 0   | P   | Q   | R   | S   | Т   |
|          | ^ |     |     |     |     |     |        |     |     |     |     |     |     |
| 1. NE3   | * | . 0 | . 0 | . 2 | .0  | . 0 | .0     | . 0 | . 0 | .0  | .0  | .0  | . 0 |
| 2. SE3   | * | .0  | . 0 | . 0 | .0  | .0  | . 0    | . 0 | .0  | .0  | .0  | .0  | . 0 |
| 3. SW3   | * | . 0 | . 0 | .0  | .0  | .0  | .1     | . 0 | . 0 | .0  | .0  | .0  | . 0 |
| 4. NW3   | * | .0  | . 0 | . 0 | .0  | .0  | .0     | . 0 | .0  | .0  | .0  | .0  | . 0 |
| 5. NE7   | * | .0  | . 0 | .1  | .0  | .0  | .0     | . 0 | .0  | .0  | .0  | .0  | . 0 |
| 6. SE7   | * | .0  | . 0 | . 0 | .0  | .0  | . 2    | . 0 | .0  | .0  | .0  | .0  | . 0 |
| 7. SW7   | * | .0  | . 0 | . 0 | .0  | .0  | .0     | . 0 | .0  | .0  | .0  | .0  | . 0 |
| 8. NW7   | * | .0  | .0  | .0  | . 0 | .0  | .0     | .0  | .0  | . 0 | . 0 | . 0 | .0  |

JOB: MINARET ROAD AND MERIDIAN BOULEVARD WKND WP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | .5    | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |  |
|--------|-------|---------|-------|------|--------|-----|------|----|------|--|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |  |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |  |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |  |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |  |

#### II. LINK VARIABLES

|    | LINK        | *   | LINK  | COORDI | NATES | (FT)  | *     |      |      | EF     | H    | W    |
|----|-------------|-----|-------|--------|-------|-------|-------|------|------|--------|------|------|
|    | DESCRIPTION | *   | X1    | Y1     | X2    | Y2    | *     | TYPE | VPH  | (G/MI) | (FT) | (FT) |
|    |             | _*. |       |        |       |       | _ * . |      |      |        |      |      |
| A. | NF          | *   | 15    | -1500  | 15    | -500  | *     | AG   | 508  | 1.6    | .0   | 35.0 |
| в. | NA          | *   | 15    | -500   | 15    | 0     | *     | AG   | 289  | 2.7    | .0   | 33.0 |
| C. | ND          | *   | 15    | 0      | 15    | 500   | *     | AG   | 424  | 1.9    | .0   | 33.0 |
| D. | NE          | *   | 15    | 500    | 15    | 1500  | *     | AG   | 424  | 1.6    | .0   | 35.0 |
| E. | SF          | *   | -15   | 1500   | -15   | 500   | *     | AG   | 707  | 1.6    | .0   | 35.0 |
| F. | SA          | *   | -15   | 500    | -15   | 0     | *     | AG   | 432  | 2.7    | .0   | 33.0 |
| G. | SD          | *   | -15   | 0      | -15   | -500  | *     | AG   | 607  | 2.2    | .0   | 33.0 |
| н. | SE          | *   | -15   | -500   | -15   | -1500 | *     | AG   | 607  | 1.6    | .0   | 35.0 |
| I. | WF          | *   | 1500  | 23     | 500   | 23    | *     | AG   | 594  | 1.6    | .0   | 50.0 |
| J. | WA          | *   | 500   | 23     | 0     | 23    | *     | AG   | 584  | 2.4    | .0   | 45.0 |
| Κ. | WD          | *   | 0     | 23     | -500  | 23    | *     | AG   | 747  | 1.8    | .0   | 33.0 |
| L. | WE          | *   | -500  | 23     | -1500 | 23    | *     | AG   | 747  | 1.6    | .0   | 50.0 |
| Μ. | EF          | *   | -1500 | -23    | -500  | -23   | *     | AG   | 1059 | 1.6    | .0   | 50.0 |
| N. | EA          | *   | -500  | -23    | 0     | -23   | *     | AG   | 902  | 2.5    | .0   | 45.0 |
| Ο. | ED          | *   | 0     | -23    | 500   | -23   | *     | AG   | 1090 | 1.8    | .0   | 33.0 |
| P. | EE          | *   | 500   | -23    | 1500  | -23   | *     | AG   | 1090 | 1.6    | .0   | 50.0 |
| Q. | NL          | *   | 0     | 0      | 15    | -500  | *     | AG   | 219  | 2.7    | .0   | 33.0 |
| R. | SL          | *   | 0     | 0      | -15   | 500   | *     | AG   | 275  | 2.8    | .0   | 33.0 |
| S. | WL          | *   | 0     | 0      | 500   | 15    | *     | AG   | 10   | 2.4    | .0   | 33.0 |
| т. | EL          | *   | 0     | 0      | -500  | -15   | *     | AG   | 157  | 2.4    | .0   | 33.0 |

#### III. RECEPTOR LOCATIONS

|          | * | COORD | INATES | (FT) |
|----------|---|-------|--------|------|
| RECEPTOR | * | X     | Y      | Z    |
|          | * |       |        |      |
| 1. NE3   | * | 33    | 48     | 6.0  |
| 2. SE3   | * | 33    | -48    | 6.0  |
| 3. SW3   | * | -33   | -48    | 6.0  |
| 4. NW3   | * | -33   | 48     | 6.0  |
| 5. NE7   | * | 46    | 61     | 6.0  |
| 6. SE7   | * | 46    | -61    | 6.0  |
| 7. SW7   | * | -46   | -61    | 6.0  |
| 8. NW7   | * | -46   | 61     | 6.0  |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

| RECEPTOR                                                | *<br>*<br>*   | BRG<br>(DEG)                                     | * * *           | PRED<br>CONC<br>(PPM)            | * * * | A  | В  | С  | CONC/<br>(PP<br>D |    | F                          | G                                | H  |
|---------------------------------------------------------|---------------|--------------------------------------------------|-----------------|----------------------------------|-------|----|----|----|-------------------|----|----------------------------|----------------------------------|----|
| 1. NE3 2. SE3 3. SW3 4. NW3 5. NE7 6. SE7 7. SW7 8. NW7 | * * * * * * * | 262.<br>275.<br>5.<br>175.<br>262.<br>277.<br>6. | * * * * * * * * | .6<br>.7<br>.7<br>.7<br>.4<br>.5 | *     | .0 | .0 | .0 | .0                | .0 | .0<br>.0<br>.2<br>.0<br>.0 | .0<br>.0<br>.0<br>.2<br>.0<br>.0 | .0 |

| RECEPTOR | *  | CONC/LINK (PPM) I J K L M N O P O R S T |     |     |     |     |     |     |     |     |     |     |     |
|----------|----|-----------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| RECEPTOR | *_ |                                         |     |     | ъ   | 141 |     |     |     |     | т.  |     |     |
| 1. NE3   | *  | .0                                      | .0  | . 2 | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  | . 0 |
| 2. SE3   | *  | . 0                                     | . 0 | . 0 | . 0 | . 0 | . 3 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| 3. SW3   | *  | . 0                                     | . 0 | . 0 | . 0 | . 0 | . 1 | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| 4. NW3   | *  | . 0                                     | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  | . 0 | . 0 |
| 5. NE7   | *  | . 0                                     | . 0 | . 1 | . 0 | . 0 | .0  | . 0 | . 0 | . 0 | . 0 | . 0 | . 0 |
| 6. SE7   | *  | . 0                                     | .0  | .0  | .0  | .0  | . 2 | .0  | .0  | .0  | .0  | . 0 | .0  |
| 7. SW7   | *  | .0                                      | .0  | .0  | .0  | .0  | . 1 | .0  | .0  | .0  | .0  | .0  | .0  |
| 8. NW7   | *  | . 0                                     | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  | . 0 | . 0 |

JOB: MERIDIAN BOULEVARD AND WEST MAJESTIC PINES ROAD NORTH WKND NP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | . 5   | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |
|--------|-------|---------|-------|------|--------|-----|------|----|------|
| BRG=   | WORST | CASE    | VD=   | .0   | CM/S   |     |      |    |      |
| CLAS=  | 7     | (G)     | VS=   | .0   | CM/S   |     |      |    |      |
| MIXH=  | 1000. | M       | AMB=  | . 0  | PPM    |     |      |    |      |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |

#### II. LINK VARIABLES

|     | LINK        | *    | LINK          | COORD | INATES | (FT)  | *     |      |     | EF     | H    | W    |
|-----|-------------|------|---------------|-------|--------|-------|-------|------|-----|--------|------|------|
|     | DESCRIPTION | *    | X1            | Y1    | X2     | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|     |             | *_   |               |       |        |       | _ * . |      |     |        |      |      |
| Α.  | NF          | *    | 8             | -1500 | 8      | -500  | *     | AG   | 128 | 1.6    | .0   | 35.0 |
| в.  | NA          | *    | 8             | -500  | 8      | 0     | *     | AG   | 125 | 2.5    | .0   | 33.0 |
| C.  | ND          | *    | 8             | 0     | 8      | 500   | *     | AG   | 102 | 1.8    | .0   | 33.0 |
| D.  | NE          | *    | 8             | 500   | 8      | 1500  | *     | AG   | 102 | 1.6    | .0   | 35.0 |
| Ε.  | SF          | *    | -8            | 1500  | -8     | 500   | *     | AG   | 223 | 1.6    | .0   | 35.0 |
| F.  | SA          | *    | -8            | 500   | -8     | 0     | *     | AG   | 25  | 2.5    | .0   | 33.0 |
| G.  | SD          | *    | -8            | 0     | -8     | -500  | *     | AG   | 117 | 1.8    | .0   | 33.0 |
| н.  | SE          | *    | -8            | -500  | -8     | -1500 | *     | AG   | 117 | 1.6    | .0   | 35.0 |
| I.  | WF          | *    | 1500          | 8     | 500    | 8     | *     | AG   | 251 | 1.6    | .0   | 35.0 |
| J.  | WA          | *    | 500           | 8     | 0      | 8     | *     | AG   | 170 | 2.5    | .0   | 33.0 |
| к.  | WD          | *    | 0             | 8     | -500   | 8     | *     | AG   | 83  | 1.8    | .0   | 33.0 |
| L.  | WE          | *    | -500          | 8     | -1500  | 8     | *     | AG   | 83  | 1.6    | .0   | 35.0 |
| Μ.  | EF          | *    | -1500         | -8    | -500   | -8    | *     | AG   | 85  | 1.6    | .0   | 35.0 |
| N.  | EA          | *    | -500          | -8    | 0      | -8    | *     | AG   | 85  | 2.5    | .0   | 33.0 |
| Ο.  | ED          | *    | 0             | -8    | 500    | -8    | *     | AG   | 385 | 1.8    | .0   | 33.0 |
| P.  | EE          | *    | 500           | -8    | 1500   | -8    | *     | AG   | 385 | 1.6    | .0   | 35.0 |
| Ο.  | NL          | *    | 0             | 0     | 8      | -500  | *     | AG   | 3   | 2.5    | .0   | 33.0 |
| R.  | SL          | *    | 0             | 0     | -8     | 500   | *     | AG   | 198 | 2.5    | .0   | 33.0 |
| s.  | WL          | *    | 0             | 0     | 500    | 8     | *     | AG   | 81  | 2.5    | .0   | 33.0 |
| т.  | EL          | *    | 0             | 0     | -500   | -8    | *     | AG   | 0   | 2.5    | .0   | 33.0 |
| T T | DECEDEOR    | T 00 | 3 m T O 3 T C | ,     |        |       |       |      |     |        |      |      |

III. RECEPTOR LOCATIONS

|    |          | *  | COORD | INATES | (FT) |
|----|----------|----|-------|--------|------|
|    | RECEPTOR | *  | X     | Y      | Z    |
|    |          | -* |       |        |      |
| 1. | NE3      | *  | 25    | 25     | 6.0  |
| 2. | SE3      | *  | 25    | -25    | 6.0  |
| 3. | SW3      | *  | -25   | -25    | 6.0  |
| 4. | NW3      | *  | -25   | 25     | 6.0  |
| 5. | NE7      | *  | 38    | 38     | 6.0  |
| 6. | SE7      | *  | 38    | -38    | 6.0  |
| 7. | SW7      | *  | -38   | -38    | 6.0  |
| 8. | NW7      | *  | -38   | 38     | 6.0  |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

|    |         | *       | BRG   | * | PRED  | * |    |    |    | CONC/<br>(PP |    |    |    |    |
|----|---------|---------|-------|---|-------|---|----|----|----|--------------|----|----|----|----|
| RI | ECEPTOR | *<br>*_ | (DEG) | * | (PPM) | * | A  | В  | С  | D            | E  | F  | G  | H  |
| 1. | NE3     | *       | 94.   | * | .3    | * | .0 | .0 | .0 | .0           | .0 | .0 | .0 | .0 |
| 2. | SE3     | *       | 86.   | * | . 3   | * | .0 | .0 | .0 | .0           | .0 | .0 | .0 | .0 |
| 3. | SW3     | *       | 86.   | * | . 3   | * | .0 | .0 | .0 | .0           | .0 | .0 | .0 | .0 |
| 4. | NW3     | *       | 94.   | * | . 3   | * | .0 | .0 | .0 | .0           | .0 | .0 | .0 | .0 |
| 5. | NE7     | *       | 96.   | * | . 2   | * | .0 | .0 | .0 | .0           | .0 | .0 | .0 | .0 |
| 6. | SE7     | *       | 354.  | * | . 2   | * | .0 | .0 | .0 | .0           | .0 | .0 | .0 | .0 |
| 7. | SW7     | *       | 84.   | * | . 2   | * | .0 | .0 | .0 | .0           | .0 | .0 | .0 | .0 |
| 8. | NW7     | *       | 95.   | * | . 2   | * | .0 | .0 | .0 | .0           | .0 | .0 | .0 | .0 |

|          | * |     | CONC/LINK<br>(PPM) |     |     |     |    |     |     |     |     |     |     |  |
|----------|---|-----|--------------------|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|--|
| RECEPTOR | * | I   | J                  | K   | L   | M   | N  | 0   | P   | Q   | R   | S   | T   |  |
|          | * |     |                    |     |     |     |    |     |     |     |     |     |     |  |
| 1. NE3   | * | .0  | . 1                | . 0 | .0  | .0  | .0 | .0  | .0  | .0  | .0  | .0  | . 0 |  |
| 2. SE3   | * | . 0 | .0                 | . 0 | .0  | . 0 | .0 | . 2 | .0  | .0  | .0  | .0  | . 0 |  |
| 3. SW3   | * | .0  | .0                 | .0  | .0  | .0  | .0 | . 1 | .0  | .0  | .0  | .0  | .0  |  |
| 4. NW3   | * | .0  | . 1                | .0  | .0  | .0  | .0 | .0  | .0  | .0  | .0  | .0  | . 0 |  |
| 5. NE7   | * | .0  | .0                 | .0  | .0  | .0  | .0 | .0  | .0  | .0  | .0  | .0  | . 0 |  |
| 6. SE7   | * | .0  | .0                 | .0  | .0  | .0  | .0 | .0  | .0  | .0  | .0  | .0  | . 0 |  |
| 7. SW7   | * | .0  | .0                 | . 0 | .0  | .0  | .0 | .0  | .0  | .0  | .0  | .0  | . 0 |  |
| 8. NW7   | * | . 0 | . 0                | . 0 | . 0 | . 0 | .0 | .0  | . 0 | . 0 | . 0 | . 0 | . 0 |  |

JOB: MERIDIAN BOULEVARD AND WEST MAJESTIC PINES ROAD NORTH WKND WP RUN: (WORST CASE ANGLE)
POLLUTANT: Carbon Monoxide

#### I. SITE VARIABLES

| U=     | .5    | M/S     | Z0=   | 100. | CM     |     | ALT= | 0. | (FT) |
|--------|-------|---------|-------|------|--------|-----|------|----|------|
| BRG=   | WORST | CASE    | VD=   | . 0  | CM/S   |     |      |    |      |
| CLAS=  | 7     | (G)     | VS=   | . 0  | CM/S   |     |      |    |      |
| MIXH=  | 1000. | M       | AMB=  | .0   | PPM    |     |      |    |      |
| SIGTH= | 5.    | DEGREES | TEMP= | 15.6 | DEGREE | (C) |      |    |      |

#### II. LINK VARIABLES

|    | LINK        | *   | LINK    | COORD   | INATES | (FT)  | *     |      |     | EF     | H    | W    |
|----|-------------|-----|---------|---------|--------|-------|-------|------|-----|--------|------|------|
|    | DESCRIPTION | *   | X1      | Y1      | X2     | Y2    | *     | TYPE | VPH | (G/MI) | (FT) | (FT) |
|    |             | _*- |         |         |        |       | _ * . |      |     |        |      |      |
| Α. | NF          |     |         | -1500   | 8      | -500  | *     | AG   | 147 | 1.6    | .0   | 35.0 |
| в. | NA          | *   | 0       | -500    |        | 0     | *     | AG   | 144 | 2.2    | .0   | 33.0 |
| C. | ND          | *   | 0       |         | 8      | 500   | *     | AG   | 107 | 1.7    | .0   | 33.0 |
| D. | NE          | *   | 8       | 500     | 8      | 1500  | *     | AG   | 107 | 1.6    | .0   | 35.0 |
| Ε. | SF          | *   | -8      | 1500    | -8     | 500   | *     | AG   | 564 | 1.6    | .0   | 35.0 |
| F. | SA          | *   | -8      | 500     | -8     | 0     | *     | AG   | 59  | 2.2    | .0   | 33.0 |
| G. | SD          | *   | -8      | 0       | -8     | -500  | *     | AG   | 144 | 1.7    | .0   | 33.0 |
| н. | SE          | *   | -8      | -500    | -8     | -1500 | *     | AG   | 144 | 1.6    | .0   | 35.0 |
| I. | WF          | *   |         | 8       |        | 8     | *     | AG   | 250 | 1.6    | .0   | 35.0 |
| J. | WA          |     |         | 8       |        | 8     |       |      | 176 | 2.8    | .0   | 33.0 |
| Κ. | WD          | *   | 0       | 8       | -500   | 8     | *     | AG   | 82  | 1.9    | .0   | 33.0 |
| L. | WE          | *   | -500    | 8       | -1500  | 8     | *     | AG   | 82  | 1.6    | .0   | 35.0 |
| Μ. | EF          | *   | -1500   | -8      | -500   | -8    | *     | AG   | 85  | 1.6    | .0   | 35.0 |
| N. | EA          |     | -500    |         | 0      | -8    |       | AG   | 85  | 2.8    | .0   | 33.0 |
| Ο. | ED          |     | 0       |         | 500    | -8    |       | AG   | 713 | 3.2    | .0   | 33.0 |
| Р. | EE          | *   | 500     | -8      | 1500   | -8    | *     | AG   | 713 | 1.6    | .0   | 35.0 |
| Q. | NL          | *   | 0       | 0       | 8      | -500  | *     | AG   | 3   | 2.2    | .0   | 33.0 |
| R. | SL          | *   | 0       | 0       | -8     | 500   | *     | AG   | 505 | 2.3    | .0   | 33.0 |
| s. | WL          | *   | 0       | 0       |        | 8     |       | AG   | 74  | 2.8    | .0   | 33.0 |
| Т. | EL          | *   | 0       | 0       | -500   | -8    | *     | AG   | 0   | 2.8    | .0   | 33.0 |
|    | POLLUTANT:  | Ca  | arbon 1 | Monoxio | ie     |       |       |      |     |        |      |      |

#### III. RECEPTOR LOCATIONS

| _                                      | RECEPTOR                 | * | COORD:                                    | INATES<br>Y                                | (FT)<br>Z                              |
|----------------------------------------|--------------------------|---|-------------------------------------------|--------------------------------------------|----------------------------------------|
| 1 .<br>2 .<br>3 .<br>4 .<br>5 .<br>7 . | SE3<br>SW3<br>NW3<br>NE7 | * | 25<br>25<br>-25<br>-25<br>38<br>38<br>-38 | 25<br>-25<br>-25<br>25<br>38<br>-38<br>-38 | 6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0 |
| 8.                                     | . NW7                    | * | -38                                       | 38                                         | 6.0                                    |

#### IV. MODEL RESULTS (WORST CASE WIND ANGLE )

|          | *  |       | *   | PRED  | *   |    |      | (     | CONC/ | LINK |    |    |    |
|----------|----|-------|-----|-------|-----|----|------|-------|-------|------|----|----|----|
|          | *  | BRG   | *   | CONC  | *   |    |      |       | (PPI  | M)   |    |    |    |
| RECEPTOR | *  | (DEG) | *   | (PPM) | *   | A  | В    | C     | D     | E    | F  | G  | Н  |
|          | *- |       | _ * |       | _*_ |    |      |       |       |      |    |    |    |
| 1. NE3   | *  | 95.   | *   | . 4   | *   | .0 | .0   | .0    | .0    | .0   | .0 | .0 | .0 |
| 2. SE3   | *  | 85.   | *   | . 7   | *   | .0 | .0   | .0    | .0    | .0   | .0 | .0 | .0 |
| 3. SW3   | *  | 86.   | *   | .7    | *   | .0 | .0   | .0    | .0    | .0   | .0 | .0 | .0 |
| 4. NW3   | *  | 95.   | *   | .5    | *   | .0 | .0   | .0    | .0    | .0   | .0 | .0 | .0 |
| 5. NE7   | *  | 98.   | *   | . 3   | *   | .0 | .0   | .0    | .0    | .0   | .0 | .0 | .0 |
|          |    | RUN:  |     |       |     |    | (WOR | ST CA | SE AN | GLE) |    |    |    |
|          |    |       |     |       |     |    |      |       |       |      |    |    |    |

RUN:
POLLUTANT: Carbon Monoxide

|          | * |    | CONC/LINK (PPM) |    |    |     |    |     |    |    |     |    |    |  |
|----------|---|----|-----------------|----|----|-----|----|-----|----|----|-----|----|----|--|
| RECEPTOR | * | I  | J               | K  | L  | M   | N  | 0   | P  | Q  | R   | S  | T  |  |
| 1. NE3   | * | .0 | .1              | .0 | .0 | .0  | .0 | . 2 | .0 | .0 | .0  | .0 | .0 |  |
| 2. SE3   | * | .0 | . 0             | .0 | .0 | . 0 | .0 | . 5 | .0 | .0 | . 0 | .0 | .0 |  |
| 3. SW3   | * | .0 | . 0             | .0 | .0 | . 0 | .0 | . 4 | .0 | .0 | . 0 | .0 | .0 |  |
| 4. NW3   | * | .0 | .1              | .0 | .0 | . 0 | .0 | . 2 | .0 | .0 | . 0 | .0 | .0 |  |
| 5. NE7   | * | .0 | . 0             | .0 | .0 | . 0 | .0 | . 2 | .0 | .0 | . 0 | .0 | .0 |  |
| 6. SE7   | * | .0 | .0              | .0 | .0 | . 0 | .0 | . 3 | .0 | .0 | .0  | .0 | .0 |  |

Title : Mono County Avg 2024 Winter Default Title

Version : Emfac2002 V2.2 Apr 23 2003 Run Date : 06/28/06 14:07:34

Scen Year: 2024 -- Model Years: 1979 to 2024

Season : Winter

Year: 2024 -- Model Years 1979 to 2024 Inclusive -- Winter

Emfac2002 Emission Factors: V2.2 Apr 23 2003

Pollutant Name: Carbon Monoxide Temperature: 27F Relative Humidity: 50%

| Speed<br>MPH | LDA            | LDT            | MDT            | HDT            | UBUS           | MCY              | ALL            |
|--------------|----------------|----------------|----------------|----------------|----------------|------------------|----------------|
| 3            | 1.407          | 2.616          | 3.234          | 5.238          | 5.436          | 32.288           | 3.273          |
| 4            | 1.378          | 2.550          | 3.154          | 5.238          | 5.436          | 32.288           | 3.221          |
| 5            | 1.349          | 2.487          | 3.077          | 5.238          | 5.436          | 32.288           | 3.170          |
| 6            | 1.321          | 2.426          | 2.986          | 4.830          | 4.939          | 31.075           | 3.056          |
| 7            | 1.295          | 2.368          | 2.899          | 4.462          | 4.498          | 29.961           | 2.949          |
| 8            | 1.269          | 2.312          | 2.818          | 4.130          | 4.107          | 28.937           | 2.850          |
| 9            | 1.243          | 2.258          | 2.741          | 3.830          | 3.758          | 27.996           | 2.758          |
| 10           | 1.219          | 2.207          | 2.668          | 3.560          | 3.448          | 27.132           | 2.673          |
| 11           | 1.195          | 2.157          | 2.599          | 3.315          | 3.170          | 26.339           | 2.592          |
| 12           | 1.172          | 2.109          | 2.534          | 3.093          | 2.922          | 25.611           | 2.517          |
| 13           | 1.150          | 2.064          | 2.472          | 2.891          | 2.700          | 24.945           | 2.447          |
| 14           | 1.128          | 2.020          | 2.412          | 2.708          | 2.500          | 24.336           | 2.381          |
| 15           | 1.107          | 1.977          | 2.356          | 2.542          | 2.321          | 23.780           | 2.320          |
| 16           | 1.087          | 1.936          | 2.302          | 2.391          | 2.160          | 23.274           | 2.261          |
| 17           | 1.067          | 1.897          | 2.250          | 2.253          | 2.015          | 22.816           | 2.207          |
| 18           | 1.047          | 1.859          | 2.201          | 2.127          | 1.884          | 22.403           | 2.156          |
| 19           | 1.028          | 1.822          | 2.154          | 2.012          | 1.765          | 22.033           | 2.107          |
| 20           | 1.010          | 1.786          | 2.109          | 1.907          | 1.658          | 21.703           | 2.062          |
| 21           | 0.992          | 1.752          | 2.066          | 1.811          | 1.562          | 21.412           | 2.019          |
| 22           | 0.975          | 1.719          | 2.024          | 1.724          | 1.474          | 21.160           | 1.979          |
| 23           | 0.958          | 1.687          | 1.985          | 1.644          | 1.395          | 20.943           | 1.941          |
| 24           | 0.941          | 1.656          | 1.946          | 1.570          | 1.323          | 20.763           | 1.905          |
| 25           | 0.925          | 1.626          | 1.910          | 1.503          | 1.258          | 20.618           | 1.871          |
| 26           | 0.910          | 1.597          | 1.874          | 1.442          | 1.198          | 20.507           | 1.840          |
| 27           | 0.895          | 1.569          | 1.840          | 1.386          | 1.145          | 20.430           | 1.810          |
| 28           | 0.880          | 1.542          | 1.808          | 1.334          | 1.096          | 20.388           | 1.782          |
| 29<br>30     | 0.865<br>0.851 | 1.516          | 1.776<br>1.746 | 1.287          | 1.052<br>1.012 | 20.380           | 1.756<br>1.732 |
| 31           | 0.831          | 1.490<br>1.466 | 1.746          | 1.244<br>1.205 | 0.976          | 20.407<br>20.469 | 1.732          |
| 32           | 0.824          | 1.442          | 1.689          | 1.170          | 0.976          | 20.469           | 1.710          |
| 33           | 0.824          | 1.442          | 1.662          | 1.170          | 0.943          | 20.307           | 1.670          |
| 34           | 0.811          | 1.397          | 1.636          | 1.136          | 0.888          | 20.702           | 1.652          |
| 35           | 0.786          | 1.375          | 1.611          | 1.082          | 0.864          | 21.088           | 1.636          |
| 36           | 0.774          | 1.354          | 1.586          | 1.052          | 0.843          | 21.342           | 1.622          |
| 37           | 0.763          | 1.334          | 1.563          | 1.039          | 0.825          | 21.542           | 1.610          |
| 38           | 0.751          | 1.315          | 1.541          | 1.019          | 0.823          | 21.040           | 1.599          |
| 39           | 0.740          | 1.296          | 1.520          | 1.003          | 0.795          | 22.375           | 1.589          |
| 40           | 0.729          | 1.278          | 1.499          | 0.989          | 0.783          | 22.818           | 1.582          |
|              | 0              | 1.2.3          |                | 0.,00          | 05             |                  | 1.002          |

### **Operational PM10 Localized Analysis (Year 2006)**

## Vehicle Emissions

|                         |                             | PM10      |
|-------------------------|-----------------------------|-----------|
|                         | PM10 Emission               | Emissions |
| Vehicle Miles Travelled | Factor (g/vmt) <sup>1</sup> | (kg/day)  |
| 78,537                  | 21.6                        | 1696      |

<sup>&</sup>lt;sup>1</sup>Assumes 40% control from street sweeping

#### **Residential Wood Stove Emissions**

| Wood Burning Appliance<br>Type | Number | PM10<br>Emission<br>Factor<br>(g/day/stove) | PM10<br>Emissions<br>(kg/day) |
|--------------------------------|--------|---------------------------------------------|-------------------------------|
| Fireplace-Visitor              | 448    | 266                                         | 60                            |
| Fireplace-Resident             | 51     | 308                                         | 8                             |
| Conventional Stove/Insert      | 239    | 285                                         | 34                            |
| Certified I Stove/Insert       | 177    | 171                                         | 15                            |
| Certified II Stove/Insert      | 6728   | 142.5                                       | 479                           |

#### **Totals**

| Total Emissions (kg)         | 2285 |
|------------------------------|------|
|                              |      |
| PM10 Budget Limit (kg)       | 3042 |
|                              |      |
| Inventory/Budgeted (percent) | 75.1 |

Mandatory curtailment (50 percent control) included per SB656.

### CALCULATED IMPACTS AT BUILDOUT (ug/m³)

#### **Wood-Burning Dominated Design Day**

| Fireplaces         | 7.1  |  |
|--------------------|------|--|
| Stoves/Inserts     | 55.6 |  |
| Road Dust          | 3.5  |  |
| Tailpipe           | 5.9  |  |
| Background         | 5.0  |  |
| Total <sup>2</sup> | 77.2 |  |

#### **Road Dust-Dominated Design Day**

| = =                |       |  |
|--------------------|-------|--|
| Fireplaces         | 4.1   |  |
| Stoves/Inserts     | 32.0  |  |
| Road Dust          | 66.0  |  |
| Tailpipe           | 0.0   |  |
| Background         | 5.0   |  |
| Total <sup>2</sup> | 107 2 |  |

<sup>&</sup>lt;sup>2</sup>The Federal 24 hour PM<sub>10</sub> standard is 150 ug/m<sup>3</sup>.

#### Eagle Lodge Operational Localized PM10 Analysis GBUAPCD Spreadsheet Methodology

## Operational PM10 Localized Analysis (Year 2009 - Without Projection

### Vehicle Emissions

|                         |                             | PM10      |
|-------------------------|-----------------------------|-----------|
|                         | PM10 Emission               | Emissions |
| Vehicle Miles Travelled | Factor (g/vmt) <sup>1</sup> | (kg/day)  |
| 80,204                  | 21.6                        | 1732      |

<sup>&</sup>lt;sup>1</sup>Assumes 40% control from street sweeping

#### **Residential Wood Stove Emissions**

| Wood Burning Appliance<br>Type | Number | PM10<br>Emission<br>Factor<br>(g/day/stove) | PM10<br>Emissions<br>(kg/day) |
|--------------------------------|--------|---------------------------------------------|-------------------------------|
| Fireplace-Visitor              | 382    | 266                                         | 51                            |
| Fireplace-Resident             | 44     | 308                                         | 7                             |
| Conventional Stove/Insert      | 204    | 285                                         | 29                            |
| Certified I Stove/Insert       | 177    | 171                                         | 15                            |
| Certified II Stove/Insert      | 6910   | 142.5                                       | 492                           |

#### **Totals**

| Total Emissions (kg)         | 2320 |
|------------------------------|------|
|                              |      |
| PM10 Budget Limit (kg)       | 3042 |
|                              |      |
| Inventory/Budgeted (percent) | 76.3 |

Mandatory curtailment (50 percent control) included per SB656.

### CALCULATED IMPACTS AT BUILDOUT (ug/m³)

### **Wood-Burning Dominated Design Day**

| Total <sup>2</sup> | 77.2 |  |
|--------------------|------|--|
| Background         | 5.0  |  |
| Tailpipe           | 6.1  |  |
| Road Dust          | 3.6  |  |
| Stoves/Inserts     | 56.4 |  |
| Fireplaces         | 6.1  |  |
|                    |      |  |

#### **Road Dust-Dominated Design Day**

|                    | 9     |  |
|--------------------|-------|--|
| Fireplaces         | 3.5   |  |
| Stoves/Inserts     | 32.5  |  |
| Road Dust          | 67.4  |  |
| Tailpipe           | 0.0   |  |
| Background         | 5.0   |  |
| Total <sup>2</sup> | 108.5 |  |

<sup>&</sup>lt;sup>2</sup>The Federal 24 hour PM<sub>10</sub> standard is 150 ug/m<sup>3</sup>.

#### Eagle Lodge Operational Localized PM10 Analysis GBUAPCD Spreadsheet Methodology

## Operational PM10 Localized Analysis (Year 2009 - With Project)

### Vehicle Emissions

|                         |                             | PM10      |
|-------------------------|-----------------------------|-----------|
|                         | PM10 Emission               | Emissions |
| Vehicle Miles Travelled | Factor (g/vmt) <sup>1</sup> | (kg/day)  |
| 88,239                  | 21.6                        | 1906      |

<sup>&</sup>lt;sup>1</sup>Assumes 40% control from street sweeping

#### **Residential Wood Stove Emissions**

| Wood Burning Appliance<br>Type | Number | PM10<br>Emission<br>Factor<br>(g/day/stove) | PM10<br>Emissions<br>(kg/day) |
|--------------------------------|--------|---------------------------------------------|-------------------------------|
| Fireplace-Visitor              | 382    | 266                                         | 51                            |
| Fireplace-Resident             | 44     | 308                                         | 7                             |
| Conventional Stove/Insert      | 204    | 285                                         | 29                            |
| Certified I Stove/Insert       | 177    | 171                                         | 15                            |
| Certified II Stove/Insert      | 6910   | 142.5                                       | 492                           |

#### **Totals**

| Total Emissions (kg)         | 2493 |
|------------------------------|------|
|                              |      |
| PM10 Budget Limit (kg)       | 3042 |
|                              |      |
| Inventory/Budgeted (percent) | 82.0 |

Mandatory curtailment (50 percent control) included per SB656.

### CALCULATED IMPACTS AT BUILDOUT (ug/m³)

### **Wood-Burning Dominated Design Day**

| Fireplaces     | 6.1  |
|----------------|------|
| Stoves/Inserts | 56.4 |
| Road Dust      | 4.0  |
| Tailpipe       | 6.7  |
| Background     | 5.0  |
| <b>_</b> 2     |      |

Total<sup>2</sup> 78.2

### **Road Dust-Dominated Design Day**

| Total <sup>2</sup> | 115 2 |  |
|--------------------|-------|--|
| Background         | 5.0   |  |
| Tailpipe           | 0.0   |  |
| Road Dust          | 74.2  |  |
| Stoves/Inserts     | 32.5  |  |
| Fireplaces         | 3.5   |  |
|                    | 0 ,   |  |

<sup>&</sup>lt;sup>2</sup>The Federal 24 hour PM<sub>10</sub> standard is 150 ug/m<sup>3</sup>.

# Appendix C-3

- Alternative Operation Emissions Inventory
  - Alternative 1 (Development in Accordance to Existing Regulations)
    - o Regional Emission Summary Sheet
    - o Stationary Source Emissions
    - o URBEMIS2002 Output Files
  - Alternative 2 (Reduced Intensity)
    - o Regional Emission Summary Sheet
    - o Stationary Source Emissions
    - o URBEMIS2002 Output Files

# Eagle Lodge Alternative 1

## Regional Emission Calculations (lbs/day)

| Existing                      |
|-------------------------------|
| Mobile                        |
| Area                          |
| Stationary                    |
| Total Existing                |
| Project                       |
| Mobile                        |
| Area                          |
| Stationary                    |
| Total Project                 |
| Net Project                   |
| Net Mobile                    |
| Net Area                      |
| Net Stationary                |
| Total Net                     |
| SCAQMD Significance Threshold |
| Difference                    |
| Significant?                  |

| CO    | NOx  | PM10  | ROC  | SOx   |
|-------|------|-------|------|-------|
|       |      |       |      |       |
| 25    | 3    | 2     | 2    | 0.1   |
| 0.1   | 0.1  | 0     | 0.1  | 0     |
| 0.1   | 0.0  | 0.4   | 0.0  | 0.0   |
| 25.2  | 3.1  | 2.4   | 2.1  | 0.1   |
|       |      |       |      |       |
|       |      |       |      |       |
| 23.43 | 3.24 | 2.85  | 1.8  | 0.02  |
| 0.1   | 0.04 | 0     | 0.08 | 0     |
| 0     | 0    | 1     | 0    | 0     |
| 24    | 3    | 4     | 2    | 0     |
|       |      |       |      |       |
|       |      |       |      |       |
| -1.6  | 0.2  | 0.9   | -0.2 | -0.1  |
| 0.0   | -0.1 | 0.0   | 0.0  | 0.0   |
| 0.2   | 0.0  | 1.0   | 0.0  | 0.1   |
| -1.4  | 0.2  | 1.9   | -0.2 | 0.0   |
| 550   | 55   | 150   | 55   | 150   |
| (551) | (55) | (148) | (55) | (150) |
| No    | No   | No    | No   | No    |

#### **Electricity Usage**

|             |                    | Electricity             |            |                 |          | Emission I  | Factors (lbs | /MWh) <sup>b</sup> |             |
|-------------|--------------------|-------------------------|------------|-----------------|----------|-------------|--------------|--------------------|-------------|
|             |                    | Usage Rate <sup>a</sup> | Total El   | ectricity Usage | CO       | ROC         | NOx          | PM10               | SOx         |
| Land Use    | 1,000 Sqft         | (kWh\sq.ft\yr)          | (KWh\year) | (MWh\Day)       | 0.2      | <u>0.01</u> | <u>1.15</u>  | <u>0.04</u>        | <u>0.12</u> |
| Existing    |                    |                         |            |                 | Emission | s from Elec | tricity Cons | sumption (lb       | s/day)      |
| Retail      | 0.6                | 13.55                   | 8,130      | 0.022           | 0.004    | 0.000       | 0.026        | 0.001              | 0.003       |
| Hotel/Motel | 12.0               | 9.95                    | 119,400    | 0.327           | 0.065    | 0.003       | 0.376        | 0.013              | 0.039       |
| Project     | Total Existing     |                         | 127,530    | 0.349           | 0.07     | 0.00        | 0.40         | 0.01               | 0.04        |
| Office      | 35.0               | 12.95                   | 453,250    | 1.242           | 0.248    | 0.012       | 1.428        | 0.050              | 0.149       |
|             | Total Project      |                         | 453,250    | 1.242           | 0.25     | 0.01        | 1.43         | 0.05               | 0.15        |
|             | Net Emissions From | Electricity Usage       |            |                 | 0.18     | 0.01        | 1.03         | 0.04               | 0.11        |

#### **Summary of Stationary Emissions**

|                                    | <u>co</u> | ROC  | <u>NOx</u> | <u>PM10</u> | <u>SOx</u> |
|------------------------------------|-----------|------|------------|-------------|------------|
| Total Existing Emissions (lbs/day) | 0.07      | 0.00 | 0.40       | 0.01        | 0.04       |
| Total Project Emissions (lbs/day)  | 0.25      | 0.01 | 1.43       | 0.05        | 0.15       |
| Total Net Emissions (lbs/day)      | 0.18      | 0.01 | 1.03       | 0.04        | 0.11       |

<sup>&</sup>lt;sup>a</sup> Electricity Usage Rates from Table A9-11-A, <u>CEQA Air Quality Handbook</u>, SCAQMD, 1993.

<sup>&</sup>lt;sup>b</sup> Emission Factors from Table A9-11-B, <u>CEQA Air Quality Handbook</u>, SCAQMD, 1993.

URBEMIS 2002 For Windows 8.7.0

File Name: V:\AQNOISE DIVISION\Active Projects\Eagle Lodge\Alternatives\Alternative 1\Alternative 1.urb

Alternative 1

Project Name:
Project Location:
On-Road Mr. South Coast Air Basin (Los Angeles area)

On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

| AREA SOURCE EMISSION ESTIMATES | (Tons per | Year, | Unmitigated) |      |      |
|--------------------------------|-----------|-------|--------------|------|------|
| Source                         | ROG       | NOx   | CO           | SO2  | PM10 |
| Natural Gas                    | 0.00      | 0.04  | 0.04         | 0.00 | 0.00 |
| Hearth                         | 0.00      | 0.00  | 0.00         | 0.00 | 0.00 |
| Landscaping                    | 0.01      | 0.00  | 0.06         | 0.00 | 0.00 |
| Consumer Prdcts                | 0.00      | -     | -            | -    | -    |
| Architectural Coatings         | 0.06      | -     | -            | -    | -    |
| TOTALS (tpy, unmitigated)      | 0.08      | 0.04  | 0.10         | 0.00 | 0.00 |

UNMITIGATED OPERATIONAL EMISSIONS

|                           | ROG  | NOx  | CO    | SO2  | PM10 |
|---------------------------|------|------|-------|------|------|
| General office building   | 1.80 | 3.24 | 23.43 | 0.02 | 2.85 |
| TOTAL EMISSIONS (tons/yr) | 1 80 | 3 24 | 23.43 | 0.02 | 2 85 |

Does not include correction for passby trips.
Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Season: Annual Analysis Year: 2009

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

No. Total Units Trips Acreage Trip Rate Unit Type General office building 40.94 trips/1000 sq. ft. 35.00 1,432.90 Sum of Total Trips 1,432.90
Total Vehicle Miles Traveled 10,288.22

Vehicle Assumptions:

Fleet Mix:

| Vehicle Type             | Percent Type | Non-Catalyst | Catalyst | Diesel |
|--------------------------|--------------|--------------|----------|--------|
| Light Auto               | 54.90        | 1.30         | 98.40    | 0.30   |
| Light Truck < 3,750 lb   | s 15.10      | 2.60         | 95.40    | 2.00   |
| Light Truck 3,751- 5,75  | 0 16.10      | 1.20         | 98.10    | 0.70   |
| Med Truck 5,751-8,50     | 0 7.30       | 1.40         | 95.90    | 2.70   |
| Lite-Heavy 8,501-10,00   | 0 1.10       | 0.00         | 81.80    | 18.20  |
| Lite-Heavy 10,001-14,00  | 0.30         | 0.00         | 66.70    | 33.30  |
| Med-Heavy 14,001-33,00   | 0 1.00       | 0.00         | 20.00    | 80.00  |
| Heavy-Heavy 33,001-60,00 | 0.90         | 0.00         | 11.10    | 88.90  |
| Line Haul > 60,000 lb    | s 0.00       | 0.00         | 0.00     | 100.00 |
| Urban Bus                | 0.20         | 0.00         | 50.00    | 50.00  |
| Motorcycle               | 1.60         | 75.00        | 25.00    | 0.00   |
| School Bus               | 0.10         | 0.00         | 0.00     | 100.00 |
| Motor Home               | 1.40         | 7.10         | 85.70    | 7.20   |

Travel Conditions

| TIGICI CONGICIONE         |         |             |       |         |            |          |
|---------------------------|---------|-------------|-------|---------|------------|----------|
|                           |         | Residential |       |         | Commercia: | 1        |
|                           | Home-   | Home-       | Home- |         |            |          |
|                           | Work    | Shop        | Other | Commute | Non-Work   | Customer |
| Urban Trip Length (miles) | 11.5    | 4.9         | 6.0   | 10.3    | 5.5        | 5.5      |
| Rural Trip Length (miles) | 11.5    | 4.9         | 6.0   | 10.3    | 5.5        | 5.5      |
| Trip Speeds (mph)         | 35.0    | 40.0        | 40.0  | 40.0    | 40.0       | 40.0     |
| % of Trips - Residential  | 20.0    | 37.0        | 43.0  |         |            |          |
| % of Trips - Commercial ( | by land | use)        |       |         |            |          |
| General office building   |         |             |       | 35.0    | 17.5       | 47.5     |

Changes made to the default values for Land Use Trip Percentages

Changes made to the default values for Area

The landscape year changed from 2005 to 2009.

Changes made to the default values for Operations

The operational emission year changed from 2005 to 2009. The operational winter temperature changed from 50 to 40. The operational winter selection item changed from 9 to 1. The operational summer temperature changed from 90 to 70. The operational summer selection item changed from 8 to 4.

# Eagle Lodge Alternative 2

## Regional Emission Calculations (lbs/day)

| Existing                      |
|-------------------------------|
| Mobile                        |
| Area                          |
| Stationary                    |
| Total Existing                |
| Project                       |
| Mobile                        |
| Area                          |
| Stationary                    |
| Total Project                 |
| Net Project                   |
| Net Mobile                    |
| Net Area                      |
| Net Stationary                |
| Total Net                     |
| SCAQMD Significance Threshold |
| Difference                    |
| Significant?                  |

| СО    | NOx  | PM10  | ROC  | SOx   |
|-------|------|-------|------|-------|
|       |      |       |      |       |
| 25    | 3    | 2     | 2    | 0.1   |
| 0.1   | 0.1  | 0     | 0.1  | 0     |
| 0.1   | 0.0  | 0.4   | 0.0  | 0.0   |
| 25.2  | 3.1  | 2.4   | 2.1  | 0.1   |
|       |      |       |      |       |
|       |      |       |      |       |
| 40.58 | 5.61 | 5.14  | 3.33 | 0.03  |
| 2.99  | 0.55 | 0.34  | 2.4  | 0.01  |
| 1     | 0    | 3     | 0    | 0     |
| 44    | 6    | 9     | 6    | 0     |
|       |      |       |      |       |
|       |      |       |      |       |
| 15.6  | 2.6  | 3.1   | 1.3  | -0.1  |
| 2.9   | 0.5  | 0.3   | 2.3  | 0.0   |
| 0.5   | 0.0  | 2.7   | 0.1  | 0.3   |
| 18.9  | 3.1  | 6.2   | 3.7  | 0.2   |
| 550   | 55   | 150   | 55   | 150   |
| (531) | (52) | (144) | (51) | (150) |
| No    | No   | No    | No   | No    |

#### **Electricity Usage**

|                  |                    | Electricity             |            |                 |            | Emission     | Factors (lbs | /MWh) <sup>b</sup> |             |
|------------------|--------------------|-------------------------|------------|-----------------|------------|--------------|--------------|--------------------|-------------|
|                  |                    | Usage Rate <sup>a</sup> | Total E    | ectricity Usage | СО         | ROC          | NOx          | PM10               | SOx         |
| Land Use         | 1,000 Sqft         | (kWh\sq.ft\yr)          | (KWh\year) | (MWh\Day)       | <u>0.2</u> | <u>0.01</u>  | <u>1.15</u>  | <u>0.04</u>        | <u>0.12</u> |
| Existing         |                    |                         |            |                 | Emission   | ns from Elec | tricity Cons | sumption (lb       | s/day)      |
| Retail           | 0.6                | 13.55                   | 8,130      | 0.022           | 0.004      | 0.000        | 0.026        | 0.001              | 0.003       |
| Hotel/Motel      | 12.0               | 9.95                    | 119,400    | 0.327           | 0.065      | 0.003        | 0.376        | 0.013              | 0.039       |
|                  | Total Existing     |                         | 127,530    | 0.349           | 0.07       | 0.00         | 0.40         | 0.01               | 0.04        |
| Project          |                    |                         |            |                 |            |              |              |                    |             |
| Office           | 52.0               | 12.95                   | 673,400    | 1.845           | 0.369      | 0.018        | 2.122        | 0.074              | 0.221       |
| Residential (DU) | 54.0               | 5,627                   | 303,831    | 0.832           | 0.166      | 0.008        | 0.957        | 0.033              | 0.100       |
|                  | Total Project      |                         | 977,231    | 2.677           | 0.54       | 0.03         | 3.08         | 0.11               | 0.32        |
|                  | Net Emissions From | Electricity Usage       |            |                 | 0.47       | 0.02         | 2.68         | 0.09               | 0.28        |

### **Summary of Stationary Emissions**

|                                    | <u>co</u> | ROC  | <u>NOx</u> | <u>PM10</u> | <u>SOx</u> |
|------------------------------------|-----------|------|------------|-------------|------------|
| Total Existing Emissions (lbs/day) | 0.07      | 0.00 | 0.40       | 0.01        | 0.04       |
| Total Project Emissions (lbs/day)  | 0.54      | 0.03 | 3.08       | 0.11        | 0.32       |
| Total Net Emissions (lbs/day)      | 0.47      | 0.02 | 2.68       | 0.09        | 0.28       |

<sup>&</sup>lt;sup>a</sup> Electricity Usage Rates from Table A9-11-A, <u>CEQA Air Quality Handbook</u>, SCAQMD, 1993.

<sup>&</sup>lt;sup>b</sup> Emission Factors from Table A9-11-B, <u>CEQA Air Quality Handbook</u>, SCAQMD, 1993.

URBEMIS 2002 For Windows 8.7.0

 $\label{thm:local_value} $$V:\AQNOISE DIVISION\Active Projects\Eagle Lodge\Alternatives\Alternative 2\Alternative2.urb Eagle Lodge Operations (Winter) - 2009$ 

File Name: V:\AQNOISE DIVISION\Active Projects\EProject Name: Eagle Lodge Operations (Winter) - 200
Project Location: Mountain Counties and Rural Counties
On-Road Motor Vehicle Emissions Based on EMFAC2002 version 2.2

DETAIL REPORT (Tons/Year)

| AREA SOURCE EMISSION ESTIMATES | (Tons pe | r Year,  | Unmitigated) |      |      |
|--------------------------------|----------|----------|--------------|------|------|
| Source                         | ROG      | NOx      | CO           | SO2  | PM10 |
| Natural Gas                    | 0.04     | 0.51     | 0.40         | 0.00 | 0.00 |
| Hearth                         | 1.26     | 0.03     | 2.29         | 0.01 | 0.34 |
| Landscaping                    | 0.04     | 0.00     | 0.30         | 0.00 | 0.00 |
| Consumer Prdcts                | 0.48     | -        | -            | -    | -    |
| Architectural Coatings         | 0.58     | -        | -            | -    | -    |
| TOTALS (tpy, unmitigated)      | 2.40     | 0.55     | 2.99         | 0.01 | 0.34 |
|                                |          |          |              |      |      |
| UNMITIGATED OPE                | RATIONAL | EMISSION | IS           |      |      |
|                                |          |          |              |      |      |
|                                | ROG      | NOx      | CO           | SO2  | PM10 |
| Condo/townhouse general        | 0.68     | 1.18     | 8.60         | 0.01 | 1.10 |
| Base Lodge Employee Trips      | 0.60     | 1.04     | 7.42         | 0.01 | 0.99 |
| High turnover (sit-down)       | 0.77     | 1.21     | 8.77         | 0.01 | 1.09 |
| General Commercial             | 1.25     | 2.12     | 15.41        | 0.01 | 1.91 |
| Convenience market (24 ho      | 0.03     | 0.05     | 0.39         | 0.00 | 0.05 |
|                                |          |          |              |      |      |
| TOTAL EMISSIONS (tons/vr)      | 3.33     | 5.61     | 40.58        | 0.03 | 5.14 |

Does not include correction for passby trips. Does not include double counting adjustment for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

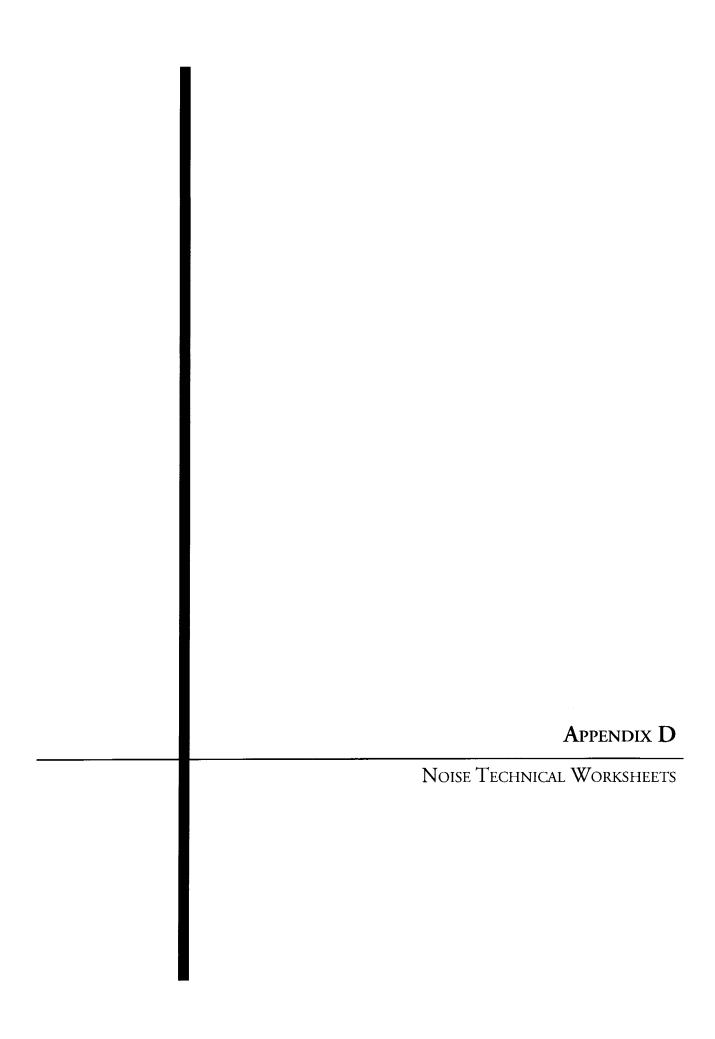
Season: Annual Analysis Year: 2009

EMFAC Version: EMFAC2002 (9/2002)

Summary of Land Uses:

| Unit Type                 | Acreage | Trip Rate                | No. Total<br>Units Trips |
|---------------------------|---------|--------------------------|--------------------------|
| Condo/townhouse general   |         | 6.90 trips/dwelling uni  | 54.00 372.60             |
| Base Lodge Employee Trips |         | 2.00 trips/employees     | 122.00 244.00            |
| High turnover (sit-down)  |         | 2.81 trips/seats         | 200.00 562.00            |
| General Commercial        |         | 21.21 trips/1000 sq. ft. | 48.00 1,018.08           |
| Convenience market (24 ho |         | 21.21 trips/1000 sq. ft. | 1.20 25.45               |

Sum of Total Trips 2,222.13
Total Vehicle Miles Traveled 18,560.87


Vehicle Assumptions:

Fleet Mix:

| Vehicle Type           | Percent Type | Non-Catalyst | Catalyst | Diesel |
|------------------------|--------------|--------------|----------|--------|
| Light Auto             | 54.90        | 1.30         | 98.40    | 0.30   |
| Light Truck < 3,750    | lbs 15.10    | 2.60         | 95.40    | 2.00   |
| Light Truck 3,751- 5,  | 750 16.10    | 1.20         | 98.10    | 0.70   |
| Med Truck 5,751-8,     | 500 7.30     | 1.40         | 95.90    | 2.70   |
| Lite-Heavy 8,501-10,   | 000 1.10     | 0.00         | 81.80    | 18.20  |
| Lite-Heavy 10,001-14,  | 000 0.30     | 0.00         | 66.70    | 33.30  |
| Med-Heavy 14,001-33,   | 000 1.00     | 0.00         | 20.00    | 80.00  |
| Heavy-Heavy 33,001-60, | 000 0.90     | 0.00         | 11.10    | 88.90  |
| Line Haul > 60,000     | lbs 0.00     | 0.00         | 0.00     | 100.00 |
| Urban Bus              | 0.20         | 0.00         | 50.00    | 50.00  |
| Motorcycle             | 1.60         | 75.00        | 25.00    | 0.00   |
| School Bus             | 0.10         | 0.00         | 0.00     | 100.00 |
| Motor Home             | 1.40         | 7.10         | 85.70    | 7.20   |

Travel Conditions

| TIAVEL CONDICIONS         |         |             |       |         |            |         |
|---------------------------|---------|-------------|-------|---------|------------|---------|
|                           |         | Residential |       |         | Commercial |         |
|                           | Home-   | Home-       | Home- |         |            |         |
|                           | Work    | Shop        | Other | Commute | Non-Work C | ustomer |
| Urban Trip Length (miles) | 10.8    | 7.3         | 7.5   | 9.5     | 7.4        | 7.4     |
| Rural Trip Length (miles) | 16.8    | 7.1         | 7.9   | 14.7    | 6.6        | 6.6     |
| Trip Speeds (mph)         | 35.0    | 35.0        | 35.0  | 35.0    | 35.0       | 35.0    |
| % of Trips - Residential  | 32.9    | 18.0        | 49.1  |         |            |         |
| % of Trips - Commercial ( | by land | use)        |       |         |            |         |
| Base Lodge Employee Trips |         |             |       | 100.0   | 0.0        | 0.0     |
| High turnover (sit-down)  | rest.   |             |       | 5.0     | 2.5        | 92.5    |
| General Commercial        |         |             |       | 2.0     | 1.0        | 97.0    |
| Convenience market (24 ho | ur)     |             |       | 2.0     | 1.0        | 97.0    |



# **Eagle Lodge**

# Draft Environmental Impact Report

Noise Assessment Files

Provided by PCR Services Corporation

July 2006

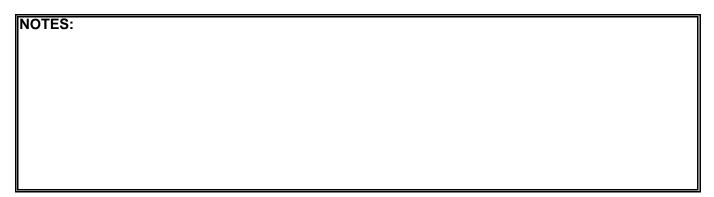
- D-1 Noise Monitoring Data Sheets
- D-2 Roadway Noise Analysis Sheets (TENS Methodology)

# Appendix D-1

• Noise Monitoring Data Sheets

## Community Noise Equivalent Level, CNEL.

Project: Eagle Lodge


Location: North

Sources: Traffic Volumes and Operations

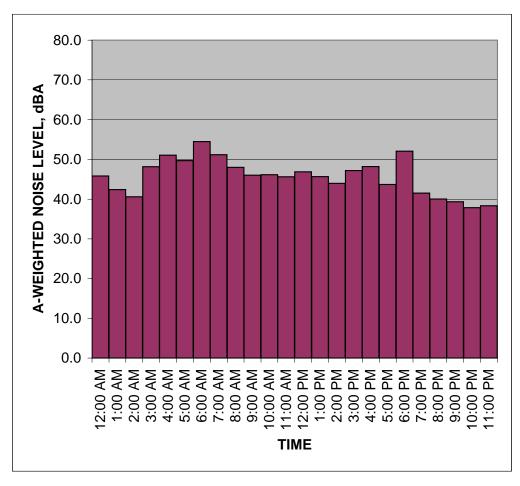
Date: January 18, 2006

|              | HNL,  |
|--------------|-------|
| TIME         | dB(A) |
| 12:00 AM     | 49.2  |
| 1:00 AM      | 45.0  |
| 2:00 AM      | 41.1  |
| 3:00 AM      | 46.8  |
| 4:00 AM      | 50.6  |
| 5:00 AM      | 58.4  |
| 6:00 AM      | 63.0  |
| 7:00 AM      | 59.3  |
| 8:00 AM      | 61.0  |
| 9:00 AM      | 58.8  |
| 10:00 AM     | 59.8  |
| 11:00 AM     | 56.1  |
| 12:00 PM     | 56.3  |
| 1:00 PM      | 58.6  |
| 2:00 PM      | 60.9  |
| 3:00 PM      | 57.4  |
| 4:00 PM      | 55.1  |
| 5:00 PM      | 56.6  |
| 6:00 PM      | 51.1  |
| 7:00 PM      | 49.3  |
| 8:00 PM      | 45.7  |
| 9:00 PM      | 44.5  |
| 10:00 PM     | 44.8  |
| 11:00 PM     | 43.2  |
| CNEL, dB(A): | 62.1  |





## Community Noise Equivalent Level, CNEL.


Project: Eagle Lodge

Location: North

Sources: Traffic Volumes and Operations

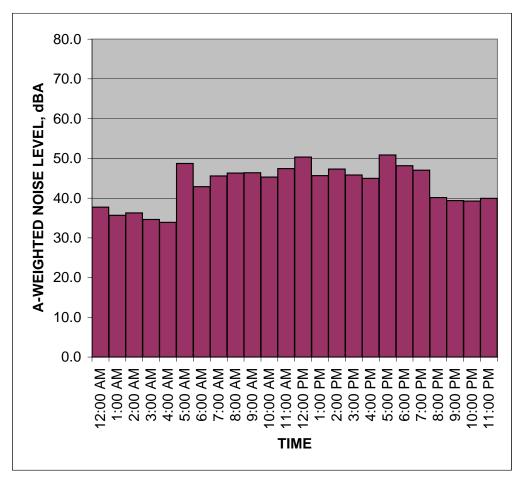
Date: January 19, 2006

|              | LINII |
|--------------|-------|
|              | HNL,  |
| TIME         | dB(A) |
| 12:00 AM     | 45.8  |
| 1:00 AM      | 42.4  |
| 2:00 AM      | 40.6  |
| 3:00 AM      | 48.2  |
| 4:00 AM      | 51.1  |
| 5:00 AM      | 49.7  |
| 6:00 AM      | 54.5  |
| 7:00 AM      | 51.2  |
| 8:00 AM      | 48.0  |
| 9:00 AM      | 46.0  |
| 10:00 AM     | 46.1  |
| 11:00 AM     | 45.6  |
| 12:00 PM     | 46.9  |
| 1:00 PM      | 45.7  |
| 2:00 PM      | 44.0  |
| 3:00 PM      | 47.2  |
| 4:00 PM      | 48.2  |
| 5:00 PM      | 43.7  |
| 6:00 PM      | 52.1  |
| 7:00 PM      | 41.5  |
| 8:00 PM      | 40.0  |
| 9:00 PM      | 39.3  |
| 10:00 PM     | 37.8  |
| 11:00 PM     | 38.3  |
| CNEL, dB(A): | 54.8  |



| NOTES: |  |  |  |
|--------|--|--|--|
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |

# Community Noise Equivalent Level, CNEL.


Project: Eagle Lodge

Location: North

Sources: Traffic Volumes and Operations

Date: January 20, 2006

|              | HNL,  |
|--------------|-------|
| TIME         | dB(A) |
| 12:00 AM     | 37.7  |
| 1:00 AM      | 35.7  |
| 2:00 AM      | 36.3  |
| 3:00 AM      | 34.6  |
| 4:00 AM      | 33.9  |
| 5:00 AM      | 48.7  |
|              |       |
| 6:00 AM      | 42.9  |
| 7:00 AM      | 45.6  |
| 8:00 AM      | 46.3  |
| 9:00 AM      | 46.4  |
| 10:00 AM     | 45.3  |
| 11:00 AM     | 47.4  |
| 12:00 PM     | 50.3  |
| 1:00 PM      | 45.7  |
| 2:00 PM      | 47.3  |
| 3:00 PM      | 45.8  |
| 4:00 PM      | 45.0  |
| 5:00 PM      | 50.9  |
| 6:00 PM      | 48.2  |
| 7:00 PM      | 47.0  |
| 8:00 PM      | 40.1  |
| 9:00 PM      | 39.4  |
| 10:00 PM     | 39.3  |
| 11:00 PM     | 39.9  |
| CNEL, dB(A): | 49.6  |



| NOTES: |  |  |
|--------|--|--|
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |

Project: Eagle Lodge

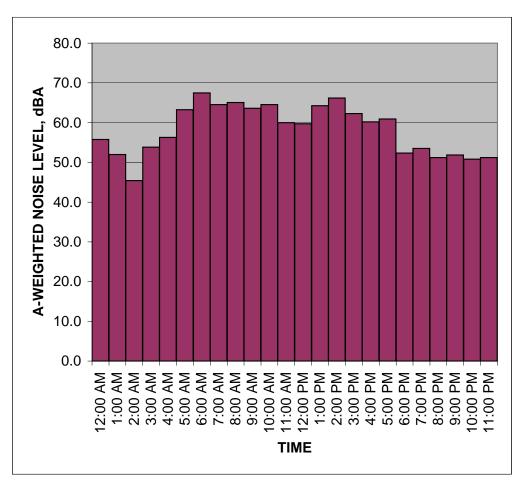
Location: North

Sources: Traffic Volumes and Operations

Date: January 21, 2006

|              | HNL,  |
|--------------|-------|
| TIME         | dB(A) |
| 12:00 AM     | 40.2  |
| 1:00 AM      | 40.2  |
| 2:00 AM      | 39.2  |
| 3:00 AM      | 37.8  |
| 4:00 AM      | 37.1  |
| 5:00 AM      | 38.6  |
| 6:00 AM      | 41.3  |
| 7:00 AM      | 42.0  |
| 8:00 AM      | 45.5  |
| 9:00 AM      | 45.7  |
| 10:00 AM     | 46.3  |
| 11:00 AM     | 46.9  |
| 12:00 PM     | 46.2  |
| 1:00 PM      | 45.3  |
| 2:00 PM      | 46.5  |
| 3:00 PM      | 47.0  |
| 4:00 PM      | 48.1  |
| 5:00 PM      | 52.3  |
| 6:00 PM      | 42.1  |
| 7:00 PM      | 46.3  |
| 8:00 PM      | 44.9  |
| 9:00 PM      | 40.1  |
| 10:00 PM     | 39.1  |
| 11:00 PM     | 38.4  |
| CNEL, dB(A): | 48.3  |




| NOTES: |  |  |
|--------|--|--|
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |

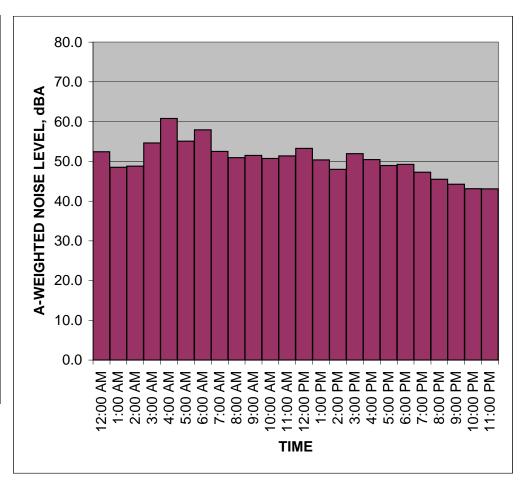
Project: Eagle Lodge Location: North East

Sources: Traffic Volumes and Operations

Date: January 18, 2006

|              | HNL,  |
|--------------|-------|
| TIME         | dB(A) |
| 12:00 AM     | 55.8  |
| 1:00 AM      | 52.0  |
| 2:00 AM      | 45.4  |
| 3:00 AM      | 53.8  |
| 4:00 AM      | 56.3  |
| 5:00 AM      | 63.3  |
| 6:00 AM      | 67.5  |
| 7:00 AM      | 64.5  |
| 8:00 AM      | 65.1  |
| 9:00 AM      | 63.6  |
| 10:00 AM     | 64.6  |
| 11:00 AM     | 60.0  |
| 12:00 PM     | 59.7  |
| 1:00 PM      | 64.3  |
| 2:00 PM      | 66.2  |
| 3:00 PM      | 62.3  |
| 4:00 PM      | 60.2  |
| 5:00 PM      | 60.9  |
| 6:00 PM      | 52.4  |
| 7:00 PM      | 53.5  |
| 8:00 PM      | 51.2  |
| 9:00 PM      | 51.9  |
| 10:00 PM     | 50.8  |
| 11:00 PM     | 51.2  |
| CNEL, dB(A): | 66.9  |




| NOTES: |  |  |  |
|--------|--|--|--|
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |

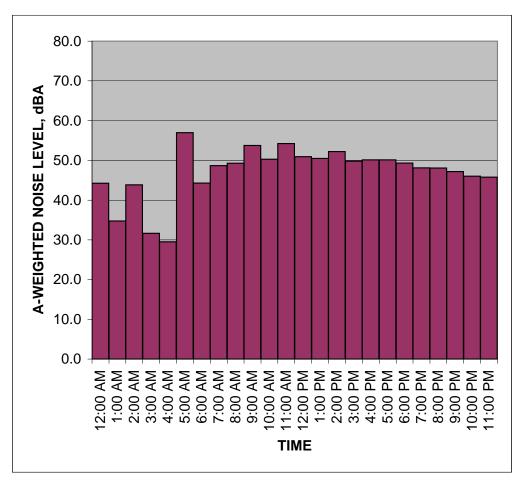
Project: Eagle Lodge Location: North East

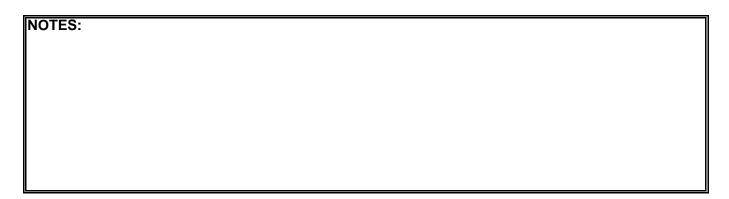
Sources: Traffic Volumes and Operations

Date: January 19, 2006

| 1            |       |
|--------------|-------|
|              | HNL,  |
| TIME         | dB(A) |
| 12:00 AM     | 52.4  |
| 1:00 AM      | 48.5  |
| 2:00 AM      | 48.8  |
| 3:00 AM      | 54.7  |
| 4:00 AM      | 60.8  |
| 5:00 AM      | 55.1  |
| 6:00 AM      | 58.0  |
| 7:00 AM      | 52.5  |
| 8:00 AM      | 50.9  |
| 9:00 AM      | 51.5  |
| 10:00 AM     | 50.7  |
| 11:00 AM     | 51.4  |
| 12:00 PM     | 53.3  |
| 1:00 PM      | 50.4  |
| 2:00 PM      | 48.0  |
| 3:00 PM      | 51.9  |
| 4:00 PM      | 50.5  |
| 5:00 PM      | 49.0  |
| 6:00 PM      | 49.3  |
| 7:00 PM      | 47.3  |
| 8:00 PM      | 45.5  |
| 9:00 PM      | 44.2  |
| 10:00 PM     | 43.1  |
| 11:00 PM     | 43.1  |
| CNEL, dB(A): | 60.9  |




| NOTES: |  |  |  |
|--------|--|--|--|
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |

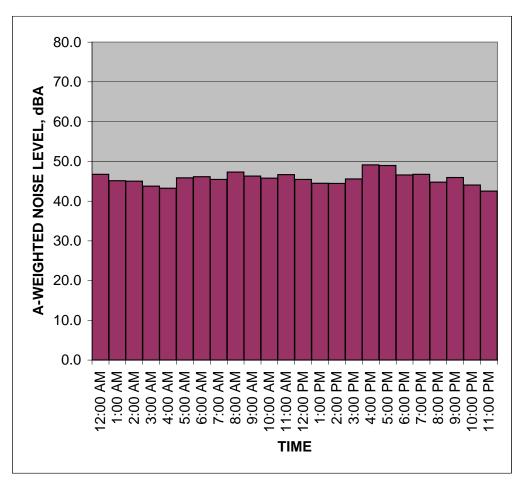

Project: Eagle Lodge Location: North East

Sources: Traffic Volumes and Operations

Date: January 20, 2006

|              | HNL,  |
|--------------|-------|
| TIME         | dB(A) |
| 12:00 AM     | 44.2  |
| 1:00 AM      | 34.7  |
| 2:00 AM      | 43.9  |
| 3:00 AM      | 31.7  |
| 4:00 AM      | 29.5  |
| 5:00 AM      | 57.0  |
| 6:00 AM      | 44.3  |
| 7:00 AM      | 48.7  |
| 8:00 AM      | 49.3  |
| 9:00 AM      | 53.7  |
| 10:00 AM     | 50.3  |
| 11:00 AM     | 54.3  |
| 12:00 PM     | 50.9  |
| 1:00 PM      | 50.5  |
| 2:00 PM      | 52.2  |
| 3:00 PM      | 49.8  |
| 4:00 PM      | 50.1  |
| 5:00 PM      | 50.1  |
| 6:00 PM      | 49.3  |
| 7:00 PM      | 48.1  |
| 8:00 PM      | 48.1  |
| 9:00 PM      | 47.2  |
| 10:00 PM     | 46.0  |
| 11:00 PM     | 45.8  |
| CNEL, dB(A): | 55.6  |






Project: Eagle Lodge Location: North East

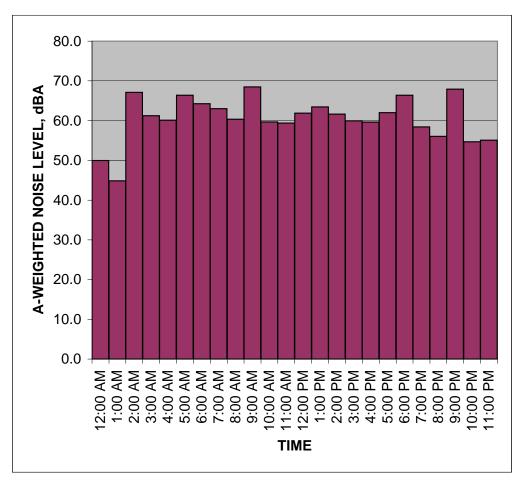
Sources: Traffic Volumes and Operations

Date: January 21, 2006

|              | HNL,  |
|--------------|-------|
| TIME         | dB(A) |
| 12:00 AM     | 46.7  |
| 1:00 AM      | 45.1  |
| 2:00 AM      | 45.0  |
| 3:00 AM      | 43.8  |
| 4:00 AM      | 43.2  |
| 5:00 AM      | 45.9  |
| 6:00 AM      | 46.2  |
| 7:00 AM      | 45.5  |
| 8:00 AM      | 47.3  |
| 9:00 AM      | 46.3  |
| 10:00 AM     | 45.8  |
| 11:00 AM     | 46.7  |
| 12:00 PM     | 45.5  |
| 1:00 PM      | 44.5  |
| 2:00 PM      | 44.4  |
| 3:00 PM      | 45.6  |
| 4:00 PM      | 49.1  |
| 5:00 PM      | 48.9  |
| 6:00 PM      | 46.6  |
| 7:00 PM      | 46.7  |
| 8:00 PM      | 44.8  |
| 9:00 PM      | 45.9  |
| 10:00 PM     | 44.0  |
| 11:00 PM     | 42.5  |
| CNEL, dB(A): | 51.9  |



| NOTES: |  |  |
|--------|--|--|
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |


Project: Eagle Lodge

Location: South

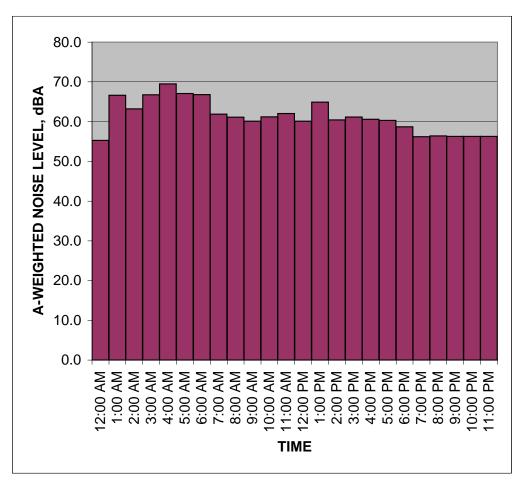
Sources: Traffic Volumes and Operations

Date: January 18, 2006

|              | HNL,  |
|--------------|-------|
| TIME         | dB(A) |
| 12:00 AM     | 50.0  |
| 1:00 AM      | 44.9  |
| 2:00 AM      | 67.1  |
| 3:00 AM      | 61.3  |
| 4:00 AM      | 60.1  |
| 5:00 AM      | 66.4  |
| 6:00 AM      | 64.3  |
| 7:00 AM      | 63.0  |
| 8:00 AM      | 60.4  |
| 9:00 AM      | 68.5  |
| 10:00 AM     | 59.7  |
| 11:00 AM     | 59.4  |
| 12:00 PM     | 61.9  |
| 1:00 PM      | 63.5  |
| 2:00 PM      | 61.7  |
| 3:00 PM      | 59.9  |
| 4:00 PM      | 59.6  |
| 5:00 PM      | 62.0  |
| 6:00 PM      | 66.4  |
| 7:00 PM      | 58.4  |
| 8:00 PM      | 56.1  |
| 9:00 PM      | 67.9  |
| 10:00 PM     | 54.7  |
| 11:00 PM     | 55.1  |
| CNEL, dB(A): | 69.2  |



| NOTES: |  |  |
|--------|--|--|
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |


Project: Eagle Lodge

Location: South

Sources: Traffic Volumes and Operations

Date: January 19, 2006

|              | HNL,  |
|--------------|-------|
| TIME         | dB(A) |
| 12:00 AM     | 55.3  |
| 1:00 AM      | 66.6  |
| 2:00 AM      | 63.2  |
| 3:00 AM      | 66.7  |
| 4:00 AM      | 69.5  |
| 5:00 AM      | 67.1  |
| 6:00 AM      | 66.8  |
| 7:00 AM      | 61.9  |
| 8:00 AM      | 61.1  |
| 9:00 AM      | 60.1  |
| 10:00 AM     | 61.2  |
| 11:00 AM     | 62.0  |
| 12:00 PM     | 60.1  |
| 1:00 PM      | 64.9  |
| 2:00 PM      | 60.4  |
| 3:00 PM      | 61.2  |
| 4:00 PM      | 60.6  |
| 5:00 PM      | 60.3  |
| 6:00 PM      | 58.7  |
| 7:00 PM      | 56.2  |
| 8:00 PM      | 56.4  |
| 9:00 PM      | 56.3  |
| 10:00 PM     | 56.3  |
| 11:00 PM     | 56.3  |
| CNEL, dB(A): | 71.4  |



| NOTES: | <br> | <br> |
|--------|------|------|
|        |      |      |
|        |      |      |
|        |      |      |
|        |      |      |
|        |      |      |
|        |      |      |

Project: Eagle Lodge

Location: South

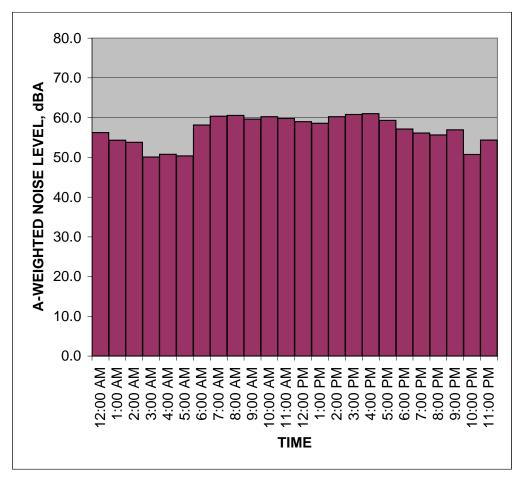
Sources: Traffic Volumes and Operations

Date: January 20, 2006

|              | LINII |
|--------------|-------|
|              | HNL,  |
| TIME         | dB(A) |
| 12:00 AM     | 51.5  |
| 1:00 AM      | 46.2  |
| 2:00 AM      | 44.4  |
| 3:00 AM      | 39.1  |
| 4:00 AM      | 38.4  |
| 5:00 AM      | 62.7  |
| 6:00 AM      | 57.4  |
| 7:00 AM      | 61.3  |
| 8:00 AM      | 60.4  |
| 9:00 AM      | 61.3  |
| 10:00 AM     | 60.9  |
| 11:00 AM     | 61.4  |
| 12:00 PM     | 59.4  |
| 1:00 PM      | 60.6  |
| 2:00 PM      | 60.1  |
| 3:00 PM      | 60.9  |
| 4:00 PM      | 59.9  |
| 5:00 PM      | 58.2  |
| 6:00 PM      | 56.1  |
| 7:00 PM      | 56.7  |
| 8:00 PM      | 56.6  |
| 9:00 PM      | 57.9  |
| 10:00 PM     | 57.3  |
| 11:00 PM     | 57.1  |
| CNEL, dB(A): | 63.5  |



| NOTES: |  |  |
|--------|--|--|
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |
|        |  |  |


Project: Eagle Lodge

Location: South

Sources: Traffic Volumes and Operations

Date: January 21, 2006

|              | HNL,  |
|--------------|-------|
| TIME         | -     |
|              | dB(A) |
| 12:00 AM     | 56.3  |
| 1:00 AM      | 54.3  |
| 2:00 AM      | 53.8  |
| 3:00 AM      | 50.1  |
| 4:00 AM      | 50.8  |
| 5:00 AM      | 50.4  |
| 6:00 AM      | 58.1  |
| 7:00 AM      | 60.4  |
| 8:00 AM      | 60.6  |
| 9:00 AM      | 59.6  |
| 10:00 AM     | 60.2  |
| 11:00 AM     | 59.8  |
| 12:00 PM     | 59.0  |
| 1:00 PM      | 58.6  |
| 2:00 PM      | 60.2  |
| 3:00 PM      | 60.8  |
| 4:00 PM      | 61.0  |
| 5:00 PM      | 59.3  |
| 6:00 PM      | 57.1  |
| 7:00 PM      | 56.1  |
| 8:00 PM      | 55.7  |
| 9:00 PM      | 56.9  |
| 10:00 PM     | 50.7  |
| 11:00 PM     | 54.4  |
| CNEL, dB(A): | 62.1  |



| NOTES: |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |

# Appendix D-2

• Roadway Noise Analysis (TENS Methodology)

| Existing                             |    |                |       |      |         |          |      |         |          |
|--------------------------------------|----|----------------|-------|------|---------|----------|------|---------|----------|
| •                                    |    | Traffic Volume | es    |      | Leq     |          | CNEL |         |          |
| Roadway/Segment                      | AM | PM             | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Main Street East of Old Mammoth Road |    |                | 3610  | 60.3 | 56.3    | 54.3     | 61.6 | 57.6    | 55.5     |
| Main Street West of Old Mammoth Road |    |                | 9490  | 64.5 | 60.5    | 58.5     | 65.8 | 61.8    | 59.7     |
| Main Street East of Minaret Road     |    |                | 10710 | 65.1 | 61.1    | 59.0     | 66.3 | 62.3    | 60.2     |
| Lake Mary Road West of Minaret Road  |    |                | 7160  | 63.3 | 59.3    | 57.3     | 64.5 | 60.5    | 58.5     |
| Lake Mary Road West of Kelly Road    |    |                | 850   | 55.2 | 50.5    | 48.3     | 56.4 | 51.7    | 49.5     |
| Future No Project                    |    |                |       |      |         |          |      |         |          |
|                                      | •  | Traffic Volume | es    |      | Leq     |          | CNEL |         |          |
| Roadway/Segment                      | AM | PM             | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Main Street East of Old Mammoth Road |    |                | 3680  | 60.4 | 56.4    | 54.4     | 61.6 | 57.6    | 55.6     |
| Main Street West of Old Mammoth Road |    |                | 9720  | 64.6 | 60.6    | 58.6     | 65.9 | 61.9    | 59.8     |
| Main Street East of Minaret Road     |    |                | 11510 | 65.4 | 61.4    | 59.3     | 66.6 | 62.6    | 60.6     |
| Lake Mary Road West of Minaret Road  |    |                | 9260  | 64.4 | 60.4    | 58.4     | 65.6 | 61.7    | 59.6     |
| Lake Mary Road West of Kelly Road    |    |                | 2620  | 60.1 | 55.4    | 53.2     | 61.3 | 56.6    | 54.4     |
| Future With Project                  |    |                |       |      |         |          |      |         |          |
|                                      |    | Traffic Volume | -     |      | Leq     |          |      | CNEL    |          |
| Roadway/Segment                      | AM | PM             | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Main Street East of Old Mammoth Road |    |                | 3740  | 60.5 | 56.5    | 54.5     | 61.7 | 57.7    | 55.7     |
| Main Street West of Old Mammoth Road |    |                | 9720  | 64.6 | 60.6    | 58.6     | 65.9 | 61.9    | 59.8     |
| Main Street East of Minaret Road     |    |                | 11710 | 65.5 | 61.5    | 59.4     | 66.7 | 62.7    | 60.6     |
| Lake Mary Road West of Minaret Road  |    |                | 9330  | 64.5 | 60.5    | 58.4     | 65.7 | 61.7    | 59.6     |
| Lake Mary Road West of Kelly Road    |    | 1              | 2660  | 60.2 | 55.4    | 53.2     | 61.4 | 56.7    | 54.4     |

#### CNEL

|                                      | ONEL               |           |           |            |  |  |
|--------------------------------------|--------------------|-----------|-----------|------------|--|--|
| Summary                              | 50 ft. from ROW At |           |           | ROW        |  |  |
|                                      | Project Cumulative |           | Project   | Cumulative |  |  |
| Roadway/Segment                      | Increment          | Increment | Increment | Increment  |  |  |
| Main Street East of Old Mammoth Road | 0.1                | 0.1       | 0.1       | 0.1        |  |  |
| Main Street West of Old Mammoth Road | 0.0                | 0.1       | 0.0       | 0.1        |  |  |
| Main Street East of Minaret Road     | 0.1                | 0.4       | 0.1       | 0.4        |  |  |
| Lake Mary Road West of Minaret Road  | 0.0                | 1.2       | 0.1       | 1.2        |  |  |
| Lake Mary Road West of Kelly Road    | 0.1                | 5.0       | 0.1       | 5.0        |  |  |

2009-1.xls 10:46 AM 7/25/2006

| Existing                                     |    |                 |      |      |         |          |      |         |          |
|----------------------------------------------|----|-----------------|------|------|---------|----------|------|---------|----------|
|                                              |    | Traffic Volumes |      |      | Leq     |          | CNEL |         |          |
| Roadway/Segment                              | AM | PM              | ADT  | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Old Mammoth Road South of Main Street        |    |                 | 7320 | 64.6 | 59.8    | 57.6     | 65.8 | 61.1    | 58.8     |
| Old Mammoth Road North of Meridian Boulevard |    |                 | 5590 | 63.4 | 58.7    | 56.5     | 64.6 | 59.9    | 57.7     |
| Old Mammoth Road South of Meridian Boulevard |    |                 | 5760 | 63.5 | 58.8    | 56.6     | 64.7 | 60.0    | 57.8     |
| Meridian Boulevard, East of Old Mammoth Road |    |                 | 4140 | 60.9 | 56.9    | 54.9     | 62.2 | 58.2    | 56.1     |
| Meridian Boulevard, West of Old Mammoth Road |    |                 | 4230 | 61.0 | 57.0    | 55.0     | 62.2 | 58.3    | 56.2     |
| Future No Project                            |    |                 |      |      |         |          |      |         |          |
|                                              |    | Traffic Volume  |      |      | Leq     |          | CNEL |         |          |
| Roadway/Segment                              | AM | PM              | ADT  | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Old Mammoth Road South of Main Street        |    |                 | 7510 | 64.7 | 60.0    | 57.7     | 65.9 | 61.2    | 59.0     |
| Old Mammoth Road North of Meridian Boulevard |    |                 | 6400 | 64.0 | 59.3    | 57.0     | 65.2 | 60.5    | 58.3     |
| Old Mammoth Road South of Meridian Boulevard |    |                 | 6520 | 64.1 | 59.3    | 57.1     | 65.3 | 60.6    | 58.3     |
| Meridian Boulevard, East of Old Mammoth Road |    |                 | 4720 | 61.5 | 57.5    | 55.5     | 62.7 | 58.7    | 56.7     |
| Meridian Boulevard, West of Old Mammoth Road |    |                 | 4810 | 61.6 | 57.6    | 55.5     | 62.8 | 58.8    | 56.8     |
| Future With Project                          |    |                 |      |      |         |          |      |         |          |
|                                              |    | Traffic Volume  |      |      | Leq     |          |      | CNEL    |          |
| Roadway/Segment                              | AM | PM              | ADT  | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Old Mammoth Road South of Main Street        |    |                 | 7570 | 64.7 | 60.0    | 57.8     | 65.9 | 61.2    | 59.0     |
| Old Mammoth Road North of Meridian Boulevard |    |                 | 6730 | 64.2 | 59.5    | 57.3     | 65.4 | 60.7    | 58.5     |
| Old Mammoth Road South of Meridian Boulevard |    |                 | 6630 | 64.1 | 59.4    | 57.2     | 65.3 | 60.6    | 58.4     |
| Meridian Boulevard, East of Old Mammoth Road |    |                 | 4920 | 61.7 | 57.7    | 55.6     | 62.9 | 58.9    | 56.9     |
| Meridian Boulevard, West of Old Mammoth Road |    |                 | 5710 | 62.3 | 58.3    | 56.3     | 63.5 | 59.6    | 57.5     |

#### CNEL

|                                              | 0.122              |           |           |            |  |  |
|----------------------------------------------|--------------------|-----------|-----------|------------|--|--|
| Summary                                      | 50 ft. fr          | om ROW    | At F      | ROW        |  |  |
|                                              | Project Cumulative |           | Project   | Cumulative |  |  |
| Roadway/Segment                              | Increment          | Increment | Increment | Increment  |  |  |
| Old Mammoth Road South of Main Street        | 0.0                | 0.1       | 0.0       | 0.1        |  |  |
| Old Mammoth Road North of Meridian Boulevard | 0.2                | 0.8       | 0.2       | 0.8        |  |  |
| Old Mammoth Road South of Meridian Boulevard | 0.0                | 0.6       | 0.0       | 0.6        |  |  |
| Meridian Boulevard, East of Old Mammoth Road | 0.2                | 0.7       | 0.2       | 0.7        |  |  |
| Meridian Boulevard, West of Old Mammoth Road | 0.8                | 1.3       | 0.7       | 1.3        |  |  |

2009-2.xls 10:47 AM7/25/2006

| Existing                                              |    |                 |      |      |         |          |      |         |          |  |
|-------------------------------------------------------|----|-----------------|------|------|---------|----------|------|---------|----------|--|
| •                                                     |    | Traffic Volumes |      |      | Leq     |          |      | CNEL    |          |  |
| Roadway/Segment                                       | AM | PM              | ADT  | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |  |
| Meridian Boulevard, East of Minaret Boulevard         |    |                 | 5170 | 61.9 | 57.9    | 55.9     | 63.1 | 59.1    | 57.1     |  |
| Meridian Boulevard, West of Minaret Road              |    |                 | 4600 | 61.4 | 57.4    | 55.4     | 62.6 | 58.6    | 56.6     |  |
| Meridian Boulevard, East of Majestic Pines Road North |    |                 | 3330 | 60.0 | 56.0    | 54.0     | 61.2 | 57.2    | 55.2     |  |
| Meridian Boulevard, West of Majestic Pines Road North |    |                 | 2780 | 59.2 | 55.2    | 53.2     | 60.4 | 56.4    | 54.4     |  |
| Minaret Road, Main Street for Forest Trail            |    |                 | 8770 | 65.3 | 60.6    | 58.4     | 66.6 | 61.8    | 59.6     |  |
| Future No Project                                     |    |                 |      |      |         |          |      |         |          |  |
|                                                       |    | Traffic Volume  | es   |      | Leq     |          | CNEL |         |          |  |
| Roadway/Segment                                       | AM | PM              | ADT  | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |  |
| Meridian Boulevard, East of Minaret Boulevard         |    |                 | 5500 | 62.2 | 58.2    | 56.1     | 63.4 | 59.4    | 57.3     |  |
| Meridian Boulevard, West of Minaret Road              |    |                 | 4980 | 61.7 | 57.7    | 55.7     | 63.0 | 59.0    | 56.9     |  |
| Meridian Boulevard, East of Majestic Pines Road North |    |                 | 3680 | 60.4 | 56.4    | 54.4     | 61.6 | 57.6    | 55.6     |  |
| Meridian Boulevard, West of Majestic Pines Road North |    |                 | 3100 | 59.7 | 55.7    | 53.6     | 60.9 | 56.9    | 54.9     |  |
| Minaret Road, Main Street for Forest Trail            |    |                 | 9230 | 65.6 | 60.8    | 58.6     | 66.8 | 62.1    | 59.9     |  |
| Future With Project                                   |    |                 |      |      |         |          |      |         |          |  |
|                                                       |    | Traffic Volume  |      |      | Leq     |          |      | CNEL    |          |  |
| Roadway/Segment                                       | AM | PM              | ADT  | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |  |
| Meridian Boulevard, East of Minaret Boulevard         |    |                 | 6680 | 63.0 | 59.0    | 57.0     | 64.2 | 60.2    | 58.2     |  |
| Meridian Boulevard, West of Minaret Road              |    |                 | 7270 | 63.4 | 59.4    | 57.3     | 64.6 | 60.6    | 58.6     |  |
| Meridian Boulevard, East of Majestic Pines Road North |    |                 | 6390 | 62.8 | 58.8    | 56.8     | 64.0 | 60.0    | 58.0     |  |
| Meridian Boulevard, West of Majestic Pines Road North |    |                 | 5840 | 62.4 | 58.4    | 56.4     | 63.6 | 59.7    | 57.6     |  |
| Minaret Road, Main Street for Forest Trail            |    |                 | 9310 | 65.6 | 60.9    | 58.7     | 66.8 | 62.1    | 59.9     |  |

#### CNEL

|                                                       | 0.122                |           |           |            |  |  |  |
|-------------------------------------------------------|----------------------|-----------|-----------|------------|--|--|--|
| Summary                                               | 50 ft. from ROW At R |           |           | (OW        |  |  |  |
|                                                       | Project Cumulative   |           | Project   | Cumulative |  |  |  |
| Roadway/Segment                                       | Increment            | Increment | Increment | Increment  |  |  |  |
| Meridian Boulevard, East of Minaret Boulevard         | 0.8                  | 1.1       | 0.8       | 1.1        |  |  |  |
| Meridian Boulevard, West of Minaret Road              | 1.6                  | 2.0       | 1.6       | 2.0        |  |  |  |
| Meridian Boulevard, East of Majestic Pines Road North | 2.4                  | 2.8       | 2.4       | 2.8        |  |  |  |
| Meridian Boulevard, West of Majestic Pines Road North | 2.8                  | 3.3       | 2.7       | 3.2        |  |  |  |
| Minaret Road, Main Street for Forest Trail            | 0.0                  | 0.3       | 0.0       | 0.2        |  |  |  |

2009-3.xls 10:45 AM7/25/2006

| Existing                                          |                 |                |      |       |         |          |       |         |          |
|---------------------------------------------------|-----------------|----------------|------|-------|---------|----------|-------|---------|----------|
|                                                   | Traffic Volumes |                |      |       | Leq     |          | CNEL  |         |          |
| Roadway/Segment                                   | AM              | PM             | ADT  | ROW   | 50 Feet | 100 Feet | ROW   | 50 Feet | 100 Feet |
| Minaret Road, South of Main                       |                 |                | 4290 | 62.2  | 57.5    | 55.3     | 63.5  | 58.7    | 56.5     |
| Majestic Pines Drive, North of Meridian Boulevard | 1               |                | 980  | 55.8  | 51.1    | 48.9     | 57.0  | 52.3    | 50.1     |
| Majestic Pines Drive, South of Meridian Boulevard | 1               |                | 710  | 54.4  | 49.7    | 47.5     | 55.6  | 50.9    | 48.7     |
| Kelly Road, South of Lake Mary Road               | 1               |                | 550  | 53.3  | 48.6    | 46.4     | 54.5  | 49.8    | 47.6     |
| 0                                                 | 1               |                | 0    | -     | -       | -        | -     | -       | -        |
| Future No Project                                 |                 |                |      |       |         |          |       |         |          |
|                                                   | , T             | Traffic Volume | s    |       | Leq     |          | CNEL  |         |          |
| Roadway/Segment                                   | AM              | PM             | ADT  | ROW   | 50 Feet | 100 Feet | ROW   | 50 Feet | 100 Feet |
| Minaret Road, South of Main                       |                 |                | 5950 | 63.7  | 58.9    | 56.7     | 64.9  | 60.2    | 57.9     |
| Majestic Pines Drive, North of Meridian Boulevard | 1               |                | 1620 | 58.0  | 53.3    | 51.1     | 59.2  | 54.5    | 52.3     |
| Majestic Pines Drive, South of Meridian Boulevard | 1               |                | 740  | 54.6  | 49.9    | 47.7     | 55.8  | 51.1    | 48.9     |
| Kelly Road, South of Lake Mary Road               | 1               |                | 1730 | 58.3  | 53.6    | 51.4     | 59.5  | 54.8    | 52.6     |
| 0                                                 | 1               |                | 0    | #NUM! | #NUM!   | #NUM!    | #NUM! | #NUM!   | #NUM!    |
| Future With Project                               |                 |                |      |       |         |          |       |         |          |
|                                                   | , 7             | Traffic Volume | s    |       | Leq     |          |       | CNEL    |          |
| Roadway/Segment                                   | AM              | PM             | ADT  | ROW   | 50 Feet | 100 Feet | ROW   | 50 Feet | 100 Feet |
| Minaret Road, South of Main                       |                 |                | 6220 | 63.9  | 59.1    | 56.9     | 65.1  | 60.3    | 58.1     |
| Majestic Pines Drive, North of Meridian Boulevard | I               |                | 2190 | 59.3  | 54.6    | 52.4     | 60.5  | 55.8    | 53.6     |
| Majestic Pines Drive, South of Meridian Boulevard | I               |                | 1010 | 56.0  | 51.2    | 49.0     | 57.2  | 52.5    | 50.2     |
| Kelly Road, South of Lake Mary Road               | 1               |                | 1760 | 58.4  | 53.7    | 51.4     | 59.6  | 54.9    | 52.7     |
| 0                                                 | 1               |                | 0    | #NUM! | #NUM!   | #NUM!    | #NUM! | #NUM!   | #NUM!    |

#### CNEL

| ·                                                 |                 |            |           |            |  |
|---------------------------------------------------|-----------------|------------|-----------|------------|--|
| Summary                                           | 50 ft. from ROW |            | At ROW    |            |  |
|                                                   | Project         | Cumulative | Project   | Cumulative |  |
| Roadway/Segment                                   | Increment       | Increment  | Increment | Increment  |  |
| Minaret Road, South of Main                       | 0.1             | 1.6        | 0.2       | 1.6        |  |
| Majestic Pines Drive, North of Meridian Boulevard | 1.3             | 3.5        | 1.3       | 3.5        |  |
| Majestic Pines Drive, South of Meridian Boulevard | 1.4             | 1.6        | 1.4       | 1.6        |  |
| Kelly Road, South of Lake Mary Road               | 0.1             | 5.1        | 0.1       | 5.1        |  |
|                                                   | #NUM!           | -          | #NUM!     | -          |  |

2009-4.xls 10:46 AM7/25/2006

| Existing                             |    |                |        |      |         |          |      |         |          |
|--------------------------------------|----|----------------|--------|------|---------|----------|------|---------|----------|
|                                      |    | Traffic Volume | es     |      | Leq     |          | CNEL |         |          |
| Roadway/Segment                      | AM | PM             | ADT    | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Main Street East of Old Mammoth Road |    |                | 3610   | 60.3 | 56.3    | 54.3     | 61.6 | 57.6    | 55.5     |
| Main Street West of Old Mammoth Road |    |                | 9490   | 64.5 | 60.5    | 58.5     | 65.8 | 61.8    | 59.7     |
| Main Street East of Minaret Road     |    |                | 10710  | 65.1 | 61.1    | 59.0     | 66.3 | 62.3    | 60.2     |
| Lake Mary Road West of Minaret Road  |    |                | 7160   | 63.3 | 59.3    | 57.3     | 64.5 | 60.5    | 58.5     |
| Lake Mary Road West of Kelly Road    |    |                | 850    | 55.2 | 50.5    | 48.3     | 56.4 | 51.7    | 49.5     |
| Future No Project                    |    |                |        |      |         |          |      |         |          |
|                                      |    | Traffic Volume | olumes |      | Leq     |          | CNEL |         |          |
| Roadway/Segment                      | AM | PM             | ADT    | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Main Street East of Old Mammoth Road |    |                | 11780  | 65.5 | 61.5    | 59.4     | 66.7 | 62.7    | 60.7     |
| Main Street West of Old Mammoth Road |    |                | 23860  | 68.5 | 64.5    | 62.5     | 69.8 | 65.8    | 63.7     |
| Main Street East of Minaret Road     |    |                | 26900  | 69.1 | 65.1    | 63.0     | 70.3 | 66.3    | 64.2     |
| Lake Mary Road West of Minaret Road  |    |                | 22600  | 68.3 | 64.3    | 62.3     | 69.5 | 65.5    | 63.5     |
| Lake Mary Road West of Kelly Road    |    |                | 7420   | 64.6 | 59.9    | 57.7     | 65.8 | 61.1    | 58.9     |
| Future With Project                  |    |                |        |      |         |          |      |         |          |
|                                      |    | Traffic Volume |        |      | Leq     |          |      | CNEL    |          |
| Roadway/Segment                      | AM | PM             | ADT    | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Main Street East of Old Mammoth Road |    |                | 11960  | 65.5 | 61.5    | 59.5     | 66.8 | 62.8    | 60.7     |
| Main Street West of Old Mammoth Road |    |                | 23860  | 68.5 | 64.5    | 62.5     | 69.8 | 65.8    | 63.7     |
| Main Street East of Minaret Road     |    |                | 27300  | 69.1 | 65.1    | 63.1     | 70.3 | 66.3    | 64.3     |
| Lake Mary Road West of Minaret Road  |    |                | 22740  | 68.3 | 64.3    | 62.3     | 69.6 | 65.6    | 63.5     |
| Lake Mary Road West of Kelly Road    |    |                | 7580   | 64.7 | 60.0    | 57.8     | 65.9 | 61.2    | 59.0     |

#### CNEL

|                                      | 0.122     |                 |           |            |  |
|--------------------------------------|-----------|-----------------|-----------|------------|--|
| Summary                              | 50 ft. fr | 50 ft. from ROW |           | ROW        |  |
|                                      | Project   | Cumulative      | Project   | Cumulative |  |
| Roadway/Segment                      | Increment | Increment       | Increment | Increment  |  |
| Main Street East of Old Mammoth Road | 0.1       | 5.2             | 0.1       | 5.2        |  |
| Main Street West of Old Mammoth Road | 0.0       | 4.0             | 0.0       | 4.0        |  |
| Main Street East of Minaret Road     | 0.0       | 4.0             | 0.0       | 4.0        |  |
| Lake Mary Road West of Minaret Road  | 0.1       | 5.1             | 0.1       | 5.1        |  |
| Lake Mary Road West of Kelly Road    | 0.1       | 9.5             | 0.1       | 9.5        |  |

2024-1.xls 10:49 AM7/25/2006

| Existing                                     |    |                |       |      |         |          |      |         |          |
|----------------------------------------------|----|----------------|-------|------|---------|----------|------|---------|----------|
|                                              |    | Traffic Volume | es .  |      | Leq     |          | CNEL |         |          |
| Roadway/Segment                              | AM | PM             | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Old Mammoth Road South of Main Street        |    |                | 7320  | 64.6 | 59.8    | 57.6     | 65.8 | 61.1    | 58.8     |
| Old Mammoth Road North of Meridian Boulevard |    |                | 5590  | 63.4 | 58.7    | 56.5     | 64.6 | 59.9    | 57.7     |
| Old Mammoth Road South of Meridian Boulevard |    |                | 5760  | 63.5 | 58.8    | 56.6     | 64.7 | 60.0    | 57.8     |
| Meridian Boulevard, East of Old Mammoth Road |    |                | 4140  | 60.9 | 56.9    | 54.9     | 62.2 | 58.2    | 56.1     |
| Meridian Boulevard, West of Old Mammoth Road |    |                | 4230  | 61.0 | 57.0    | 55.0     | 62.2 | 58.3    | 56.2     |
| Future No Project                            |    |                |       |      |         |          |      |         |          |
|                                              | ,  | Traffic Volume | es .  |      | Leq     |          |      | CNEL    |          |
| Roadway/Segment                              | AM | PM             | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Old Mammoth Road South of Main Street        |    |                | 15760 | 67.9 | 63.2    | 61.0     | 69.1 | 64.4    | 62.2     |
| Old Mammoth Road North of Meridian Boulevard |    |                | 18060 | 68.5 | 63.8    | 61.6     | 69.7 | 65.0    | 62.8     |
| Old Mammoth Road South of Meridian Boulevard |    |                | 18740 | 68.6 | 63.9    | 61.7     | 69.9 | 65.1    | 62.9     |
| Meridian Boulevard, East of Old Mammoth Road |    |                | 12540 | 65.8 | 61.8    | 59.7     | 67.0 | 63.0    | 60.9     |
| Meridian Boulevard, West of Old Mammoth Road |    |                | 11820 | 65.5 | 61.5    | 59.5     | 66.7 | 62.7    | 60.7     |
| Future With Project                          |    |                |       |      |         |          |      |         |          |
|                                              |    | Traffic Volume |       |      | Leq     |          |      | CNEL    |          |
| Roadway/Segment                              | AM | PM             | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Old Mammoth Road South of Main Street        |    |                | 15880 | 67.9 | 63.2    | 61.0     | 69.1 | 64.4    | 62.2     |
| Old Mammoth Road North of Meridian Boulevard |    |                | 18720 | 68.6 | 63.9    | 61.7     | 69.9 | 65.1    | 62.9     |
| Old Mammoth Road South of Meridian Boulevard |    |                | 18960 | 68.7 | 64.0    | 61.8     | 69.9 | 65.2    | 63.0     |
| Meridian Boulevard, East of Old Mammoth Road |    |                | 13140 | 66.0 | 62.0    | 59.9     | 67.2 | 63.2    | 61.1     |
| Meridian Boulevard, West of Old Mammoth Road |    |                | 13620 | 66.1 | 62.1    | 60.1     | 67.3 | 63.3    | 61.3     |

#### CNEL

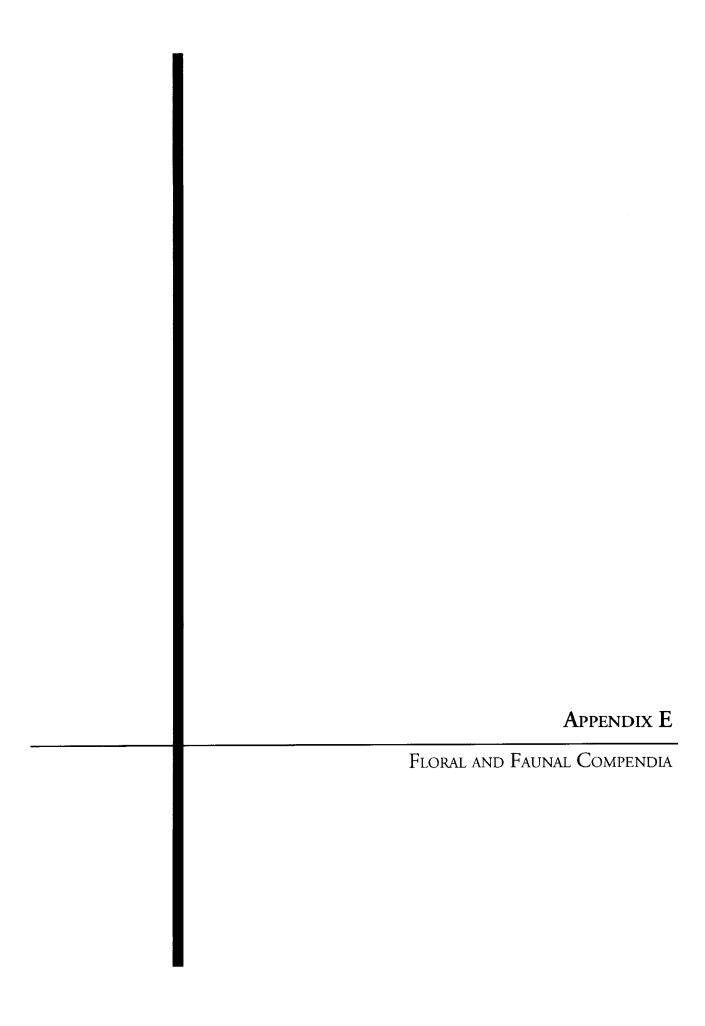
|                                              | ONEL            |            |           |            |  |
|----------------------------------------------|-----------------|------------|-----------|------------|--|
| Summary                                      | 50 ft. from ROW |            | At F      | ROW        |  |
|                                              | Project         | Cumulative | Project   | Cumulative |  |
| Roadway/Segment                              | Increment       | Increment  | Increment | Increment  |  |
| Old Mammoth Road South of Main Street        | 0.0             | 3.3        | 0.0       | 3.3        |  |
| Old Mammoth Road North of Meridian Boulevard | 0.1             | 5.2        | 0.2       | 5.3        |  |
| Old Mammoth Road South of Meridian Boulevard | 0.1             | 5.2        | 0.0       | 5.2        |  |
| Meridian Boulevard, East of Old Mammoth Road | 0.2             | 5.0        | 0.2       | 5.0        |  |
| Meridian Boulevard, West of Old Mammoth Road | 0.6             | 5.0        | 0.6       | 5.1        |  |

2024-2.xls 10:48 AM7/25/2006

| Existing                                              |    |                |       |      |         |          |      |         |          |
|-------------------------------------------------------|----|----------------|-------|------|---------|----------|------|---------|----------|
|                                                       |    | Traffic Volume | es    |      | Leq     |          | CNEL |         |          |
| Roadway/Segment                                       | AM | PM             | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Meridian Boulevard, East of Minaret Boulevard         |    |                | 5170  | 61.9 | 57.9    | 55.9     | 63.1 | 59.1    | 57.1     |
| Meridian Boulevard, West of Minaret Road              |    |                | 4600  | 61.4 | 57.4    | 55.4     | 62.6 | 58.6    | 56.6     |
| Meridian Boulevard, East of Majestic Pines Road North |    |                | 3330  | 60.0 | 56.0    | 54.0     | 61.2 | 57.2    | 55.2     |
| Meridian Boulevard, West of Majestic Pines Road North |    |                | 2780  | 59.2 | 55.2    | 53.2     | 60.4 | 56.4    | 54.4     |
| Minaret Road, Main Street for Forest Trail            |    |                | 8770  | 65.3 | 60.6    | 58.4     | 66.6 | 61.8    | 59.6     |
| Future No Project                                     |    |                |       |      |         |          |      |         |          |
|                                                       |    | Traffic Volume | -     |      | Leq     |          |      | CNEL    |          |
| Roadway/Segment                                       | AM | PM             | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Meridian Boulevard, East of Minaret Boulevard         |    |                | 17200 | 67.1 | 63.1    | 61.1     | 68.3 | 64.3    | 62.3     |
| Meridian Boulevard, West of Minaret Road              |    |                | 16600 | 67.0 | 63.0    | 60.9     | 68.2 | 64.2    | 62.1     |
| Meridian Boulevard, East of Majestic Pines Road North |    |                | 9140  | 64.4 | 60.4    | 58.3     | 65.6 | 61.6    | 59.6     |
| Meridian Boulevard, West of Majestic Pines Road North |    |                | 8300  | 64.0 | 60.0    | 57.9     | 65.2 | 61.2    | 59.1     |
| Minaret Road, Main Street for Forest Trail            |    |                | 21400 | 69.2 | 64.5    | 62.3     | 70.4 | 65.7    | 63.5     |
| Future With Project                                   |    |                |       |      |         |          |      |         |          |
|                                                       |    | Traffic Volume | -     |      | Leq     |          |      | CNEL    |          |
| Roadway/Segment                                       | AM | PM             | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Meridian Boulevard, East of Minaret Boulevard         |    |                | 19560 | 67.7 | 63.7    | 61.6     | 68.9 | 64.9    | 62.9     |
| Meridian Boulevard, West of Minaret Road              |    |                | 21180 | 68.0 | 64.0    | 62.0     | 69.2 | 65.2    | 63.2     |
| Meridian Boulevard, East of Majestic Pines Road North |    |                | 14560 | 66.4 | 62.4    | 60.4     | 67.6 | 63.6    | 61.6     |
| Meridian Boulevard, West of Majestic Pines Road North |    |                | 13780 | 66.2 | 62.2    | 60.1     | 67.4 | 63.4    | 61.3     |
| Minaret Road, Main Street for Forest Trail            |    |                | 21560 | 69.3 | 64.5    | 62.3     | 70.5 | 65.7    | 63.5     |

#### CNEL

|                                                       | 0.122     |                    |           |            |  |
|-------------------------------------------------------|-----------|--------------------|-----------|------------|--|
| Summary                                               | 50 ft. fr | 50 ft. from ROW    |           | ROW        |  |
|                                                       | Project   | Project Cumulative |           | Cumulative |  |
| Roadway/Segment                                       | Increment | Increment          | Increment | Increment  |  |
| Meridian Boulevard, East of Minaret Boulevard         | 0.6       | 5.8                | 0.6       | 5.8        |  |
| Meridian Boulevard, West of Minaret Road              | 1.0       | 6.6                | 1.0       | 6.6        |  |
| Meridian Boulevard, East of Majestic Pines Road North | 2.0       | 6.4                | 2.0       | 6.4        |  |
| Meridian Boulevard, West of Majestic Pines Road North | 2.2       | 7.0                | 2.2       | 7.0        |  |
| Minaret Road, Main Street for Forest Trail            | 0.0       | 3.9                | 0.1       | 3.9        |  |


2024-3.xls 10:49 AM7/25/2006

| Existing                                          |    |                     |       |      |         |          |      |         |          |
|---------------------------------------------------|----|---------------------|-------|------|---------|----------|------|---------|----------|
|                                                   |    | Traffic Volumes Leq |       |      | CNEL    |          |      |         |          |
| Roadway/Segment                                   | AM | PM                  | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Minaret Road, South of Main                       |    |                     | 4290  | 62.2 | 57.5    | 55.3     | 63.5 | 58.7    | 56.5     |
| Majestic Pines Drive, North of Meridian Boulevard |    |                     | 980   | 55.8 | 51.1    | 48.9     | 57.0 | 52.3    | 50.1     |
| Majestic Pines Drive, South of Meridian Boulevard |    |                     | 710   | 54.4 | 49.7    | 47.5     | 55.6 | 50.9    | 48.7     |
| Kelly Road, South of Lake Mary Road               |    |                     | 550   | 53.3 | 48.6    | 46.4     | 54.5 | 49.8    | 47.6     |
| Future No Project                                 |    | •                   | •     | •    | •       | •        |      | •       |          |
|                                                   |    | Traffic Volumes     |       |      | Leq     |          |      | CNEL    |          |
| Roadway/Segment                                   | AM | PM                  | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Minaret Road, South of Main                       |    |                     | 17660 | 68.4 | 63.7    | 61.5     | 69.6 | 64.9    | 62.7     |
| Majestic Pines Drive, North of Meridian Boulevard |    |                     | 6760  | 64.2 | 59.5    | 57.3     | 65.4 | 60.7    | 58.5     |
| Majestic Pines Drive, South of Meridian Boulevard |    |                     | 2560  | 60.0 | 55.3    | 53.1     | 61.2 | 56.5    | 54.3     |
| Kelly Road, South of Lake Mary Road               |    |                     | 5160  | 63.0 | 58.3    | 56.1     | 64.3 | 59.5    | 57.3     |
| Future With Project                               |    |                     |       |      |         |          |      |         |          |
|                                                   |    | Traffic Volume      | s     |      | Leq     |          |      | CNEL    |          |
| Roadway/Segment                                   | AM | PM                  | ADT   | ROW  | 50 Feet | 100 Feet | ROW  | 50 Feet | 100 Feet |
| Minaret Road, South of Main                       |    |                     | 18200 | 68.5 | 63.8    | 61.6     | 69.7 | 65.0    | 62.8     |
| Majestic Pines Drive, North of Meridian Boulevard |    |                     | 7900  | 64.9 | 60.2    | 58.0     | 66.1 | 61.4    | 59.2     |
| Majestic Pines Drive, South of Meridian Boulevard |    |                     | 2940  | 60.6 | 55.9    | 53.7     | 61.8 | 57.1    | 54.9     |
| Kelly Road, South of Lake Mary Road               |    |                     | 5220  | 63.1 | 58.4    | 56.2     | 64.3 | 59.6    | 57.4     |

#### CNEL

| Summary                                           | 50 ft. from ROW |                    | At F      | ROW        |
|---------------------------------------------------|-----------------|--------------------|-----------|------------|
|                                                   | Project         | Project Cumulative |           | Cumulative |
| Roadway/Segment                                   | Increment       | Increment          | Increment | Increment  |
| Minaret Road, South of Main                       | 0.1             | 6.3                | 0.1       | 6.2        |
| Majestic Pines Drive, North of Meridian Boulevard | 0.7             | 9.1                | 0.7       | 9.1        |
| Majestic Pines Drive, South of Meridian Boulevard | 0.6             | 6.2                | 0.6       | 6.2        |
| Kelly Road, South of Lake Mary Road               | 0.1             | 9.8                | 0.0       | 9.8        |

2024-4.xls 11:08 AM7/25/2006



### APPENDIX E - FLORAL COMPENDIUM

### ANGIOSPERMS (DICOTYLEDONS)

| SCIENTIFIC NAME                     | COMMON NAME           |
|-------------------------------------|-----------------------|
| Asteraceae                          | Sunflower Family      |
| Achillea millefolium                | California yarrow     |
| Ambrosia acanthicarpa               | annual bur-sage       |
| * Anthemis cotula                   | mayweed               |
| Artemisia douglasiana               | mugwort               |
| Artemisia ludoviciana               | silver wormwood       |
| Artemisia tridentata                | basin sagebrush       |
| Aster integrifolius                 | aster                 |
| * Chamomilla suaveolens             | pineapple weed        |
| Chrysothamnus nauseosus             | rubber rabbitbrush    |
| * Conyza canadensis                 | horseweed             |
| Erigeron sp.                        | fleabane daisy        |
| Filago californica                  | California fluffweed  |
| Gnaphalium purpureum                | cudweed               |
| Brassicaceae                        | Mustard Family        |
| Lepidium virginicum var. virginicum | peppergrass           |
| * Sisymbrium altissimum             | tumble mustard        |
| Caprifoliaceae                      | Honeysuckle Family    |
| Symphoricarpos rotundifolius        | snowberry             |
| Chenopodiaceae                      | Goosefoot Family      |
| * Salsola tragus                    | Russian thistle       |
| Ericaceae                           | Heath Family          |
| Arctostaphylos sp.                  | manzanita             |
| Fabaceae                            | Legume Family         |
| Lupinus latifolius                  | broad-leaved lupine   |
| Lupinus praetensis var. praetensis  | lupine                |
| * Medicago polymorpha               | California bur clover |
| * Melilotus alba                    | white sweetclover     |
| * Melilotus indica                  | sourclover            |
| Trifolium longipes                  | clover                |
| Trifolium cyathiferum               | clover                |
| * Non-Native Species                |                       |

Town of Mammoth Lakes PCR Services Corporation Eagle Lodge July 24, 2006

### ANGIOSPERMS (DICOTYLEDONS)

#### SCIENTIFIC NAME

#### Onagraceae

Epilobium ciliatum

#### Rosaceae

Potentilla gracilis

#### Salicaceae

Populus tremuloides

Salix exigua

Salix lasiolepis

#### Scrophulariaceae

Castilleja miniata

Mimulus guttatus

\* Verbascum thapsus

#### **COMMON NAME**

#### **Evening Primrose Family**

California cottonweed

#### **Rose Family**

cinquefoil

#### Willow Family

quaking aspen

sandbar willow

arroyo willow

#### **Figwort Family**

Indian paintbrush

common monkey-flower

woolly mullein

Non-Native Species

### ANGIOSPERMS (MONOCOTYLEDONS)

#### SCIENTIFIC NAME

#### **COMMON NAME**

#### Cyperaceae

Carex sp.

Eleocharis macrostachya

#### Juncaceae

Juncus mexicanus

#### Liliaceae

Bloomeria sp.

#### Poaceae

\* Agrostis stolonifera

Elymus glaucus

Melica bulbosa

Poa praetensis

\* Polypogon monspeliensis

#### **Typhaceae**

Typha angustifolia

#### **Sedge Family**

sedge

pale spike-rush

#### **Rush Family**

Mexican rush

#### **Lily Family**

common goldenstar

#### **Grass Family**

redtop

blue wildrye

coast range melic

Malpais bluegrass

annual beard grass

#### **Cattail Family**

narrow-leaved cattail

<sup>\*</sup> Non-Native Species

### **GYMNOSPERMS**

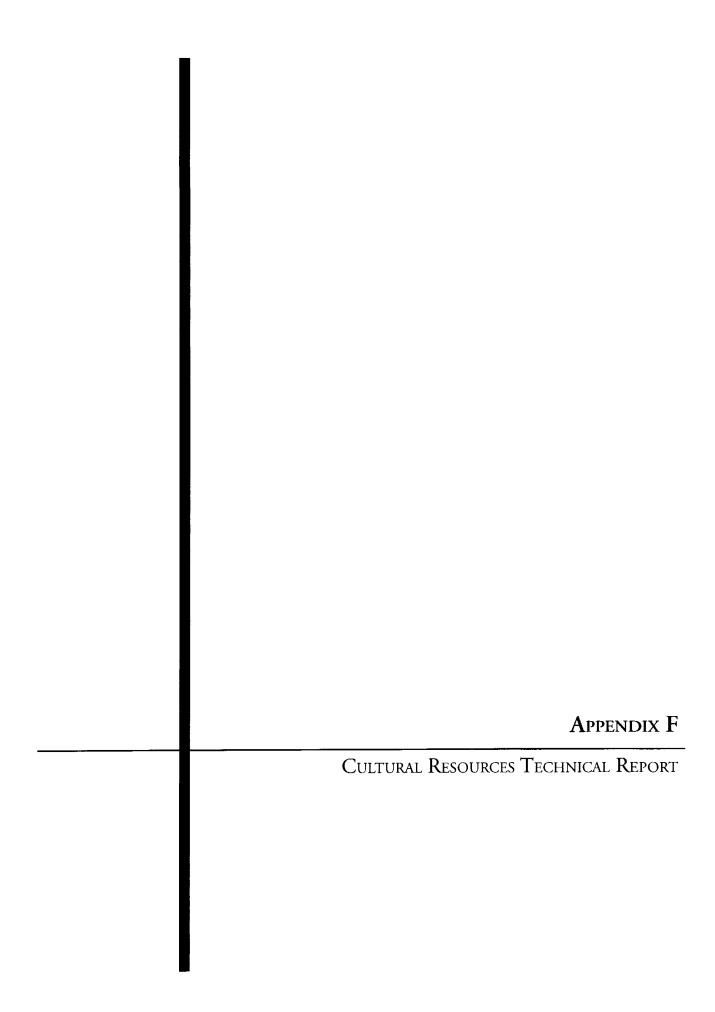
#### SCIENTIFIC NAME

Pinaceae

Pinus jefferyi Pinus sp.

#### **COMMON NAME**

Pine Family
Jeffery pine
lodgepole pine


\* Non-Native Species

### APPENDIX E – FAUNAL COMPENDIUM

### **BIRDS**

| SCIENTIFIC NAME        | COMMON NAME        |  |
|------------------------|--------------------|--|
| Corvidae               | Jays and Crows     |  |
| Cyanocitta stelleri    | Steller's jay      |  |
| Corvus brachyrhynchos  | American crow      |  |
| Sturnidae              | Starlings          |  |
| * Sturnus vulgaris     | European starling  |  |
| Icteridae              | Blackbirds         |  |
| Euphagus cyanocephalus | Brewer's blackbird |  |

Non-Native Species



# PHASE I CULTURAL AND PALEONTOLOGICAL RESOURCES ASSESSMENT FOR THE PROPOSED EAGLE LODGE BASE AREA DEVELOPMENT, TOWN OF MAMMOTH LAKES, MONO COUNTY, CALIFORNIA

Report Prepared For:

Town of Mammoth Lakes Community Development Department 437 Old Mammoth Road, Suite R Mammoth Lakes, CA 93546

Mark Wardlaw, Director

Report Prepared By:

PCR Services Corporation One Venture, Suite 150 Irvine, CA 92618 Phone: (949) 753-7001

Amy M. Holmes, RPA, Principal Investigator J.D. Stewart, Ph.D., Principal Paleontologist

Old Mammoth, CA 1994 7.5' USGS Quadrangle 5.85 Acres

Keywords: CA-MNO-1529, cultural resources survey, Phase I, Mono County, Town of Mammoth Lakes

### TABLE OF CONTENTS

|     |                                                             | Page |
|-----|-------------------------------------------------------------|------|
| MA  | ANAGEMENT SUMMARY                                           | 1    |
| 1.0 | INTRODUCTION AND SETTING                                    | 2    |
| 2.0 | REGULATORY FRAMEWORK                                        | 2    |
|     | 2.1 Federal Level                                           | 6    |
|     | 2.1.1 National Register of Historic Places                  |      |
|     | 2.1.2 Paleontological Resources                             |      |
|     | 2.2 State Level                                             |      |
|     | 2.2.1 California Register of Historical Resources           | 7    |
|     | 2.2.2 California Environmental Quality Act                  |      |
|     | 2.2.3 Paleontological Resources                             |      |
|     | 2.3 Local Level                                             |      |
| 3.0 | NATURAL SETTING                                             | 12   |
| 4.0 | CULTURAL SETTING                                            | 12   |
| ••• | 4.1 Prehistoric Context                                     |      |
|     | 4.1.1 Pre-Archaic (12,000-7,500 Years Before Present (YBP)) |      |
|     | 4.1.2 Early Archaic (7,000-4,000 YBP)                       |      |
|     | 4.1.3 Middle Archaic (4,000-1,500 YBP)                      |      |
|     | 4.1.4 Late Archaic (1,500-400 YBP)                          |      |
|     | 4.2 Ethnographic Context                                    |      |
| 5.0 | METHODS                                                     | 18   |
|     | 5.1 Records Search                                          |      |
|     | 5.1.1 Cultural Resources                                    |      |
|     | 5.1.2 Native American Consultation                          |      |
|     | 5.1.3 Paleontological Resources                             |      |
|     | 5.2 Fieldwork                                               |      |
| 6.0 | RESULTS                                                     | 20   |
| J.U | 6.1 Records Search                                          |      |
|     | 6.1.1 Cultural Resources                                    |      |
|     | 6.1.2 Native American Resources                             |      |

### TABLE OF CONTENTS (CONTINUED)

|     |                                                            | Page   |
|-----|------------------------------------------------------------|--------|
|     | 6.1.3 Paleontological Resources                            | 21     |
| (   | 6.2 Survey                                                 | 22     |
|     | 6.2.1 Cultural Resources                                   | 22     |
|     | 6.2.2 Paleontological Resources                            | 22     |
| 7.0 | ENVIRONMENTAL IMPACT ASSESSMENT                            | 22     |
| ,   | 7.1 Significance Criteria                                  | 22     |
|     | 7.2 Potential Archaeological Resources and Project Impacts |        |
|     | 7.2.1 Archaeological and Historic Resources                |        |
|     | 7.2.2 Paleontological Resources                            |        |
|     | 7.2.3 Native American Resources                            |        |
| 8.0 | RECOMMENDED MITIGATION                                     | 26     |
| 9.0 | REFERENCES CITED                                           | 28     |
| APP | PENDIX A: NAHC CONSULTATION LETTER                         |        |
| APP | PENDIX B: RESUMES                                          |        |
| APP | PENDIX C: CONFIDENTIAL APPENDIX—RECORDS SEARCH RI          | ESULTS |

### LIST OF FIGURES

|   |                                                       | Page |
|---|-------------------------------------------------------|------|
| 1 | Regional and Project Vicinity Map                     | 3    |
|   | Aerial Showing Development Relative to Property Lines |      |
|   | Site Plan                                             |      |
| 4 | Area Surveyed in Relation to the Project Boundary     | 19   |
|   | Site Photographs                                      |      |

### LIST OF TABLES

|   | $\mathbf{P}_{i}$                                 | age |
|---|--------------------------------------------------|-----|
| 1 | Chronology of the High Sierra and Eastern Slopes | 13  |

#### MANAGEMENT SUMMARY

The Mammoth Mountain Ski Area (MMSA) plans to develop a permanent base lodge facility at 3256 Meridian Boulevard (APN#'s 32-040-12 and 32-040-08) in the Town of Mammoth Lakes, CA (i.e., the "project"). The 5.85-acre project site is located within the Town's Urban Growth Boundary (3.46 acres) and the Inyo National Forest (2.39 acres). Since the project site is located on both municipal and federal lands, a joint California Environmental Quality Act (CEQA) and National Environmental Policy Act (NEPA) environmental document is being prepared.

The purpose of this study is to identify cultural and paleontological resources that could be impacted by the implementation of the proposed project; analyze the nature of those impacts associated with those resources identified; and propose appropriate mitigation measures for potential impacts, if any. The results of this study will be incorporated into the project's Draft Environmental Impact Report (DEIR) and Environmental Assessment (EA) documents.

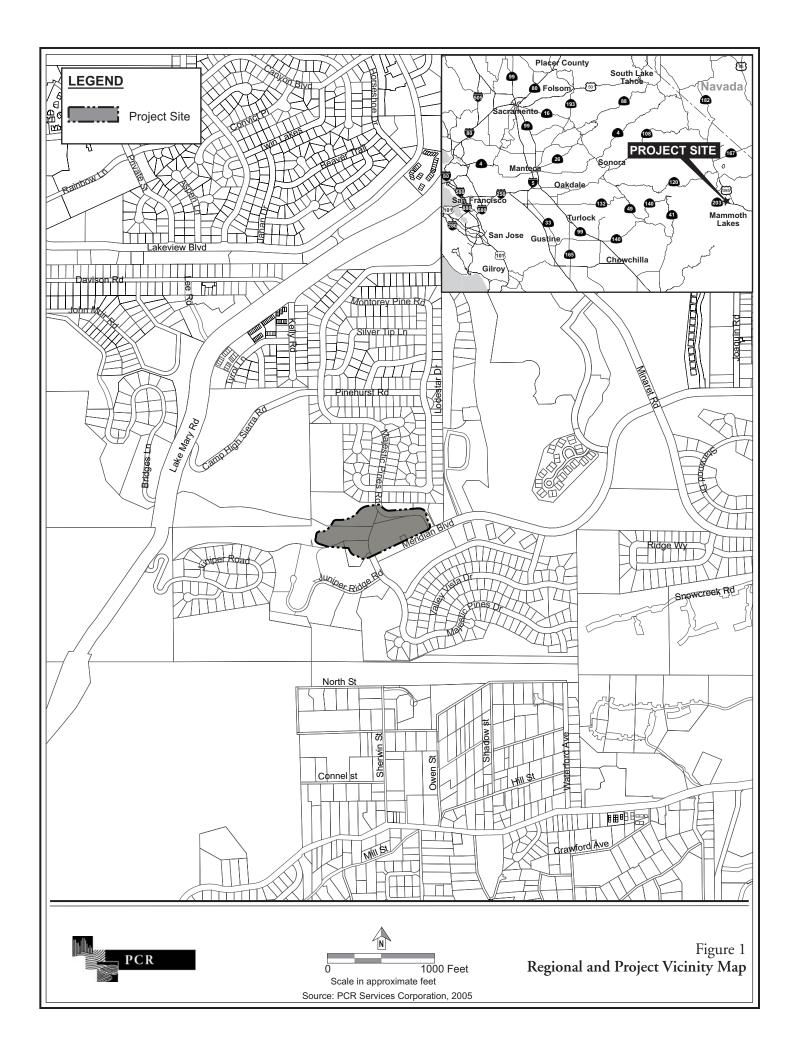
In September and October of 2005, PCR Services Corporation (PCR) conducted a Phase I Cultural and Paleontological Resources assessment of the Eagle Lodge Base Area project site. This assessment included a records search through the California Historic Resources Information System Eastern Information Center (CHRIS-EIC) in Riverside; a paleontological records search through the University of California Museum of Paleontology (UCMP) online database; a Sacred Lands Search through the California Native American Heritage Commission (NAHC) in Sacramento; and a pedestrian survey of the project site by a qualified archaeologist.

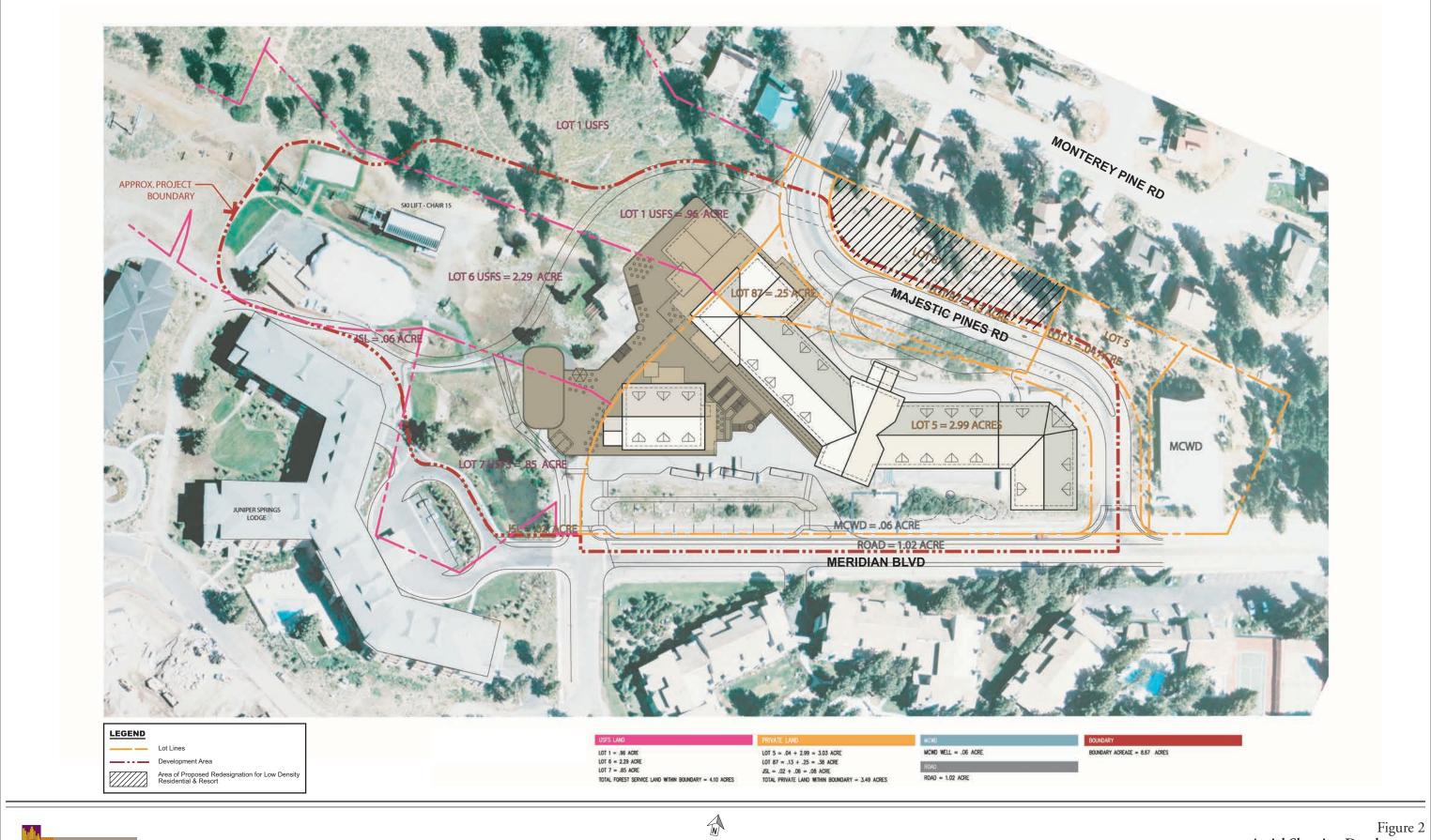
No cultural resources were identified on the surface of the project site during the pedestrian survey. There is no record of paleontological resources within the project site, and no indication of any geologic units within the project site old enough to contain paleontological resources. Geological information and comparative data from nearby archaeological sites indicate, however, that there is potential for buried archaeological or Native American resources within the fill and glacial deposits that underlie the project site. Recommended mitigation measures include monitoring of excavations of alluvial deposits and the upper three feet of glacial deposits in the project and provisions for the discovery of archaeological and Native American resources.

Town of Mammoth Lakes PCR Services Corporation Eagle Lodge Base Area April 2006

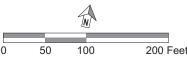
#### 1.0 INTRODUCTION AND SETTING

The Mammoth Mountain Ski Area (MMSA) plans to develop a permanent base lodge facility at 3256 Meridian Boulevard (APN #'s 32-040-12 and 32-040-08) in the Town of Mammoth Lakes, CA (Figure 1 on page 3). The 5.85-acre project site is located within the Town's Urban Growth Boundary (3.46 acres) and the Inyo National Forest (2.39 acres) (Figure 2 on page 3). Since the project site is located on both municipal and federal land, PCR Services Corporation (PCR) was contracted by the Town of Mammoth Lakes (Town) to prepare a joint California Environmental Quality Act (CEQA)/National Environmental Preservation Act (NEPA) environmental document.


The site is located at the base of the Eagle Express chairlift (Chair 15), which is located on lands administered by the Inyo National Forest. Existing uses on the project site include a surface parking lot for skiers utilizing Eagle Express and the temporary Little Eagle Base Lodge. The surface parking lot, which is bounded by Meridian Boulevard and Majestic Pines Road, can accommodate approximately 225 vehicles, inclusive of day-skier and temporary/drop-off parking.

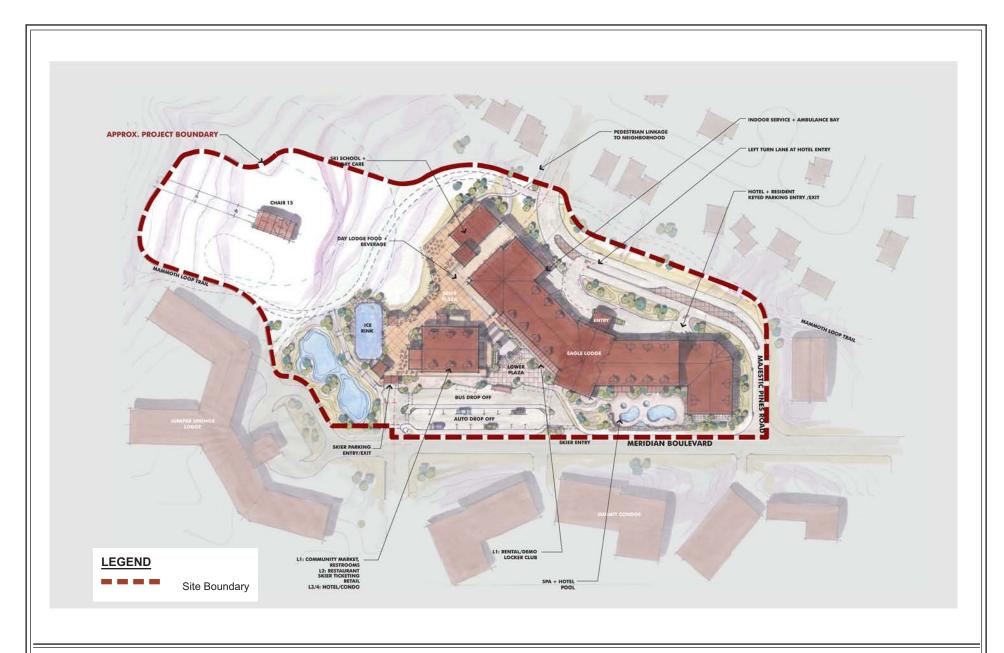

The project would create a mixed use of day skier amenities and general commercial services. This would include visitor lodging, a subterranean parking structure, and a mix of skirelated uses including food service, ticketing, and a ski rental/pro shop (Figure 3 on page 3).

The purpose of this study is to identify potential cultural and paleontological resources that could be affected by implementation of the proposed project; analyze the nature of those affects any identified resources; and propose appropriate mitigation measures.


#### 2.0 REGULATORY FRAMEWORK

Numerous laws and regulations require federal, state, and local agencies to consider the effects of a proposed project on cultural resources. These laws and regulations stipulate a process for compliance, define the responsibilities of the various agencies proposing the action, and prescribe the relationship among other involved agencies (e.g. State Historic Preservation Office and the Advisory Council on Historic Preservation). The primary federal and state laws governing and affecting preservation of historic resources of national, state, regional, and/or local significance include the National Historic Preservation Act (NHPA) of 1966, as amended; CEQA; and the California Register of Historical Resources (California Register), Public Resources Code (PRC) 5024. At the local government level, relevant regulations include the










Source: Gensler, 2006.

Figure 2
Aerial Showing Development
Relative to Property Lines





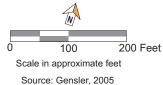



Figure 3
Site Plan

Town of Mammoth Lakes General Plan (adopted 1987) and proposed General Plan Update (2005). A description of these laws and regulations is provided below.

#### 2.1 Federal Level

#### 2.1.1 National Register of Historic Places

First authorized by the Historic Sites Act of 1935, the National Register of Historic Places (National Register) was established by the NHPA of 1966, as "an authoritative guide to be used by federal, State, and local governments, private groups and citizens to identify the Nation's historic resources and to indicate what properties should be considered for protection from destruction or impairment." The National Register recognizes properties that are significant at the national, State and local levels.

To be eligible for listing in the National Register, a resource must be significant in American history, architecture, archaeology, engineering, or culture. Districts, sites, buildings, structures, and objects of potential significance must meet one or more of the following four established criteria:<sup>2</sup>

- 1. Are associated with events that have made a significant contribution to the broad patterns of our history;
- 2. Are associated with the lives of persons significant in our past;
- 3. Embody the distinctive characteristics of a type, period, or method of construction or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
- 4. Have yielded, or may be likely to yield, information important in prehistory or history.

Town of Mammoth Lakes PCR Services Corporation

<sup>&</sup>lt;sup>1</sup> Code of Federal Regulations (CFR), 36 Section 60.2.

<sup>&</sup>lt;sup>2</sup> U.S. Department of the Interior, National Park Service, <u>National Register Bulletin: How to Apply the National Register Criteria for Evaluation</u> (Washington, DC: National Park Service, 1995).

Unless the property possesses exceptional significance, it must be at least fifty years old to be eligible for National Register listing.<sup>3</sup>

In addition to meeting the criteria of significance, a property must have integrity. Integrity is understood as "the ability of a property to convey its significance." The National Register recognizes seven qualities that, in various combinations, define integrity. To retain historic integrity a property must possess several, and usually most, of these seven aspects. Thus, the retention of the specific aspects of integrity is paramount for a property to convey its significance. The seven factors that define integrity are location, design, setting, materials, workmanship, feeling, and association.

## 2.1.2 Paleontological Resources

Federal protection for significant paleontological resources would apply to the project if any construction or other related project impacts occurred on federally owned or managed lands. Federal legislative protection for paleontological resources stems from the Antiquities Act of 1906 (PL 59-209; 16 United States Code 431 *et. seq.*; 34 Stat. 225), which calls for protection of historic landmarks, historic and prehistoric structures, and other objects of historic or scientific interest on federal lands. Because the proposed project is partially on federal land, this federal statute is applicable.

## 2.2 State Level

## 2.2.1 California Register of Historical Resources

The State implements the NHPA through its statewide comprehensive cultural resources surveys and preservation programs. The California Office of Historic Preservation (OHP), as an office of the California Department of Parks and Recreation, implements the policies of the NHPA on a statewide level. The OHP also maintains the California Historic Resources Inventory. The State Historic Preservation Officer (SHPO) is an appointed official who implements historic preservation programs within the State's jurisdictions.

\_

Exceptional Significance as defined by National Register Criteria Consideration G: Properties That Have Achieved Significance Within the Past Fifty Years. <u>National Register Bulletin: How to Apply the National Register Criteria for Evaluation</u> (Washington, DC: National Park Service, 1995).

<sup>&</sup>lt;sup>4</sup> National Register Bulletin 15, p. 44.

⁵ Ibid.

Created by Assembly Bill 2881 which was signed into law on September 27, 1992, the California Register is "an authoritative listing and guide to be used by state and local agencies, private groups, and citizens in identifying the existing historical resources of the state and to indicate which resources deserve to be protected, to the extent prudent and feasible, from substantial adverse change." The criteria for eligibility for the California Register are based upon National Register criteria. Certain resources are determined by the statute to be automatically included in the California Register, including California properties formally determined eligible for, or listed in, the National Register.8

To be eligible for the California Register, a prehistoric or historic property must be significant at the local, state, and/or federal level under one or more of the following criteria:

- Is associated with events that have made a significant contribution to the broad patterns of California's history and cultural heritage;
- Is associated with the lives of persons important in our past;
- Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or
- Has yielded, or may be likely to yield, information important in prehistory or history.

A resource eligible for the California Register must meet one of the criteria of significance described above and retain enough of its historic character or appearance (integrity) to be recognizable as a historical resource and to convey the reason for its significance. It is possible that a historic resource may not retain sufficient integrity to meet the criteria for listing in the National Register, but it may still be eligible for listing in the California Register.

Additionally, the California Register consists of resources that are listed automatically and those that must be nominated through an application and public hearing process. The California Register automatically includes the following:

• California properties listed on the National Register of Historic Places and those formally Determined Eligible for the National Register of Historic Places.

<sup>&</sup>lt;sup>6</sup> California Public Resources Code Section 5024.1(a).

California Public Resources Code § 5024.1(b).

<sup>8</sup> California Public Resources Code § 5024.1(d).

- California Registered Historical Landmarks from No. 770 onward.
- Those California Points of Historical Interest that have been evaluated by the OHP and have been recommended to the State Historical Commission for inclusion on the California Register.

Other resources that may be nominated to the California Register include:

- Historical resources with a significance rating of Category 3 through 5.9
- Individual historical resources.
- Historical resources contributing to historic districts.
- Historical resources designated or listed as local landmarks, or designated under any local ordinance, such as an historic preservation overlay zone.

# 2.2.2 California Environmental Quality Act

The CEQA is the principal statute governing environmental review of projects occurring in the State. CEQA requires lead agencies to determine if a proposed project would have a significant effect on archaeological resources (PRC Sections 21000 et seq.). As defined in Section 21083.2 of the PRC a "unique" archaeological resource is an archaeological artifact, object, or site, about which it can be clearly demonstrated that without merely adding to the current body of knowledge, there is a high probability that it meets any of the following criteria:

- Contains information needed to answer important scientific research questions and there is a demonstrable public interest in that information.
- Has a special and particular quality such as being the oldest of its type or the best available example of its type.
- Is directly associated with a scientifically recognized important prehistoric or historic event or person.

In addition, CEQA Section 15064.5 broadens the approach to CEQA by using the term "historical resource" instead of "unique archaeological resource." The CEQA Guidelines

Those properties identified as eligible for listing in the National Register of Historic Places, the California Register of Historical Resources, and/or a local jurisdiction register.

recognize that certain historical resources may also have significance. The Guidelines recognize that a historical resource includes: (1) a resource in the California Register of Historical Resources; (2) a resource included in a local register of historical resources, as defined in PRC §5020.1 (k) or identified as significant in a historical resource survey meeting the requirements of PRC §5024.1 (g); and (3) any object, building, structure, site, area, place, record, or manuscript which a lead agency determines to be historically significant or significant in the architectural, engineering, scientific, economic, agricultural, educational, social, political, military, or cultural annals of California by the lead agency, provided the lead agency's determination is supported by substantial evidence in light of the whole record.

If a lead agency determines that an archaeological site is a historical resource, the provisions of §21084.1 of the PRC and §15064.5 of the Guidelines apply. If an archaeological site does not meet the criteria for a historical resource contained in the Guidelines, then the site is to be treated in accordance with the provisions of PRC §21083, which is a unique archaeological resource. The Guidelines note that if an archaeological resource is neither a unique archaeological nor a historical resource, the effects of the project on those resources shall not be considered a significant effect on the environment. (Guidelines §15064.5(c)(4)).

## 2.2.3 Paleontological Resources

Paleontological resources are also afforded protection by environmental legislation under CEQA. Appendix G (part V) of the CEQA Guidelines provides guidance relative to significant impacts on paleontological resources, stating that "a project will normally result in a significant impact on the environment if it will ...disrupt or adversely affect a paleontological resource or site or unique geologic feature, except as part of a scientific study." Section 5097.5 of the PRC specifies that any unauthorized removal of paleontological remains is a misdemeanor. Further, the California Penal Code Section 622.5 sets the penalties for damage or removal of paleontological resources.

#### 2.3 Local Level

Cultural resources within the jurisdiction of the Town of Mammoth Lakes are subject to documentation and subsequent planning and preservation consideration.

## Town of Mammoth Lakes Adopted General Plan (1987)

The objectives of the cultural resource provisions of the Town's adopted General Plan (1987) are to conserve the historical and scientific qualities of the resources, which include historical and archaeological resources, and to promote heritage tourism. Specific goals for management of cultural resources include the following directives:

- 1. To attempt to locate and record all known archaeologic and historic resources of Mammoth Lakes and the adjacent areas.
- 2. To preserve, interpret and, where feasible, make accessible to the public archaeologic and historic resources of Mammoth Lakes and adjacent areas.
- 3. To preserve archaeologic and historic sites for present and future scientific research and educational programs.

Policies in support of these goals include the following:

- 1. Comprehensive studies and inventories of the Mammoth Lakes area archaeologic and historic sites should be supported by the Town in coordination with the Southern Mono County Historic Society to identify undiscovered sites.
- 2. An archaeologic and historic site survey shall be conducted for environmental impact reports whenever a critical site(s) might exist within a project area and to the maximum practicable extent any discovered site shall be preserved or treated in accordance with the recommendations in the survey report.
- 3. The Town shall strive to ensure that historic and archaeologic sites are available to residents and visitors by: 1) establishing funding for historic and archaeologic preservation through state and federal grants, private trusts, and donations, 2) actively promoting the Town's cultural resources in cooperation with the Mammoth Lakes, Resort Association and Historic Society, and 3) encouraging the provision of publications about and tours of the sites.
- 4. Primary (1) archaeologic and historic sites should be protected through: 1) the adoption of an ordinance designed to protect primary sites and where necessary, provide for the purchase of significant sites, and 2) the obtaining of state and/or national register status where appropriate.

# The Town of Mammoth Lakes Draft General Plan (Update 2005, pending approval)

L.U.3.a. The Town shall develop and maintain a cultural resources database that includes data regarding historic and archaeological resources within the Planning Area as that information is developed through project reviews or other archaeological/historical surveys. The database shall be used to ensure the protection and preservation of historic and archaeological resources within the Planning Area.

#### 3.0 NATURAL SETTING

Geographically, Mono County is within the interface of the eastern Sierra Nevada Mountains and the Basin and Range geomorphic provinces. This area is characterized by foothills, steep ridges and slopes coming off of the Sierra Nevada Mountains to the west. The project site is situated at the base of the Sierra Nevada range and the southwestern edge of the Long Valley Caldera. Resurgent domes of the Long Valley Caldera are located to the north and east of the project site.

Regional Sierra Nevadan geology is tied to the formation of the Sierra Nevada. This is best described by Hill (1975) and Pakiser et al. (1964). Volcanic activity, such as underground magma chambers, not only shapes the topography of the region, but it also provides resources such as hot springs and obsidian that were undoubtedly utilized by prehistoric peoples. Hall (1983) describes the dynamic volcanic activity that has shaped the landscape in the vicinity of the project site. The mountains surrounding the project site are mapped primarily as plutonic Mesozoic granite and granodiorite of the Sierra Nevada batholith. Lesser amounts of volcanic Tertiary rock flows are also present (Jennings 1977). Pleistocene glacial deposits overlie the basement and volcanic rocks in the project site and throughout the Town (Sierra Geotechnical Services, Inc. 2005). Results of the geotechnical study for the project indicate that the project site is underlain by Undocumented fill, Quaternary younger alluvium, and Quaternary Tioga Till (i.e., glacial till) (Sierra Geotechnical Services, Inc. 2005). These geologic deposits most likely predate the human occupation of the region. Soils in the project site are generally gravelly sandy loams. Soils in this area of Mono County have been mapped, but a soil survey has not been published.

#### 4.0 CULTURAL SETTING

#### 4.1 Prehistoric Context

Roger G. Elston (1986) provides an overview of the prehistory of the western Great Basin including the eastern slope of the Sierra Nevada. Robert Bettinger (1977) presents the prehistoric cultural chronology and associated adaptations for the Inyo-Mono region. These chronologies are presented in Table 1 on page 13.

# 4.1.1 Pre-Archaic (12,000-7,500 Years Before Present [YBP])

The first people in California may have been among the first people in North America. Recent research at the Monte Verde site in Chile has demonstrated human presence in the Americas by approximately 12,500 years ago, and challenged the established model of initial

Table 1

Chronology of the High Sierra and Eastern Slopes

| Adaptive Strategy<br>(Regional Phases)           | Age (YBP)<br>(Regional Phases)                  | Climate<br>(Grayson 1993; Antevs 1948;<br>Mehringer 1986)                                                                                                                                       | Diagnostic Artifacts/Features                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre-Archaic<br>(Mohave<br>Complex)               | 12,000 - 7,500<br>(pre- 5,500)                  | Conditions were cool and moist relative to the modern climate. Characterized by extensive marshlands and shallow lakes, and woodlands at lower elevations Mono and Owens Lakes contained water. | Stemmed, concave base and fluted lanceolate projectile points such as Lake Mojave, Silver Lake, and Great Basin Transverse.                                                                                                                                                                                               |
| Early Archaic<br>(Little Lake Phase)             | 7,500 – 4,000<br>(7,500 – 3,150)                | Conditions were relatively hot and dry.                                                                                                                                                         | Little Lake and Pinto projectile<br>points and possibly Humboldt<br>series projectile points, and concave<br>base projectile points.                                                                                                                                                                                      |
| Middle Archaic<br>(Newberry Phase)               | 4,000 – 1,500<br>(3,150 – 1,350)                | Conditions become cooler and moister than the previous period.                                                                                                                                  | Elko series projectile points, first evidence of regional exchange in obsidian and marine shell beads, as well as ground stone implements. The major changes seem to be settlement and subsistence patterns, stylistic elaborations, and an increase in population density.                                               |
| Late Archaic<br>(Haiwee Phase)<br>(Marana Phase) | 1,500 – 400<br>(1,350 – 650)<br>(650 – contact) | A warming and drying trend begins sometime around 2,000 YBP and reaches its peak about 1,500 YBP.                                                                                               | Atlatl and dart replaced by the bow and arrow. Eastgate, Rose Spring, Cottonwood, and Desert series projectile points introduced. Plant processing equipment becomes more elaborate and abundant. Trans-Sierran obsidian trade. Brownware ceramics introduced after 900 YBP. Piñon exploitation and wild crop irrigation. |

overland migration from Siberia through western Canada into the Great Plains at the end of the last Ice Age. Initial migration down the western coast of North America, including coastal California, now appears to be a more likely scenario (Surovell 2003). One of the earliest radiocarbon dates from North America come from the Arlington Springs Woman site on Santa Rosa Island, in southern California. The human remains from this site have been dated to approximately 13,000 YBP (Dr. John Johnson, personal communication, May 12, 2005).

Source: Bettinger 1977; Elston 1986:135

The rate of movement from the coast to inland California locations such as the Eagle Lodge project area is not known (see Rockman 2003), but may have been relatively rapid. Many early California sites, characterized as Late Paleoindian/Early Archaic period, are located near pluvial desert valley lakes formed by glacial meltwaters that are now evaporated or much reduced in size (Moratto 1984). Lakeshore occupation sites often include artifacts such as large projectile points (e.g., Lake Mohave), flaked stone debitage, and fire-affected rock concentrations.

Lifeways during the Paleoindian Period were characterized by highly mobile hunting and gathering. Prey included megafauna such as mammoth and technology included a distinctive flaked stone toolkit that has been identified across much of North America and into Central America. The megafauna went extinct during a warming trend that began approximately 10,000 years ago, and both the extinction and climatic change (which included warmer temperatures in desert valleys and reduced precipitation in mountain areas) were factors in widespread cultural change. Lifeways continued to be organized around hunting and gathering, but the resource base expanded and used a wider range of plant and game resources. Technological traditions also became more localized. This constellation of characteristics has been given the name "Archaic" and it was the most enduring of cultural adaptations to the North American environment.

## 4.1.2 Early Archaic (7,000-4,000 YBP)

The Early Archaic in the Mammoth Lakes region is known as the Little Lake Phase, dating from ca. 7,500 to 3,150 YBP. Between 7,500 and 5,500 YBP the period is not as well defined for the rest of the Western Great Basin. The climate in the middle Holocene was generally hot and dry. During this time, people used base camps adjacent to rivers, and used temporary task-based camps at higher altitudes on a seasonal basis. These lithic scatters higher than 6,000 feet above mean sea level are thought to be hunting camps. Diagnostic tools of the Early Archaic include Pinto and Little Lake series projectile points. The Early Archaic economy was still organized around hunting of large game.

#### 4.1.3 Middle Archaic (4,000-1,500 YBP)

Bettinger and Taylor (1974) refer to the Middle Archaic as the Newberry Phase (3,150-1,350 YBP) in the southern section of the Eastern Sierra Front. The Middle Archaic is characterized by a transition from the Early Archaic emphasis based on hunting to a more diversified subsistence base that included the exploitation of plant and small animal resources. Grinding stones appear in the archaeological record for the first time in the region. This is consistent with the archaeological remains recovered from Mammoth Creek Cave and Hot Creek Shelters. Large bifaces were fashioned to export raw material. Elko and Humboldt series dart points were common. Site types include quarries, multipurpose camps located in upland valleys,

and seed camps located near springs and creeks. Base camps contained features such as pithouses, storage areas, and burials. Seasonal camps were often reoccupied year after year. Kobari and others (1980) suggest that high altitude resources were also exploited as hunting camps were located at high elevations, such as the Casa Diablo and Long Valley Caldera.

## 4.1.4 Late Archaic (1,500-400 YBP)

The Late Archaic in the region is subdivided into the Haiwee Phase (1,350 to 650 YBP) and the Marana Phase (650 YBP to EuroAmerican contact). During this time, a wide range of resources and ecozones were exploited. There was an increased emphasis on plant resources. and small game hunting replaced large game hunting. There were many technological changes during the Late Archaic. For example, the bow and arrow replaced the atlatl and darts. Diagnostic artifacts include Rose Spring, Eastgate, and Desert Side-Notched projectile points and brownware ceramics (after 900 YBP). Rosegate projectile points are characteristic of the Haiwee Phase, while small Desert Side-Notched and Cottonwood arrow points, and brownware ceramics define the Marana. Steatite disk beads are also common. Obsidian trade was thought to be east-west from Mono Lake and Long Valley Caldera over the Sierra Nevada. As the climate again oscillated to a warmer and drier regime, the area also experienced significant human population increase. With the shift to dryer conditions came a shift to piñon exploitation. Higher elevations continued to be exploited at this time (Bettinger 1977). After 750 YBP, wild crop irrigation and lowland base camps were common. It was during the Late Archaic that flat slab schist milling stones, milling slicks, and bedrock mortars apparently first appeared. The Marana Phase sites are thought to represent Owens Valley Paiute pre-contact sites, as the Owens Valley Paiute were the occupants of the region at the time of contact.

## 4.2 Ethnographic Context

The following ethnographic summary of the Owens Valley Paiute is derived in part from the Cultural Resources section of *Revised Draft Program Environmental Impact Report for the Town of Mammoth Lakes General Plan Update* (Town of Mammoth Lakes 2005). In addition, Sven Liljeblad and Catherine S. Fowler (1986) provide a comprehensive synthesis of the Owens Valley Paiute.

Traditionally, groups of Owens Valley Paiute have occupied an area from the Town to approximately 60 miles to the east and 100 miles to the south. A ten to 15 mile-wide band of land immediately north-northeast of the Town was jointly used by Owens Valley Paiute and Northern Paiute groups from Mono Lake. This territory includes all of Owens Valley, Round Valley, Long Valley, Fish Lake Valley, and Deep Springs Valley. While both Paiute groups speak Western Numic languages, the Northern Paiute speak Northern Paiute and the Owens Valley Paiute speak Owens Valley Paiute (Nancy Peterson Walter 2005). Other neighboring

groups, on the west side of the Sierra Nevada (the Monache) and south of the Town on both flanks of the mountains (Monache and Owens Valley Paiute) speak other dialects of Mono and share many cultural bonds.

The Owens Valley Paiute occupied the Owens Valley on a year-round basis with many semi-sedentary settlements located on major rivers and streams along the west side of the valley. Closer to the Town, in both Long Valley and in the Mammoth Basin, the pre-contact and historic use of the area by the Owens Valley Native American groups has been vaguely documented. However, according to Wally Woolfenden, the ethnographic notes of F.S. Hules and F.J. Essene from the 1930s, and oral interviews of local people from the 1970s clearly document the year-round occupation of Long Valley by the Long Valley Paiute (a subgroup of the Owens Valley Paiute), during the 1800s and 1900s. Jeff Burton cites the work of Emma Lou Davis, Matthew Hall (1983), E.W. Gifford, and Helen Doyle in suggesting that Long Valley included an indigenous population of Northern Paiute in historic times, and provided resources and refuge on an occasional basis to Northern Paiute from Mono Lake, to Monache and Miwok from the west side of the Sierra, and to surrounding Mono-speaking groups of Paiute from Benton, Round Valley, and Owens Valley.

In contrast to the Owens Valley Paiute, the Long Valley Paiute are said to have been highly mobile in historic times, constantly moving in search of food resources and often utilizing resources beyond Long Valley. This movement included frequent trips over the Sierra crest, through Mammoth Pass, in order to collect acorns and to fish and hunt in the San Joaquin River drainage, and area within North Fork Mono Territory. Such trips sometimes occurred in winter, at which time moccasins and snowshoes were worn for snow travel.

In the vicinity of Mammoth Lakes, Mammoth Mountain is reported by Julian Steward as being a scared place as it stands on the border between the Monache (western Mono) and the Owens Valley Paiute (eastern Mono), and is considered to be the place of origin in all Monospeakers' traditional myths. The actual locations of human origin there are marked by particular geographic features. Elsewhere in Mammoth Basin, ethnographic use by Long Valley Paiute and others is assumed to be seasonal rather than year round.

Owens Valley Paiute groups traded extensively with their neighbors in order to acquire additional foods as well as ornaments, money, and other commodities. Items traded included salt, piñon pine nuts, seeds, obsidian, sinew-backed bows, rabbit skin blankets, deerskins, moccasins, mountain sheepskin, fox skin leggings, balls of tobacco, baskets, basketry water bottles waterproofed with pitch, wooden hot rock lifters, and red and white pigments, in exchange for shell money (e.g., disc beads, tubular clam beads, and more recently, glass beads), acorns and acorn meal, finely-constructed Yokuts baskets, cane for arrows, manzanita berries, squaw berries, and elderberries from the Monache. The Mono Paiute traded salt, piñon pine

nuts, piagi (i.e., Pandora moth larvae), brine fly larvae, rabbit skin blankets, baskets, pumice stones, and red and white pigments to the Sierra Miwok, in exchange for shell money, acorns, baskets, arrows, a fungus used in paints, manzanita berries, elderberries, and squaw berries.

In Owens Valley, the population was sedentary, with year-round occupation in permanent villages and short-term visits to temporary camps for resource procurement. Leadership was hereditary, and headmen were responsible for organizing communal work projects and festivals that may have served to redistribute resource surpluses as well as to fulfill other social functions. As for the other groups using Long Valley, the Monache and the Southern Sierra Miwok groups were probably similar in their social organization to the Owens Valley Paiute, with at least some hereditary rulers and semi-permanent villages. Some researchers have postulated that any indigenous Long Valley groups that may have existed would have followed a pattern closer to that of the Mono Lake Paiute (and other Great Basin groups) than that of Owens Valley Paiute, due to similarities in environmental constraints. However, Long Valley residents may have been closely tied to the Owens Valley Paiute through kinship and trade.

Long Valley offered a variety of food resources during snow-free months. In the spring, Tui chub, speckled dace, and Owens sucker may have been dished from creeks, while roots, wild onions and greens along creeks and meadows might have replenished dwindling winter stores. Small game, deer, and antelope could have been hunted nearby. In the summer, grass seeds may have been collected from meadows and drier upland areas. Fall subsistence activities of both the Mono Lake and Owens Valley Paiute revolved around the collection of piñon. Piagi are another food resource available every two years in the Jeffery pine forests. Piagi were collected as they descended the Jeffery pine trees during mid to late summer. Nancy Peterson Walter, a local ethnologist, has extensive knowledge of the Owens Valley Paiute's exploitation of piagi (Fowler and Walter 1985). Also, there are several recorded archaeological sites in the region that are associated with piagi exploitation (Weaver and Basgall 1986).

Much of the trade and travel likely occurred during the summer months, when the high Sierra passes were free of deep snow. Inter- and intra-regional trade may have had extensive ramifications for subsistence and settlement systems of the Owens Valley and Long Valley areas. It is proposed that an elaborate exchange system might account for the relatively complex sociopolitical organization of the Owens Valley Paiute.

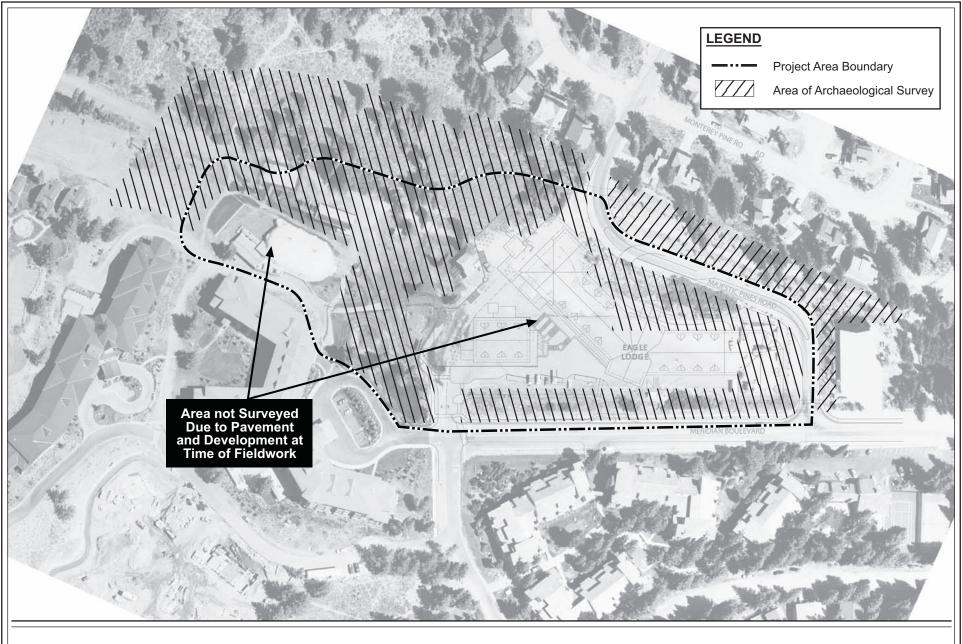
## 5.0 METHODS

#### 5.1 Records Search

#### 5.1.1 Cultural Resources

On September 20, 2005, personnel from the CHRIS-EIC conducted a cultural resources records search for the project. This records search included an examination of previous survey coverage and reports, historic maps, and known cultural resources within a half-mile radius of the project site. In addition, the California Points of Historical Interest, the California Historical Landmarks, the California Register, the National Register, and the California State Historic Resources Inventory were reviewed. PCR also contacted the United States Forest Service (USFS) at the Inyo National Forest regarding any cultural resource studies or recorded cultural resources within the project site.

#### 5.1.2 Native American Consultation


On September 15, 2005, PCR commissioned a Sacred Lands Search for the project site through the Native American Heritage Commission (NAHC) in Sacramento. The NAHC provided a list of individuals and organizations that might have knowledge of sacred lands in the area in February 2006. PCR sent letters via certified mail describing the proposed project and requesting input about Native American resources in the project vicinity to the persons on the list on February 16, 2006. A copy of PCR's consultation letter is provided in Appendix A.

## 5.1.3 Paleontological Resources

This records search consisted of an examination of geologic maps and paleontological locality records. The UCMP online database was accessed to determine if known vertebrate fossil localities are present inside or in the vicinity of the project site.

#### 5.2 Fieldwork

Fieldwork for the cultural resources investigation consisted of intensive pedestrian surface survey of the project area. The survey was conducted by PCR on September 23, 2005. Résumes of key personnel are provided in Appendix B. At the time of survey, the project boundary had only been approximately defined by the Town of Mammoth Lakes and the USFS. The PCR archaeologist surveyed within the approximate project site boundary and beyond the current western project site boundary in the vicinity of the Chair 15 ski lift. The area surveyed in relation to the current project boundary is shown in Figure 4 on page 20.







Scale not provided Source: Gensler, 2006 Figure 4
Area Surveyed in Relation to the Project Boundary

The exposed ground surface was inspected for prehistoric and historical-period artifacts and features. Due to the developed nature of much of the project area, less than half of the surface of the project area could be visually inspected. All unpaved portions of the project area were walked over in a pattern of transects spaced not more than 15 meters apart. These included the unpaved sections of Lot 1, Lots 5-7, and Lot 87, the landscaped medians that surround the parking lot, and the unpaved area between the parking lot and the Chair 15 ski lift. The landscaped medians contain large granite boulders; these boulders were examined for cultural features such as milling slicks and cupules. Photographs of the project site were taken and disturbances to the ground surface were noted.

#### 6.0 RESULTS

#### 6.1 Records Search

#### 6.1.1 Cultural Resources

PCR reviewed cultural resources records from both the CHRIS-EIC and the Inyo National Forest. According to CHRIS-EIC records search, the project site has not been previously surveyed. However, according to Inyo National Forest records, a section of the project site on National Forest Lands was surveyed in 1981 during the Camp High Sierra Land Exchange. This survey identified one prehistoric archaeological site, CA-MNO-1529, located on the Chair 15 slope approximately 200 m (650 feet) northwest of the project site boundary. The site includes bedrock milling features and an obsidian lithic scatter (Taylor 1981). The site was excavated in 1982 by a University of California, Davis archaeological field school class (Basgall 1984).

Excavations at CA-MNO-1529 identified three artifact-bearing strata overlying cemented glacial deposits. These strata included a thin (3-5 centimeters) upper humus/loam layer, derived from decomposition of organic duff and roots, a thicker (30-60 centimeter) sandy loam layer, and an unsorted loose glacial till-gravel layer that measured 30-50 centimeters or thicker (bottom not reached in some excavations). The sandy loam layer had the highest artifact content and largest artifact size. It was described as a colluvial layer of "medium brown, unbedded deposit of sand to silt-size particles intermixed with volcanic ash/pumice gravels and obsidian blast" (Basgall 1984:10). Similar artifact-bearing strata have been identified at nearby sites CA-MNO-529, located approximately 1500 feet (450 meters) east of the project area, and sites CA-MNO-714 and CA-MNO-561, located in the Long Valley-Mammoth Mountain region. Artifact density and size was lower in the loose glacial till-gravel layer than in the sandy layer and both decreased with depth. These characteristics suggest that some of the artifacts in this layer may be "drift and have been introduced into the layer from the sandy layer through natural processes such as

movement of ground water and freeze-thaw action. No artifacts were identified in the cemented glacial deposits. Obsidian artifact hydration dates suggest that occupation of the site may have extended from the Little Lake Phase of the Early Archaic (7,000 to 3,150 years ago) to the to the Haiwee Phase of the Late Archaic (1,350 to 650 years ago), with intensification of occupation during the Haiwee Phase (Basgall 1984). Despite this level of work, the site has not been formally evaluated with respect to the National Register and California Register. An EA prepared for the current project in 1997 (USDA-FS 1997) stated that the current project area was completely surveyed in conjunction with the Camp High Sierra Land Exchange, and that all potentially significant cultural resources were mitigated.

Results of the geotechnical study for the proposed action conducted in December 2005 indicated that deposits comparable to the artifact—bearing sandy loam colluvial and unconsolidated glacial till deposit layers identified at site CA-MNO-1529 are present at depth in the project area. Coring determined that the upper four feet of sediment below the modern ground surface of the project area consists of undocumented fill (i.e., introduced sediments). This fill overlies a combination of alluvium, which is similar to the description of the sandy loam layer provided by Basgall (1984:10-16), and glacial till deposits. The alluvial layer is approximately 6 feet deep in the project area. Variable glacial deposits underlie the alluvial layer to the base of the test boring holes.

#### 6.1.2 Native American Resources

The Sacred Land Search did not identify any Native American cultural resources in the vicinity of the project site. The NAHC provided a list of Native American individuals and organizations that may have knowledge of Native American cultural resources in the area. PCR sent a consultation letter to all the parties on the NAHC's consultation list in February 2006 requesting information and input about sensitive areas that may be affected by the proposed development. To date, PCR has not received any responses to the letters.

#### **6.1.3 Paleontological Resources**

The paleontological records search through the UCMP online database determined that there are no known vertebrate fossil localities within the project site or even within a one-mile radius of the project site. The closest vertebrate fossil locality in that database is located more than 30 miles to the north.

## 6.2 Survey

## 6.2.1 Cultural Resources

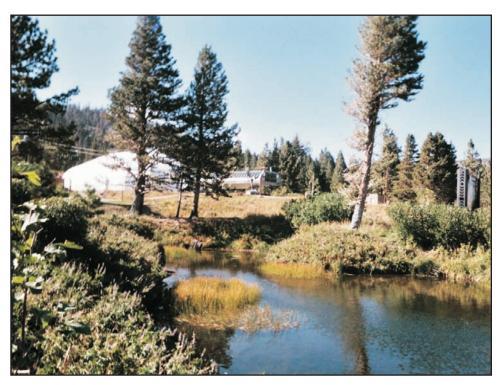
No cultural resources were observed on the ground surface of the project site. Undisturbed ground is scarce as the majority of the project site consists of a paved parking lot and landscape features (Figure 5 on page 23). The PCR archaeologist examined all unpaved sections of the project site. These areas included the landscaped medians that surround the parking lot, and the unpaved area between the parking lot and the Chair 15 ski lift (see Figure 2). The landscaped medians contain large granite boulders; these boulders were examined for cultural features such as milling slicks and cupules. No cultural features were observed on these boulders. Ground surface visibility in the unpaved areas was good (i.e., 50-75 percent visible).

As noted above, the Town and USFS had delineated only an approximate project site boundary at the time of survey. The PCR archaeologist surveyed within the approximate project site boundary and beyond the western project site boundary in the vicinity of the Chair 15 ski lift. A scatter of obsidian flakes was observed west of the approximate project site boundary ca. 25 meters upslope from the Chair 15 ski lift. This flake scatter is likely part of archaeological site CA-MNO-1529 that has eroded down slope. This scatter was later determined to lie outside of the updated project boundary, and so was not recorded further.

## 6.2.2 Paleontological Resources

Initial consultation of collection records and geologic maps indicated that the Town area had no history of fossil resources, largely because the terrain was glaciated and is dominated by igneous and metamorphic rocks. The PCR archaeologist verified those impressions and to photographically documented the site conditions. This confirmed that the local geology is granite, metavolcanics, and glacial debris. Apart from glacial deposits, there are no sediments old enough to produce fossils inside or within the vicinity of the project site.

#### 7.0 ENVIRONMENTAL IMPACT ASSESSMENT


#### 7.1 Significance Criteria

In accordance with Section 21083.2 of CEQA and Section 15064.5(b)(1) of the CEQA Guidelines, project impacts to archaeological resources are considered significant if:

• Project activities could cause the loss, destruction, or other damage to a prehistoric or historic archaeological site that has been identified as unique. Any action, such as



\_.



\_.



Figure 5
Site Photographs

clearing, scraping, soil removal, mechanical excavation, or digging that would destroy, alter, damage, or degrade a site's integrity (i.e., intactness), stratigraphy, or association has the potential to be a significant impact.

- Project activities result in physical demolition, destruction, relocation, or alteration of
  a historic resource or its immediate surroundings such that its significance would be
  materially impaired. A resource is "materially impaired" if those physical
  characteristics that convey its historical significance are demolished or materially
  altered.
- Project activities result in the direct of indirect destruction of a unique paleontological resource or site.

## 7.2 Potential Archaeological Resources and Project Impacts

Archaeological and historical resources are considered to be significant if they possess integrity and may contribute information important in prehistory or history at the federal, State, and/or local levels. Paleontological resources are considered to be significant if they provide new data on fossil animals, distribution, evolution, or other scientifically important information.

Potential impacts to paleontological and archaeological resources are generally associated with site clearing, grading, and excavation activities proposed by the development project. Therefore, based on the prior research conducted of the project site, the potential of the proposed project to impact undiscovered cultural or paleontological resources is discussed in the following paragraphs.

# 7.2.1 Archaeological and Historic Resources

Less than Significant Impact with Mitigation Incorporated. As indicated above, no archaeological resources have been identified on the surface of the project site. The project site surface has been extensively disturbed by the construction of the parking lot, medians, and the landscape features.

Results of this study indicate that there is potential for buried cultural resources in the project area. As described above, the geotechnical study for the project determined that the stratigraphy of the project area consist of an upper four feet of undocumented fill over a combination of alluvium and glacial till deposits. It is unlikely that there are archaeological deposits within the glacial fill, as these likely predate the human occupation of the Mammoth Lakes area. However, several factors suggest that there may be intact archaeological deposits in the alluvium or at the contact of the glacial deposits and the alluvium. Foremost, the alluvial

deposit described by the geotechnical study is similar to the artifact-bearing alluvial unit excavated at nearby site CA-MNO-1529, described in Basgall (1984), and other sites in the region, as described above. Other contributing factors include the relative proximity of the project area to prehistoric routes through the Sierras, particularly in relation to the obsidian source at Casa Diablo approximately 22 miles to the east-southeast (Bettinger, Basgall, and Delacorte 1983), the number of sites in a one-mile radius of the project area indicated by the cultural resources records search, and the location of the project area at the base of a hill which can be conducive to the burial and preservation of archaeological materials. Therefore, there is potential for subsurface cultural deposits in the project area. As discussed further below, monitoring is recommended for all ground-disturbing construction activities affecting the alluvial deposits and upper three feet of the glacial deposits related to the project in order reduce the effect of the proposed action on previously undiscovered cultural resources in the project area. Under these recommendations, pursuant to CEQA Guidelines Section 15064.5(c)(4)), project impacts on archaeological and historic resources are considered less than significant with mitigation incorporated.

## 7.2.2 Paleontological Resources

No Impact. There are no known paleontological resources or unique geological features within the project site. Preliminary results of a paleontological records search through the UCMP online database indicated that there are no recorded fossil localities within the project area or within a one mile radius of the project site. The closest vertebrate fossil locality is located more than 30 miles north of the project site. Initial consultation of collection records and geologic maps indicate that the Mammoth Lakes area has no history of fossil resources largely because the terrain is dominated by igneous and metamorphic rocks. As there is no record of paleontological resources in the area and no features indicative of paleontological resources, the proposed project would not result in an impact to paleontological resources and no further analysis is required.

#### 7.2.3 Native American Resources

Less than Significant Impact with Mitigation Incorporated. No areas containing human remains have been documented at the CHRIS-EIC in the project area or within a one-mile radius of the project area. If human remains are encountered unexpectedly during construction excavation and grading activities, State Health and Safety Code Section 7050.5 requires that no further disturbance shall occur until the County Coroner has made the necessary findings as to origin and disposition pursuant to PRC Section 5097.98. If the remains are determined to be of Native American descent, the coroner has 24 hours to notify the NAHC. The NAHC will then identify the person(s) thought to be the Most Likely Descendent of the deceased Native American, who will then help determine what course of action should be taken in dealing with the remains.

Responses to date to the NAHC Sacred Lands Search indicate that there are no sensitive Native American cultural resources in the project area.

#### 8.0 RECOMMENDED MITIGATION

The following mitigation measures are recommended to ensure that potential impacts to buried archaeological and Native American resources that may remain in the alluvial deposits or at the contact between the alluvial deposits and underlying glacial deposits are reduced to a less than significant level. The project would not likely cause a substantial adverse change in significance to any paleontological resources or unique geologic features, and so no mitigation measures are proposed for these resources

CULT-1 A qualified archaeological monitor shall be present during the ground-disturbing construction activities affecting the alluvial deposits and upper three feet of the glacial deposits in the project area. Due to the potential for subsurface cultural deposits, a culturally affiliated Native American monitor with experience in cultural resources also shall monitor these ground-disturbing activities. Currently, there is no legal requirement in California to include a Native American monitor in a monitoring program. The NAHC recommends, however, that if a client or lead agency prefers not to include a Native American monitor, the client or lead agency notify or otherwise clear this decision with all of the Native American groups identified by the NAHC as having affiliation with the project area. As the Eagle Lodge project is subject to SB 18 consultation, it would be appropriate to either include a Native American monitor, or otherwise determine and follow the preferences of the Native American community with respect to monitoring. No monitor is required for construction-related activities in the lower glacial deposits.

If cultural resources are identified, the archaeologist shall be allowed to temporarily divert or redirect grading or excavation activities in the vicinity in order to make an evaluation of the find and determine appropriate treatment. Treatment will include the Town's goals of preservation where practicable and public interpretation of historic and archaeological resources. The archaeologist shall prepare a final report about the monitoring to be filed with the Project Applicant, Mono County, and the CHRIS-EIC, as required by the State Historic Preservation Officer (SHPO). The report shall include documentation and interpretation of resources recovered, if any. Interpretation will include evaluation of eligibility of the resources with respect to the National Register and California Register. The report shall also include all specialists' reports as appendices. The lead agency shall designate repositories in the event that significant resources are recovered

CULT-2 If human remains are encountered unexpectedly during construction excavation and grading activities, State Health and Safety Code Section 7050.5 requires that no

further disturbance shall occur until the County Coroner has made the necessary findings as to origin and disposition pursuant to PRC Section 5097.98. If the remains are determined to be of Native American descent, the coroner has 24 hours to notify the NAHC. The NAHC will then identify the person(s) thought to be the Most Likely Descendent of the deceased Native American, who will then help determine what course of action should be taken in dealing with the remains.

#### 9.0 REFERENCES CITED

#### Antevs, E.

1948 Climatic Changes and Pre-White Man. In The Great Basin with Emphasis on Glacial and Postglacial Times. *University of Utah Bulletin* 38(20), Biological Series 10(7):168-191.

# Basgall, M.E.

1984 The Archaeology of MNO-1529: A Secondary Reduction Site in Mammoth Lakes, Mono County, California. Report on file at Eastern Information Center, University of California Riverside.

## Bettinger, R. L.

1977 Aboriginal Human Ecology in Owens Valley, Eastern California: Prehistoric Change in the Great Basin. *American Antiquity* 43:3-17.

# Bettinger, R. L., Mark E. Basgall, and Michael G. Delacorte,

An Archaeological Reconnaissance of Mammoth Mountain, Mono and Madera Counties, California. Far Western Anthropological Research Group, Inc., Davis.

# Bettinger, R. L., and R. E. Taylor

1974 Suggested Revisions in Archaeological Sequences of the Great Basin and Interior Southern California. *Nevada Archaeological Survey Research Paper* 5:1-26.

## Elston, R.G.

1986 Prehistory of the Western Area. *Great Basin*, edited by W. L. d'Azevedo, pp. 31-50. *Handbook of North American Indians*, vol. 11, W. G. Sturtevant, general editor. Smithsonian Institution, Washington, D.C.

#### Fowler, C.S. and N.P. Walter

Harvesting Pandora Moth Larvae with the Owens Valley Paiute. *Journal of California and Great Basin Anthropology* 7(2) 155-165.

## Grayson, D.K.

1993 *The Desert's Past: A Natural History of the Great Basin.* Washington: Smithsonian Institution.

## Hall, M. C.

1983 Late Holocene Hunter-Gatherers and Volcanism in the Long Valley-Mono Basin Region: Prehistoric Culture Change in the Eastern Sierra Nevada. Unpublished Ph.D. dissertation, Department of Anthropology, University of California, Riverside.

#### Hill, M.

1975 Geology of the Sierra Nevada. University of California Press, Berkeley.

## Jennings, C.W.

1977 Geologic Map of California, 1:750,000 scale. California Department of Conservation, Division of Mines and Geology, Sacramento, CA.

## Liljeblad, S. and C.S. Fowler

Owens Valley Paiute. In *Great Basin*, edited by W. L. d'Azevedo, pp. 412–434. *Handbook of North American Indians*, vol. 11, W. G. Sturtevant, general editor. Smithsonian Institution, Washington, D.C.

## Mehringer, P. J., Jr.

1986 Prehistoric Environments. In *Great Basin*, edited by W. L. d'Azevedo, pp. 31-50. *Handbook of North American Indians*, vol. 11, W. G. Sturtevant, general editor. Smithsonian Institution, Washington, D.C.

#### Moratto, Michael J.

1984 California Archaeology. San Diego: Academic Press.

## Pakiser, L. C., M. F. Kane, and W. H. Jackson

1964 Structural Geology and Volcanism of the Owens Valley Region, California A Geophysical Study. *United States Geological Survey Professional Paper* 438.

## Rockman, Marcy

2003 Knowledge and Learning in the Archaeology of Colonization. In *Colonization of Unfamiliar Landscapes: The Archaeology of Adaptation*, edited by Marcy Rockman and James Steele, pp. 3-24. Routledge Press, London, 2003

## Sierra Geotechnical Services, Inc.

2005 Preliminary Geotechnical Investigation for MMSA Eagle Base Lodge Development, Mammoth Lakes, CA. Report submitted to the Town of Mammoth Lakes, December, 2005.

#### Surovell, Todd,

2003 Simulating Coastal Migration in New World Colonization. *Current Anthropology* 484:580-591.

#### Taylor, William.

1981 Site record for CA-MNO-1529. Document on file at the California Historical Resources Information System Eastern Information Center, Department of Anthropology, University of California, Riverside.

## Town of Mammoth Lakes

2005 Draft Program Environmental Impact Report for the General Plan Update.
SCH#2003042155. On file at the Town of Mammoth Lakes Community Development
Department, 437 Old Mammoth Rd, Suite R, Mammoth Lakes, CA, 93546, October
2005.

United States Department of Agriculture Forest Service, Inyo National Forest.

1997 Mammoth Mountain Ski Area Base VII Expansion Project Environmental Assessment.

# Walter, Nancy Peterson

2005 Comment made on previously circulated EIR for the Town of Mammoth Lakes General Plan Update. On file at the Town of Mammoth Lakes Community Development Department, Mammoth Lakes, CA.

## Weaver, R.A. and M. Basgall

Aboriginal Exploitation of Pandora Moth Larvae in East-Central California. *Journal of California and Great Basin Anthropology* 8(2) 161-179.

# APPENDIX A: NATIVE AMERICAN CONSULTATION

STATE OF CALIFORNIA

Arnald Schwarzanegger, Governor

NATIVE AMERICAN HERITAGE COMMISSION

915 CAPITOL MALL, ROOM 364 SACRAMENTO, CA 95814 (916) 653-4082 Fax (916) 657-5390



April 4, 2006

Marcy Rockman PCR Services Corporation 233 Wilshire Blvd., Suite 130 Santa Monica, CA 90401

VIA FAX: 310-451-5279

Re: Tribal Consultation Request. Town of Mammoth Lakes-Eagle Lodge Master Plan

Amendment. Inyo County

Dear Ms. Rockman:

Government Code §65352.3 requires local governments to consult with California Native American tribes identified by the Native American Heritage Commission (NAHC) for the purpose of protecting, and/or mitigating impacts to cultural places. Attached is a consultation list of tribes with traditional lands or cultural places located within the requested plan amendment boundaries.

As a part of consultation, the NAHC recommends that local governments conduct record searches through the NAHC and California Historic Resources Information System (CHRIS) to determine if any cultural places are located within the area(s) affected by the proposed action. NAHC Sacred Lands File requests must be made in writing. All requests must include county, USGS quad map name, township, range and section. Local governments should be aware, however, that records maintained by the NAHC and CHRIS are not exhaustive, and a negative response to these searches does not preclude the existence of a cultural place. A tribe may be the only source of information regarding the existence of a cultural place.

If you receive notification of change of addresses and phone numbers from Tribes, please notify me. With your assistance we are able to assure that our consultation list contains current information.

If you have any questions, please contact me at (916) 653-4040.

Sincerely.

Rob Wood

Environmental Specialist III

Attachment

## California Tribal Consultation List Town of Mammoth Lakes March 30, 2006

Big Pine Band of Owens Valley Jessica Bacoch, Chairperson P. O. Box 700

Owens Valley Paiute -

Big Pine

, CA 93513

bigpinetribaladmin@earthlink.

(760) 938-2003

Bishop Reservation Gerald Howard, Chairperson 50 Tu Su Lane

Paiute - Shoshone

Bishop

, CA 93515

mervin@tells.org (760) 873-3584

Fort Independence Community of Paiute Carl Dahlberg Chalrperson P.O. Box 67 Paiute Independence , CA 93526 stephanie@fortindependence. (760) 878-2126

Lone Pine Paiute-Shoshone Reservation
Rachel Joseph, Chairperson
P.O. Box 747 Paiute
Lone Pine , CA 93545 Shoshone
rajoseph@lppsr.org
(760) 876-1034

Walker River Reservation Genia Williams, Chairperson P.O. Box 220 Schurz , NV 89427 chair@wrpt.net 775-773-2306

Northern Paiute

This list is current only as of the date of this document.

Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050,5 of the Health and Safety Code, Section 5097.94 of the Public Resources Code and Section 5097.98 of the Public Resources Code.

This list is applicable only for consultation with Native American tribes under Government Code Section 65952.3.

# **APPENDIX B: RESUMES**

Town of Mammoth Lakes PCR Services Corporation

# Mitchell Marken, Ph.D., ASSOCIATE PRINCIPAL, DIRECTOR OF CULTURAL RESOURCES MANAGEMENT

#### **Professional History**

- Ph.D., Archaeology, University of St. Andrews, Scotland, 1991
- Dpl., Archaeology and Ethnology, Maritime Studies, University of St. Andrews, Scotland, 1985
- Cultural Resources Manager/Senior Environmental Scientist, Tetra Tech, Inc., San Francisco, California, 1998 - 2004
- Adjunct Professor, University of San Francisco

#### Expertise

Mitchell Marken has over 18 years of archaeological and management experience in the environmental field. His experience includes project management, field supervision, environmental monitoring, cultural resource planning, report and proposal writing, quality assurance of regulatory reports, project evaluation, underwater survey, site mitigation, excavation, artifact analysis, mapping, research design, team training, coordination with state and federal agencies, permit acquisition and public speaking. Since 1990, he has managed large-scale Cultural Resource and Environmental projects for public utility companies, mining companies and private developers throughout Western U.S.

Dr. Marken has completed environmental compliance training with the Federal Energy Regulatory
Commission (FERC), and Section 106 compliance training from the Advisory
Council on Historic Preservation. He has worked internationally and for state governments concerning the preservation and exploration of

underwater sites including shipwrecks. He has published a University Press of Florida book entitled "Pottery from Spanish Shipwrecks: 1500 - 1800," and is featured in a U.S. public school textbook entitled "Lessons in Character" published by the Young People's Press for middle school students.

#### Experience

Archaeology/Paleontology: Dr. Marken has worked with State Historic Preservation Office and information centers throughout the Western U.S. for record searches and surveys on projects ranging from cellular towers to extensive multi-state linear corridors. Other projects include site inventories and test excavation for the U.S. Army Corps of Engineers (ACOE), and the U.S. National Guard in Northern and Southern California and San Francisco County Department of Public Works, and construction monitoring for the U.S. Coast Guard at various radio tower sites in California.

In addition to fieldwork, Dr. Marken coordinated and worked with regulatory agencies in impact analysis and mitigation planning, on the development of Programmatic Agreements and Memorandums of Understanding including the U.S. Navy for Treasure Island, the U.S. Army in Hawaii and the Department of Defense at Lawrence Livermore National Laboratory. He has also been active in facilitating Native American consultation and worked with California Tribes on educating local agencies with regards to burials, and with Santa Cruz County regarding mitigation of sea wall armoring on paleontological resources.

In addition to his California experience, Dr. Marken was also the principal author of Minnesota's Submerged Cultural Resources Plan. The plan is used as a guideline for the preservation of underwater sites in the Great Lakes and inland water bodies.

CEQA/NEPA Compliance: Dr. Marken has worked on various projects for National Environmental Policy Act (NEPA), National Historic Preservation Act and California Environmental Quality Act (CEQA) compliance throughout the United States for the U.S. Coast Guard, the U.S. Army, the U.S. Navy, and the ACOE. He has also performed third party review for California State Lands for fiber optic cable construction both on land and for submerged projects. In addition, he wrote and compiled the necessary background information and impact analysis on all Coast Guard owned ships and stations for the Deepwater Project Environmental Impact Statement for the U.S. Coast Guard.

Dr. Marken's NEPA experience also includes the preparation of sensitive and controversial documents relating to a large-scale Army transformation project on the islands of Hawaii for the U.S. Army including an additional training base on Oahu, and military housing conversion projects in Hawaii and California.

#### Workshops/Education:

Section 106 Compliance Training (GSA Interagency Training Center); FERC Environmental Compliance Training

#### **Professional Affiliations**

SAA Society for American Archaeology

# Joe D. Stewart, Ph.D., PRINCIPAL PALEONTOLOGIST

#### **Professional History**

- Ph.D., Systematics & Ecology, University of Kansas, Lawrence, Kansas, 1984
- Assistant Curator of Vertebrate Paleontology, Natural History Museum of Los Angeles County, Los Angeles, California, 1985-2003
- Owner/Partner/Paleontological Consultant, Stewart Paleontological Consulting, Pasadena, California, 1997-2005

#### **Expertise**

J. D. Stewart has 30 years of experience in the field of paleontology. He has authored or co-authored 33 peer-reviewed articles for scientific journals and books. Within these, he has authored or co-authored descriptions of three new genera and three new species.

He has served as expert witness for the U.S. Department of Justice. He is a recognized authority on fossil fishes of Cretaceous rocks of North America and Cenozoic rocks of the western coast of North America.

#### Experience

Dr. Stewart has extensive experience finding and excavating fossils for county, state, and provincial institutions.

Numerous environmental firms have employed him for identification of paleontological and archaeological specimens. His field work includes projects in cooperation with the U.S. Bureau of Land Management, U.S. Army Corps of Engineers, U.S. Navy, U.S. Department of Energy, and California State Parks. The Bureau of Land Management's national website features one of his excavations from 2003. He

has monitored construction activity in numerous counties and municipalities. In addition to fieldwork, he has experience in the supervision of preparators, curatorial assistants, and excavators. He also has extensive experience preparing fossils, and has processed and recovered thousands of vertebrate microfossils. Dr. Stewart has authored and co-authored many paleontological assessment documents and California Environmental Quality Act-mandated monitoring and mitigation reports. He was the in-house curator for several major exhibits at the Natural History Museum of Los Angeles County, and helped develop two exhibits that toured the nation.

#### Presentations

Dr. Stewart has presented the results of his research at over 35 scientific conferences in the U.S., China, Germany, Switzerland, Mexico, and Canada.

#### **Professional Affiliations**

Member, Society of Vertebrate Paleontology

Research Associate, Natural History Museum of Los Angeles County

# Amy M. Holmes, RPA, SENIOR ARCHAEOLOGIST

#### **Professional History**

- Registered Professional Archaeologist since 2000
- M.A., Anthropology, Washington State University, Pullman, Washington, 1998
- B.A., Anthropology, Texas A&M University, College Station, Texas, 1995
- Principal Investigator, Earth Tech, Inc., Colton, California, 2003 – 2004
- Geoarchaeologist, Pacific Legacy, Inc., Cameron Park, California, 2002 – 2003
- Field Director, SWCA
   Environmental Consultants, Reno,
   Nevada, 2001 2002
- Staff Geoarchaeologist, Prewitt and Associates, Inc., Austin, Texas, 1999 – 2001
- Staff Geoarchaeologist, LaRamie Soils Service, Laramie, Wyoming, 1998 – 1999
- Archaeological Technician, various companies, 1994-1999

#### Expertise

Amy Holmes is a RPA-certified archaeologist/geoarchaeologist with 12 years of experience in Cultural Resources Management. Ms. Holmes meets the U.S. Secretary of Interior's standards for an Archaeologist. She is a geoarchaeological specialist with knowledge of the principles of stratigraphy, soil morphology, and process geomorphology and their relation to archaeological sites. Ms. Holmes also has expertise in Great Basin

archaeology and the prehistory of the western United States. She has extensive experience leading field crews for survey, archaeological testing, and data recovery projects. Ms. Holmes has experience working with both federal and state cultural resources regulations.

#### Experience

Archaeology: Ms. Holmes has worked on projects for federal, state, municipal, and private clients including the U.S. Army Corps of Engineers and Caltrans. She is familiar with the cultural resources requirements of the National Environmental Policy Act (NEPA), the National Historic Preservation Act (NHPA), and the Section 106 process. Ms. Holmes works regularly with the cultural resources requirements of the California Environmental Quality Act (CEQA). She is skilled in the preparation of cultural resources sections for CEQA documents such as Initial Studies and Environmental Impact Reports.

Ms. Holmes has worked as an archaeologist and geoarchaeologist in Texas, Wyoming, Montana, North Dakota, Colorado, Utah, Arizona, Nevada and California. She currently holds a Cultural Resource Use Permit for the Nevada Bureau of Land Management (BLM) and an Antiquities Permit for the state of Nevada. She is also permitted to perform cultural resources work on BLM land in California.

At PCR, Ms. Holmes functions as Principal Investigator and deputy Project Manager on cultural resources projects throughout California and Nevada. Her responsibilities include Native American consultation, technical oversight, budget tracking, preparing proposals and cost estimates, and writing technical reports. Ms. Holmes supervises junior staff throughout all aspects of fieldwork, lab analyses, and report writing.

Workshops/Education:

"CEQA and Cultural Resources, UCLA Extension, March 2006"

CPR and First Aid, renewed February 2005

Project Manager Training, Earth Tech, Inc., March 2004

Working with California Office of Historic Preservation, SCA workshop, April 2004

Health and Safety Training: Defensive Driving Refresher course, Earth Tech, July 2004

HAZWOPER 40-hour Hazardous waste workers' and 24-hour First Responder-Operations Level, ETAC, August 2004

Technical writing workshop for CRM professionals, SRI Institute, 2000

Professional Affiliations

Society for American Archaeology



## EASTERN INFORMATION CENTER

CALIFORNIA HISTORICAL RESOURCES INFORMATION SYSTEM
Department of Anthropology, University of California, Riverside, CA 92521-0418
(951) 827-5745 - Fax (951) 827-5409 - eickw@ucr.edu
Inyo, Mono, and Riverside Counties

September 20, 2005 RS #3516

Amy Holmes PCR One Venture, Suite 150 Irvine, CA 92618

Re: Cultural Resource Records Search for the Eagle Lodge Base Facility

Dear Ms. Holmes:

We received your request on September 16, 2005 for a cultural resource records search for the Eagle Lodge Base Facility located in Section 3 & 34, T.3S, R.27E, MDBM, in the Town of Mammoth Lakes in Mono County. We have reviewed our site records, maps, and manuscripts against the location map you provided.

Our records indicate that 22 cultural resource studies have been conducted within a one-mile radius of your project area. None of these studies involved the project area. One additional study provides an overview of cultural resources in the general project vicinity. These reports are listed on the attachment entitled "Archeological Reports" and are available upon request at 15¢/page plus \$30/hour. The KEYWORD section of each citation lists the geographic area, quad name, listing of trinomials (when identified), report number in our manuscript files (MN#), and the number of pages per report.

No cultural resource properties are recorded within the boundaries of the project area. Our records indicate that 29 properties have been recorded within a one-mile radius of the project area. Copies of the records are included for your reference.

The above information is reflected on the enclosed map. Areas that have been surveyed are highlighted in yellow. Numbers marked in blue ink refer to the report number in our manuscript files (MN #). Cultural resource properties are marked in red; numbers in black refer to Trinomial designations, those in green to Primary Number designations. National Register properties are indicated in light blue.

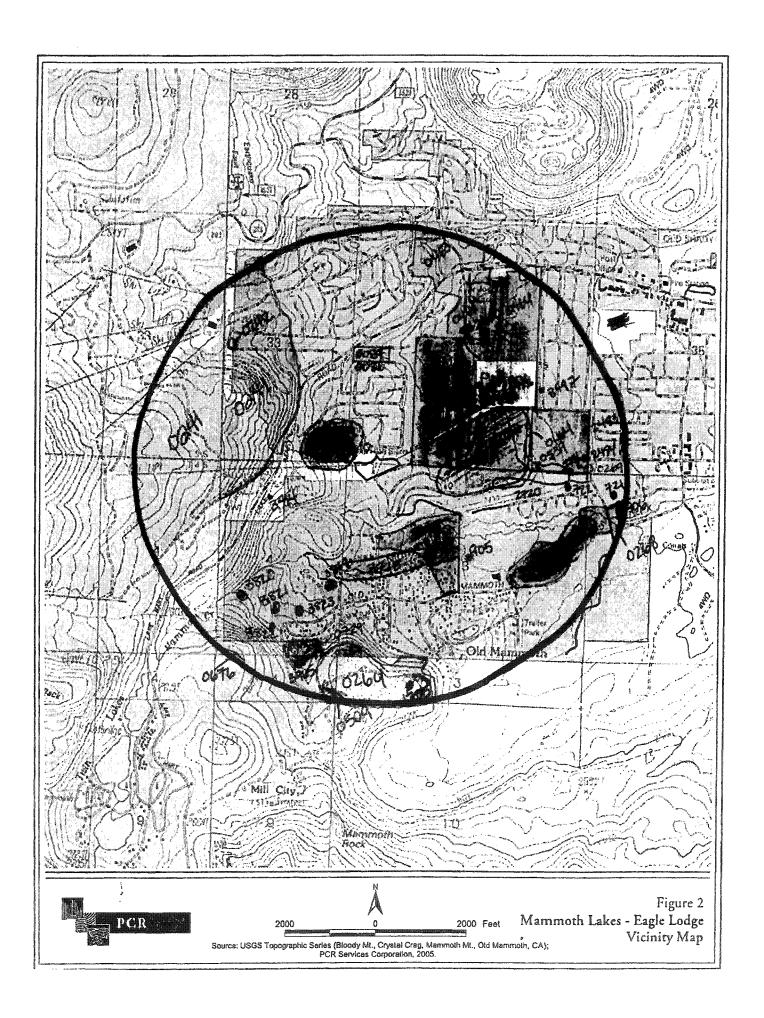
Amy Holmes September 20, 2005 Page 2

Additional sources of information consulted are identified below. Note that not all sites or properties are listed on the Office of Historic Preservation (OHP) Archaeological Determinations of Eligibility or Directory of Properties in the Historic Property Data File. Only those sites or properties that have been reviewed by the OHP are listed.

National Register of Historic Places (07/29/05): no listed properties are located within the boundaries of the project area.

Office of Historic Preservation, Archaeological Determinations of Eligibility (03/07/05): no listed sites are located within the boundaries of the project area.

Office of Historic Preservation, Directory of Properties in the Historic Property Data File (03/07/05): no listed properties are located within the boundaries of the project area.


A copy of the relevant portion of the 1953 USGS Mt. Morrison 15' topographic map is included for your reference.

As the Information Center for Mono County, it is necessary that we receive a copy of <u>all</u> cultural resource reports and site information pertaining to this county in order to maintain our map and manuscript files. Confidential information provided with this records search regarding the location of cultural resources outside the boundaries of your project area should not be included in reports addressing the project area.

Sincerely,

Information Officer

Enclosures



ARCHEOLOGICAL REPORTS

| Printed: 09/19/2005

| Page: 001

\_\_\_\_\_\_\_

Document No.: 1080001 BALDWIN, CLIFFORD PARK

1931 ARCHAEOLOGICAL EXPLORATION AND SURVEY IN SOUTHERN INYO COUNTY, CALIFORNIA [NOT A COMPLETE REPORT]. IN ARCHAEOLOGICAL RESOURCES IN THE SALINE-EUREKA VALLEY AREA, BY CAROLE ROBARCHEK (1972 & 1973). PHOTOS ON FILE BLM/DPS.

Last Update: 11/05/2004 Cataloged by: WOR-CA-04 on 09/19/1988 Keywords: 17 PP (7), 566 ACRES SURVEYED (4), CA-INY-0415 (8), CA-INY-0414 (8), CA-INY-0405 (8), CA-INY-0404 (8), CA-INY-0417 (8), CA-INY-0402 (8), CA-INY-0432 (8), CA-INY-0410 (8), CA-INY-0407 (8), CA-INY-0408 (8), CA-INY-0409 (8), CA-INY-0411 (8), CA-INY-0412 (8), CA-INY-0416 (8), CA-INY-0413 (8), LITTLE LAKE/COSO REGION (4), COSO PEAK 7.5' QUAD (4), DRY MTN. 15' QUAD (4), IN-0001 (MF #0001) (6), NEW YORK BUTTE 15' QUAD (4), NO ACREAGE SURVEYED (4), RECONNAISSANCE STUDY (1), UNKNOWN MAPS (MAPS NOT IN MS.) (4)

Document No.: 1081093 Unpublished Report

WITTERS, RANDY

1977 ARCHAEOLOGICAL RECONNAISSANCE REPORT - EXCHANGE - CORPORATION YARD/
WOODSTOCK FOR MONACHE MEADOWS. INYO NATIONAL FOREST. SUBMITTED TO U.S. FOREST
SERVICE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER,
RIVERSIDE, CA 92521

Last Update: 12/13/2004 Cataloged by: WOR-CA-04 on 11/28/1988 Keywords: 15 PP (7), 5 ACRES SURVEYED (4), LONG VALLEY CALDERA (4), OLD MAMMOTH 7.5' QUAD (4), MN-0086 (MF #1080) (6), NO RESOURCES (8), ARR #05-04-0059 (6)

\_\_\_\_\_\_

Document No.: 1081240 TAYLOR, WILLIAM

Unpublished Report

Other Document Type

1980 ARCHAEOLOGICAL RECONNAISSANCE REPORT - WOODSTOCK PARCEL/TANNER EXCHANGE.
INYO NATIONAL FOREST. SUBMITTED TO U.S. FOREST SERVICE. UNPUBLISHED REPORT ON
FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92521.

Last Update: 12/13/2004 Cataloged by: WOR-CA-04 on 12/08/1988 Keywords: 5 PP (7), 5 ACRES SURVEYED (4), MN-0087 (MF #1080) (6), LONG VALLEY CALDERA (4), OLD MAMMOTH 7.5' QUAD (4), NO RESOURCES (8), ARR #05-04-0207 (6)

\_\_\_\_\_\_

Document No.: 1081623 BASGALL, MARK E. Unpublished Report

1982 THE ARCHAEOLOGY OF CAMP HIGH SIERRA (CA-MNO-1529); A PRELIMINARY REPORT.
U.C. DAVIS ANTHROPOLOGY, & FAR WESTERN ANTHROPOLOGICAL, INC. SUBMITTED TO U.S.
FOREST SERVICE, INYO NATIONAL FOREST. UNPUBLISHED REPORT ON FILE AT UCR,
EASTERN INFORMATION CENTER, RIVERSIDE, CA 92521.

Last Update: 12/14/2004 Cataloged by: WOR-CA-04 on 12/20/1988 Keywords: 39 PP (7), CA-MNO-1529 (8), DATA RECOVERY ONLY (1), MN-0210 (MF #1446) (6), OLD MAMMOTH 7.5' QUAD (4), NO ACREAGE SURVEYED (4)

NADB/Query | ARCHEOLOGICAL REPORTS | Printed: 09/19/2005 Page: 002

\_\_\_\_\_\_\_\_\_\_\_

Document No.: 1081624 TAYLOR, WILLIAM

Unpublished Report

1981 ARCHAEOLOGICAL RECONNAISSANCE REPORT - CAMP HIGH SIERRA LAND EXCHANGE. INYO NATIONAL FOREST -- MAMMOTH RANGER DISTRICT. SUBMITTED TO U.S. FOREST SERVICE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92521.

Cataloged by: WOR-CA-04 on 12/20/1988 Last Update: 12/14/2004 Keywords: 14 PP (7), 35 ACRES SURVEYED (4), CA-MNO-1529 (8), MN-0211 (MF #1446) (6), OLD MAMMOTH 7.5' QUAD (4), LONG VALLEY CALDERA (4), ARR #05-04-0230 (6)

\_\_\_\_\_\_\_

Document No.: 1081813 BETTINGER, ROBERT L., MARK E. BASGAL, AND M.G. DELACORTE Unpublished Report

1983 AN ARCHAEOLOGICAL RECONNAISSANCE OF MAMMOTH MOUNTAIN, MONO AND MADERA COUNTIES, CALIFORNIA. FAR WESTERN ANTHROPOLOGICAL RESEARCH GROUP. SUBMITTED TO PRIVATE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Last Update: 12/15/2004 Cataloged by: WOR-CA-04 on 03/28/1989 Keywords: MN-0241 (MF #1623) (6), 44 PP (7), 2000 ACRES SURVEYED (4), OLD MAMMOTH 7.5' QUAD (4), MAMMOTH MTN 7.5' QUAD (4), LONG BALLEY CALDERA (4), CA-MNO-1924 (8), CA-MNO-1925 (8), ARR #05-04-0310 (6)

\_\_\_\_\_ Document No.: 1081972 Unpublished Report

BURTON, JEFF

1982 ARCHAEOLOGICAL SURVEY REPORT - MAMMOTH BLUFF, MAMMOTH LAKES, MONO COUNTY, CALIFORNIA. JEFF BURTON, CONSULTING ARCHAEOLOGIST. SUBMITTED TO PRIVATE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Cataloged by: WOR-CA-04 on 03/06/1989 Last Update: 12/15/2004 Keywords: 21 PP (7), 75 ACRES SURVEYED (4), CA-MNO-1705 (8), CA-MNO-1706 (8), MN-0264 (MF #1774) (6), OLD MAMMOTH 7.5' QUAD (4), LONG VALLEY CALDERA (4), BLOODY MTN. 7.5' QUAD (4), ARR #05-04-0280 (6)

\_\_\_\_\_\_ Unpublished Report

BURTON, JEFF

Document No.: 1081973

1982 ARCHAEOLOGICAL SURVEY REPORT - MAMMOTH MEADOW, MAMMOTH LAKES, MONO COUNTY, CALIF. JEFF BURTON, CONSULTING ARCHAEOLOGIST. SUBMITTED TO PRIVATE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Last Update: 12/15/2004 Cataloged by: WOR-CA-04 on 03/06/1989 Keywords: 40 ACRES SURVEYED (4), 34 PP (7), CA-MNO-0905 (8), CA-MNO-0904 (8),
MN-0266 (MF #1775) (6), OLD MAMMOTH 7.5' QUAD (4), LONG VALLEY CALDERA (4)

NADB/Query | ARCHEOLOGICAL REPORTS Page: 003 Printed: 09/19/2005

Document No.: 1081975

Unpublished Report

BURTON, JEFF

1982 ARCHAEOLOGICAL SURVEY REPORT - PINEBROOKE CONDOMINIUM PROJECT, MAMMOTH LAKES, MONO COUNTY, CALIFORNIA. AUTHOR(S). SUBMITTED TO PRIVATE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Cataloged by: WOR-CA-04 on 03/06/1989 Last Update: 12/15/2004 Keywords: 1.49 ACRES SURVEYED (4), 12 PP (7), MN-0269 (MF #1777) (6), OLD MAMMOTH 7.5' QUAD (4), LONG VALLEY CALDERA (4), NO RESOURCES (8)

\_\_\_\_\_\_

Document No.: 1083367 BURTON, JEFFREY F.

Unpublished Report

1990 AN ARCHAEOLOGICAL SURVEY OF THE NORTH VILLAGE PROJECT AREA MAMMOTH LAKES, CALIFORNIA. TRANS-SIERRAN ARCHAEOLOGICAL RESEARCH (#19). SUBMITTED TO PRIVATE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Last Update: 12/20/2004 Cataloged by: WOR-CA-04 on 09/12/1990 Keywords: MN-0463 (MF #2962) (6), 34 PP (7), 90 ACRES SURVEYED (4), LONG VALLEY CALDERA (4), BLOODY MTN. 7.5' QUAD (4), CRYSTAL CRAG 7.5' QUAD (4), MAMMOTH MTN. 7.5' QUAD (4), OLD MAMMOTH 7.5' QUAD (4), CA-MNO-2480 (8), CA-MNO-2481 (8)

\_\_\_\_\_\_

Document No.: 1083368 BURTON, JEFFREY F.

Unpublished Report

1990 AN ARCHAEOLOGICAL SURVEY OF THE LODESTAR PROPERTY MAMMOTH LAKES, CALIFORNIA. TRANS-SIERRAN ARCHAEOLOGICAL RESEARCH (#20). SUBMITTED TO PRIVATE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Cataloged by: WOR-CA-04 on 09/12/1990 Last Update: 12/20/2004 Keywords: MN-0464 (MF #2963) (6), 40 PP (7), 200 ACRES SURVEYED (4), BLOODY MTN 7.5' QUAD (4), CRYSTAL CRAG 7.5' QUAD (4), MAMMOTH MTN 7.5' QUAD (4), OLD MAMMOTH 7.5' QUAD (4), LONG VALLEY CALDERA (4), CA-MNO-2482 (8), CA-MNO-2483 (8), CA-MNO-2484 (8), CA-MNO-2485 (8), CA-MNO-2486 (8), CA-MNO-2487 (8)

Document No.: 1083369

BURTON, JEFFREY F.

Unpublished Report

1989 AN ARCHAEOLOGICAL SURVEY OF THE MINARET ROAD EXTENSION MAMMOTH LAKES, CALIFORNIA. TRANS-SIERRAN ARCHAEOLOGICAL RESEARCH (#17). SUBMITTED TO PRIVATE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Cataloged by: WOR-CA-04 on 09/12/1990 Last Update: 12/20/2004

Keywords: MN-0465 (MF #2963) (6), 25 PP (7), 10 ACRES SURVEYED (4), OLD MAMMOTH 7.5' QUAD (4), LONG VALLEY CALDERA (4), CA-MNO-2482 (8)

NADB/Query ARCHEOLOGICAL REPORTS Page: 004 | Printed: 09/19/2005

Document No.: 1083646 BURTON, JEFFERY AND MARY FARRELL Unpublished Report

1990 ARCHAEOLOGICAL TEST EXCAVATIONS AT THE SNOW CREEK SITE (CA-MNO-3) MAMMOTH LAKES, CALIFORNIA. TRANS-SIERRAN ARCHAEOLOGICAL RESEARCH (#23). SUBMITTED TO PRIVATE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Cataloged by: WOR-CA-04 on 01/30/1991 Last Update: 12/20/2004 Keywords: MN-0503 (MF #3323) (6), 172 PP (7), NO ACREAGE SURVEYED (4), LONG VALLEY CALDERA (4), OLD MAMMOTH 7.5' QUAD (4), CA-MNO-0003 (8)

\_\_\_\_\_\_\_

Document No.: 1083781

Unpublished Report

FAUST, NICHOLAS

1990 ARCHAEOLOGICAL RECONNAISSANCE REPORT: MILL CITY LOGE COURSE. INYO NATIONAL FOREST - MAMMOTH DISTRICT. SUBMITTED TO U.S. FOREST SERVICE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501.

Cataloged by: WRO-CA-04 on 06/07/1991 Last Update: 12/20/2004 Keywords: MN-0509 (MF #3431) (6), 4 PP (7), 10 ACRES SURVEYED (4), LONG VALLEY CALDERA (4), BLOODY MTN. 7.5' QUAD (4), NO RESOURCES (8), ARR #05-04-0496 (6)

\_\_\_\_\_\_

Document No.: 1083787 FAUST, NICHOLAS A.

Unpublished Report

1990 ARCHAEOLOGICAL RECONNAISSANCE REPORT: CONTEL- MAMMOTH SKI AND RACQUET CLUB REALIGNMENT. INYO NATIONAL FOREST - MAMMOTH DISTRICT. SUBMITTED TO U.S. FOREST SERVICE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Cataloged by: WRO-CA-04 on 06/07/1991 Last Update: 12/15/2004 Keywords: MN-0242 (MF #1623) (6), 4 PP (7), 1 ACRE SURVEYED (4), OLD MAMMOTH 7.5' QUAD (4), LONG VALLEY CALDERA (4), NO RESOURCES (8), ARR #05-04-0498 (6)

Document No.: 1084008

KAUTZ, ROBERT R.

Unpublished Report

1991 ARCHAEOLOGICAL TESTING PROCEDURES AT SIX SITES IN MAMMOTH LAKES, CA; THE LODESTAR PROJECT. MARIAH ASSOCIATES (MAMMOTH LAKES, CA). SUBMITTED TO PRIVATE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Cataloged by: WRO-CA-04 on 01/25/1992 Last Update: 12/20/2004 Keywords: MN-0467 (MF #2963) (6), 40 PP (7), NO ACRE SURVEYED--TESTING (4), OLD MAMMOTH 7.5' QUAD (4), LONG VALLEY CALDERA (4), 26-2482 (CA-MNO-2482) (8),

```
26-2483 (CA-MNO-2483) (8), 26-2484 (CA-MNO-2484) (8), 26-2485 (CA-MNO-2485) (8), 26-2486 (CA-MNO-2486) (8), 26-2487 (CA-MNO-2487) (8), 26-3575 (8), MAI PROJECT #638 (6)
```

NADB/Query ARCHEOLOGICAL REPORTS Page: 005 Printed: 09/19/2005

Document No.: 1084017 Unpublished Report HARDESTY, DONALD L., STEVEN F. MEHLS, AND PRISCILLA E. MECHAM WITH MARY RUSCO

1991 A CLASS III CULTURAL RESOURCES INVENTORY OF THE 493 ACRE BODIE STUDY AREA, MONO COUNTY, CALIFORNIA; I HISTORIC, II HISTORIC APPENDIX, III PREHISTORIC, IIIA PREHISTORIC SITE RECORDS, IV - XXII - HISTORIC SITE RECORDS. WESTERN CULTURAL RESOURCE MANAGEMENT. SUBMITTED TO PRIVATE (GALAXY MINING, DBA BODIE CONSOLIDATED). UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 9250

Cataloged by: WRO-CA-04 on 01/25/1992 Last Update: 12/20/2004 Keywords: MN-0539 (MF #3616) (6), 896 PP (3 VOLUMES OF REPORTS) (7), 4996 PP (ALL SITE RECORDS PRE & HISTORIC) (7), BODIE 7.5' QUAD (4), KIRKWOOD SPRING 7.5' QUAD (4), MONO BASIN (4), BRIDGEPORT AREA (4), CA-MNO-2658/H (8), 493 ACRES SURVEYED (4), HISTORIC MINING (0)

Dissertation/Thesis Document No.: 1084158

HANEY, JEFFERSON W.

1992 WRITTEN IN BEDROCK: PREHISTORIC ACORN USE IN THE EASTERN SIERRA NEVADA. M.A. THESIS. SONOMA STATE UNIVERSITY, CA; (CULTURAL RESOURCES MANAGEMENT).

Cataloged by: WRO-CA-04 on 05/07/1992 Last Update: 11/15/2004 Keywords: MN-0566 & IN-0276 (MF #3745) (6), 229 PP (7), NO ACREAGE SURVEYED (4)

\_\_\_\_\_

Document No.: 1084177 BURTON, JEFFERY F.

Unpublished Report

1992 ARCHAEOLOGICAL TESTING AT THE EAGLE'S NEST SITE (CA-MNO-907), MAMMOTH LAKES, CALIFORNIA. TRANS-SIERRAN ARCHAEOLOGICAL. SUBMITTED TO TOWN OF MAMMOTH LAKES. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Cataloged by: WRO-CA-04 on 07/03/1992 Last Update: 12/15/2004 Keywords: MN-0268 (MF #1776) (6), 54 PP (7), NO ACREAGE SURVEYED (4), OLD MAMMOTH 7.5' QUAD (4), LONG VALLEY CALDERA (4), CA-MNO-0907 (8), CA-MNO-0905 (8)

-----

Document No.: 1084251 BURTON, JEFFEREY F.

Unpublished Report

1992 FURTHER INVESTIGATIONS AT THE SNOWCREEK ARCHAEOLOGICAL SITE, MAMMOTH LAKES, CALIFORNIA. TRANS-SIERRAN ARCHAEOLOGICAL RESEARCH, INC. SUBMITTED TO TOWN OF MAMMOTH LAKES. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 92501

Cataloged by: WRO-CA-04 on 10/02/1992 Last Update: 12/20/2004 Keywords: MN-0504 (MF #3323) (6), 97 PP (7), NO ACREAGE SURVEYED (4), OLD MAMMOTH

| 7.5' | QUAD. | (4), | LONG | VALLEY | CALDERA | (4), | CA-MNO-0003 | (8) |  |
|------|-------|------|------|--------|---------|------|-------------|-----|--|
|      |       |      |      |        |         |      |             |     |  |

\_\_\_\_\_\_\_

| == |                       |            |
|----|-----------------------|------------|
| ļ  | ARCHEOLOGICAL REPORTS | NADB/Query |
|    | Printed: 09/19/2005   | Page: 006  |

Document No.: 1084511 VALDEZ, SHARYNN-MARIE AND NELSON SIEFKIN Unpublished Report

1993 ARCHAEOLOGICAL INVENTORY OF THE SOUTHERN CALIFORNIA EDISON OVERHEAD TO UNDERGROUND CONVERSION PROJECT, IN THE CITY OF MAMMOTH LAKES, MONO COUNTY, CALIFORNIA. CULTURAL RESOURCES FACILITY, CSU BAKERSFIELD. SUBMITTED TO PRIVATE. UNPUBLISHED REPORT ON FILE AT UCR, EASTERN INFORMATION CENTER, RIVERSIDE, CA 9250

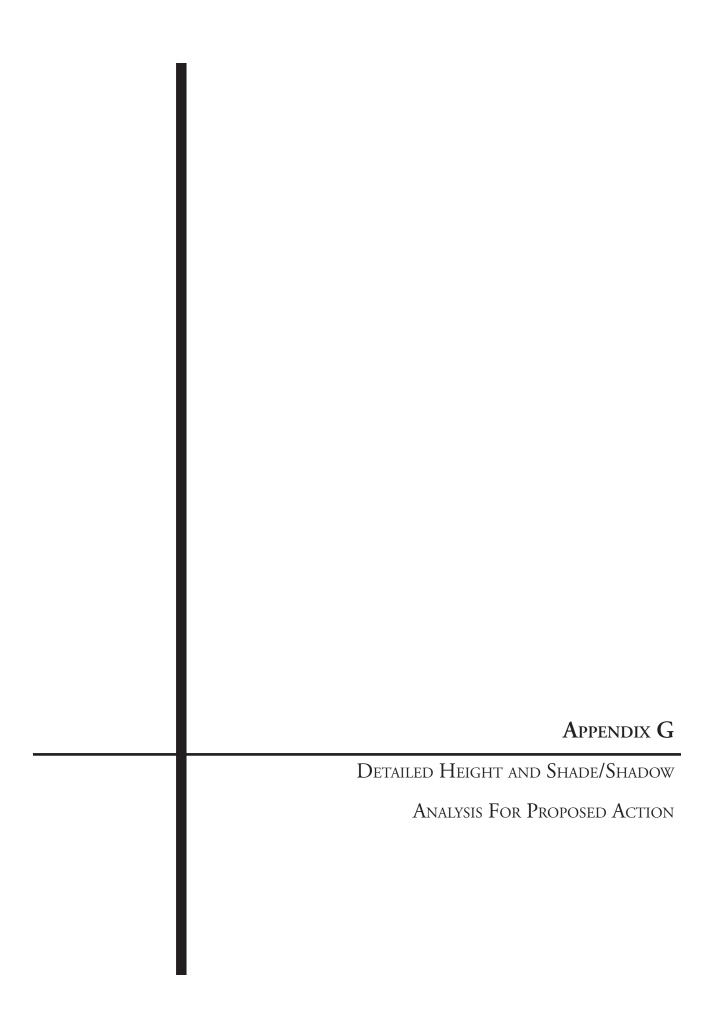
Last Update: 12/20/2004 Cataloged by: WRO-CA-04 on 05/24/1994 Keywords: MN-0629 (MF #4033) (6), 9 PP. (7), 21 ACRES SURVEYED (4), OLD MAMMOTH 7.5' QUAD (4), LONG VALLEY CALDERA (4), CA-MNO-3 (8), CA-MNO-561 (8), CA-MNO-906 (8), CA-MNO-907 (8)

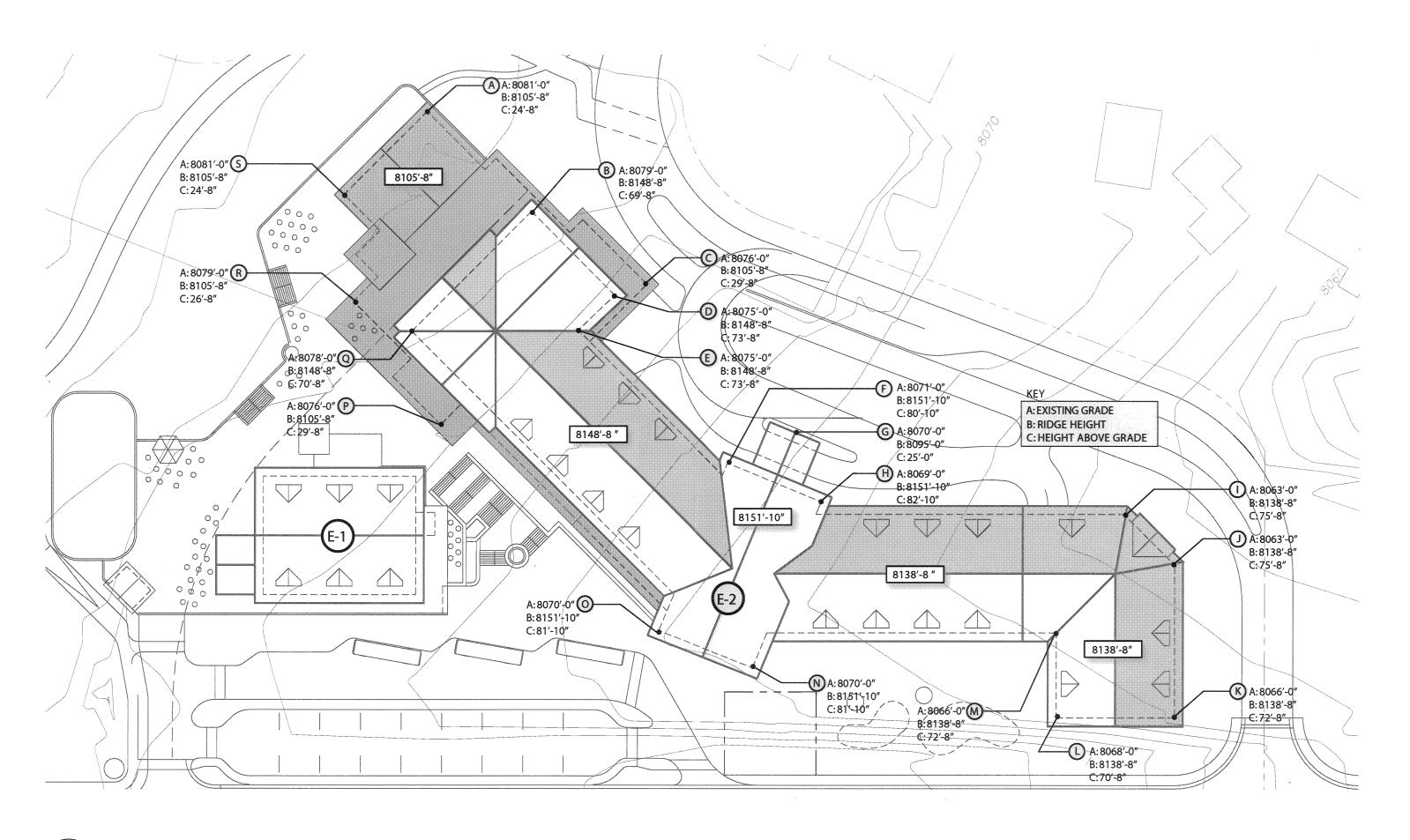
Document No.: 1084879 FAUST, NICHOLAS

Unpublished Report

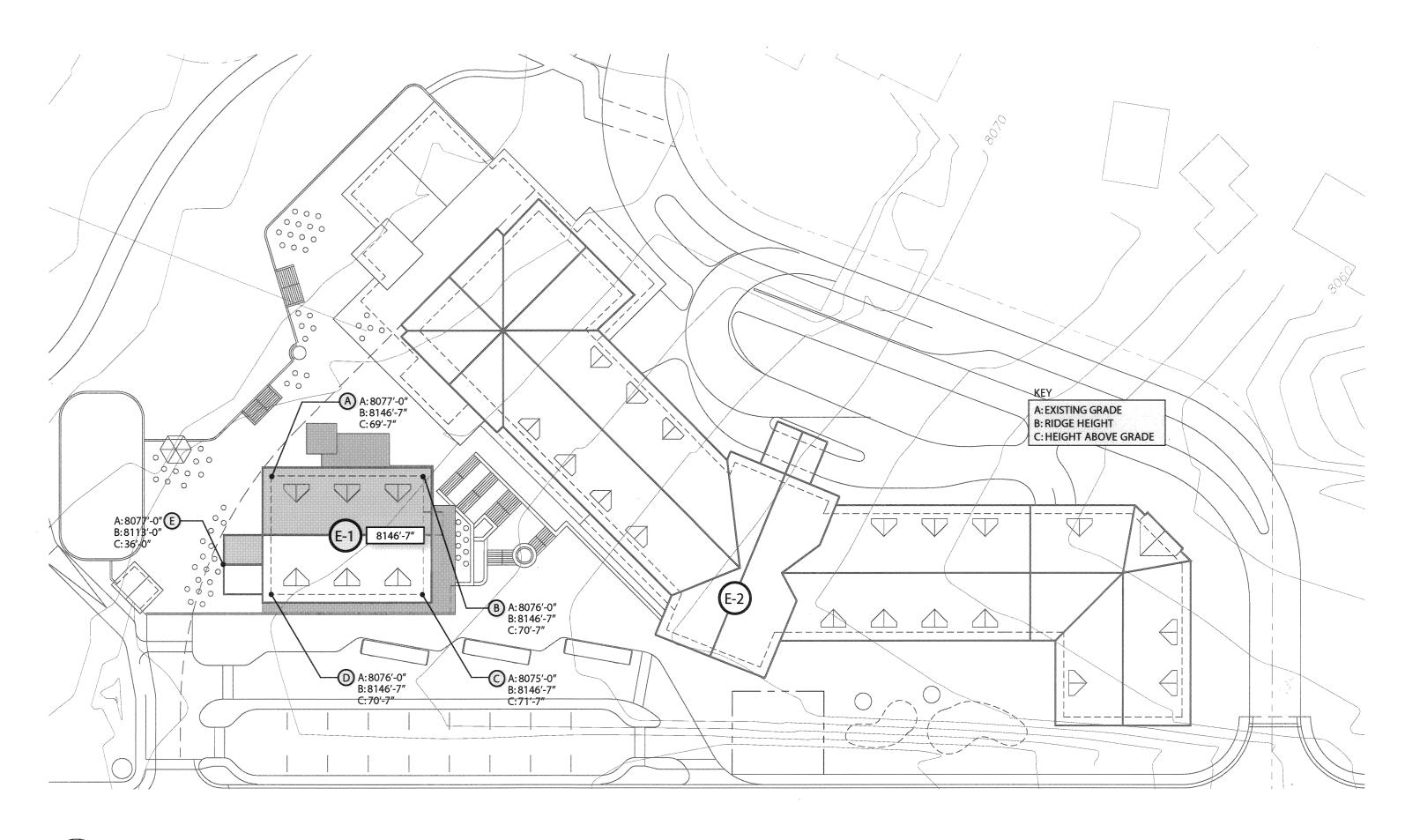
1995 HERITAGE RESOURCES REPORT: MAMMOTH CONNECTOR TRAIL, MONO COUNTY, CALIFORNIA. INYO NATIONAL FOREST. SUBMITTED TO INYO NATIONAL FOREST. UNPUBLISHED REPORT ON FILE AT EASTERN INFORMATION CENTER, U.C. RIVERSIDE, CA 92521

Last Update: 12/20/2004 Cataloged by: WRO-CA-04 on 03/25/1996
Keywords: MN-0676 (MF #4301) (6), 5 PP (7), 3 ACRES SURVEYED (4), BLOODY MTN. 7.5'
QUAD (4), CRYSTAL CRAG 7.5' QUAD (4), MAMMOTH MTN. 7.5' QUAD (4), OLD MAMMOTH
7.5' QUAD (4), LONG VALLEY CALDERA (4), YES RESOURCES - PENDING TRINOMIAL (8),
P-26-3008 (8)


-----


Document No.: 1085278 FAUST, NICHOLAS

Unpublished Report


1997 HRR: MILL CITY ROAD PAVING, HRR. NO. 05-04-499-02. FOREST SEVICE.
SUBMITTED TO INYO NATIONAL FOREST. CONTRACT NO. HRR. NO. 05-04-4992.
UNPUBLISHED REPORT ON FILE AT EASTERN INFORMATION CENTER, U.C. RIVERSIDE, CA 92521.

Last Update: 12/20/2004 Cataloged by: WRO-CA-04 on 04/07/1999
Keywords: MN-0729 (MF #4567) (6), 4 PP (7), 3 ACRES SURVEYED (4), CRYSTAL CRAG 7.5'
QUAD, BLOODY MTN. 7.5' QUAD, OLD MAMMOTH 7.5' QUAD (4), LONG VALLEY CALDERA (4),
NO RESOURCES (8), HRR NO. 05-04-4992 (6)

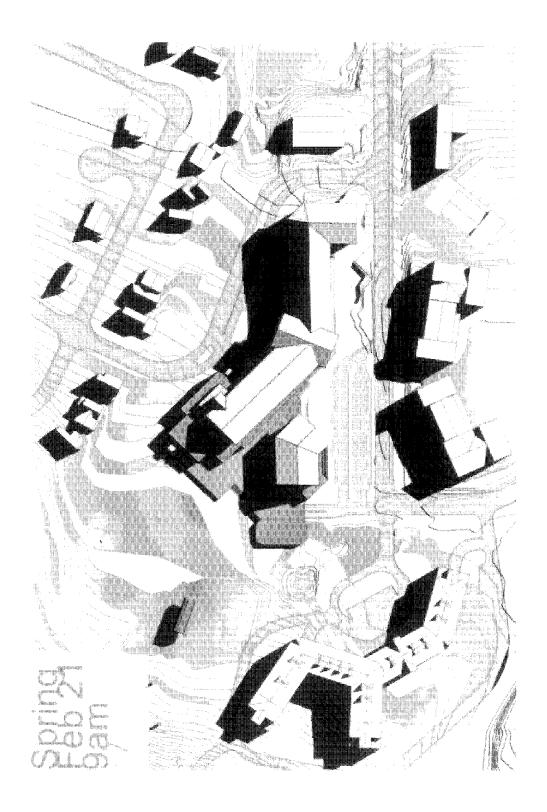


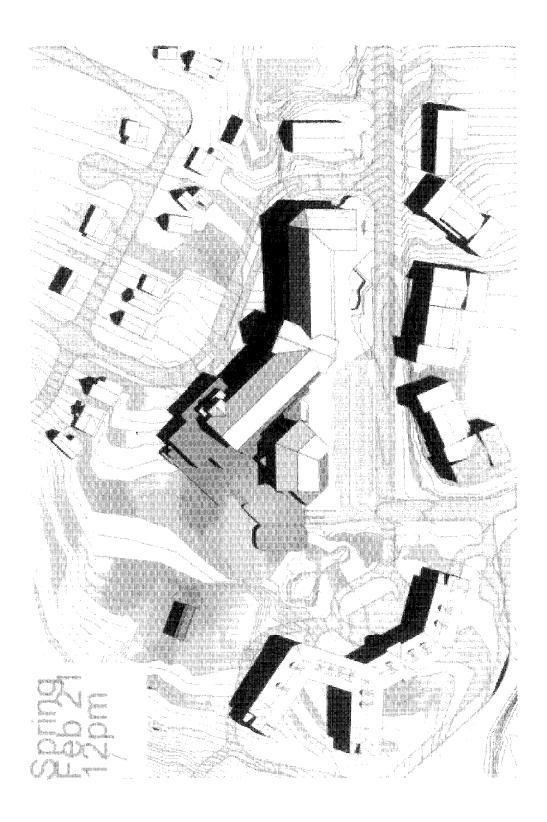


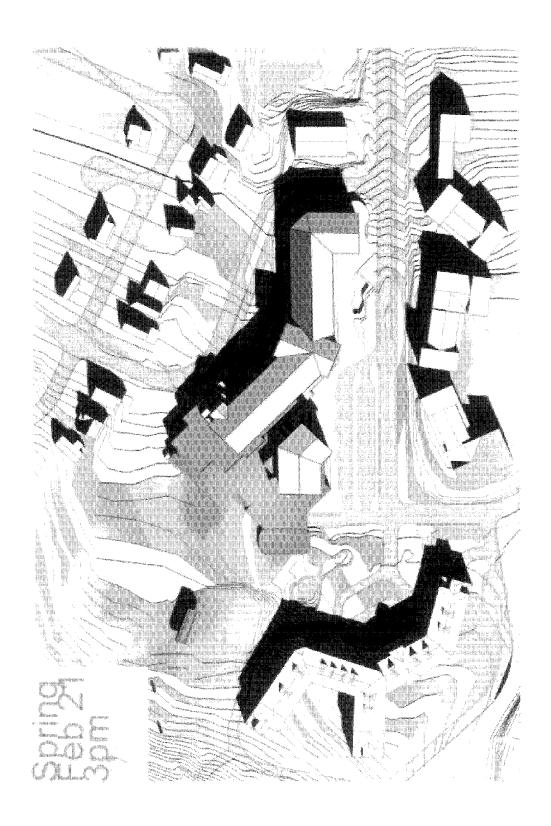
PROPOSED ACTION ROOF RIDGE HEIGHT ABOVE GRADE

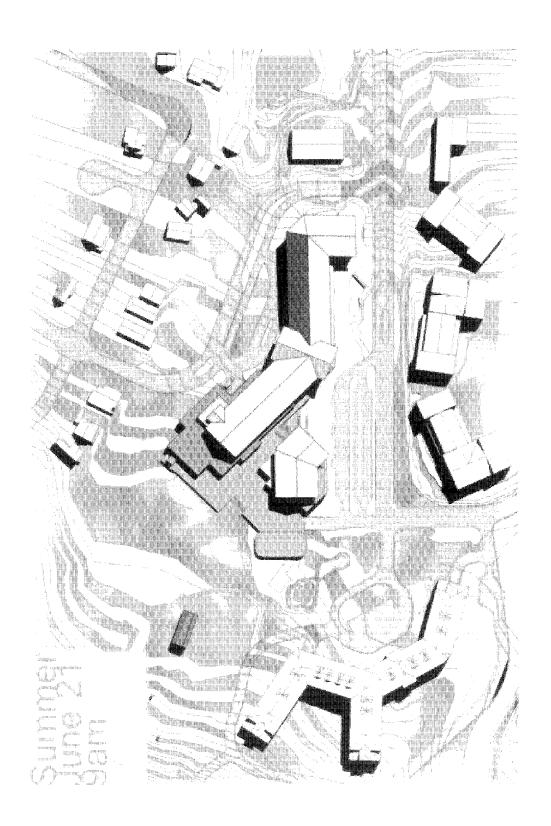


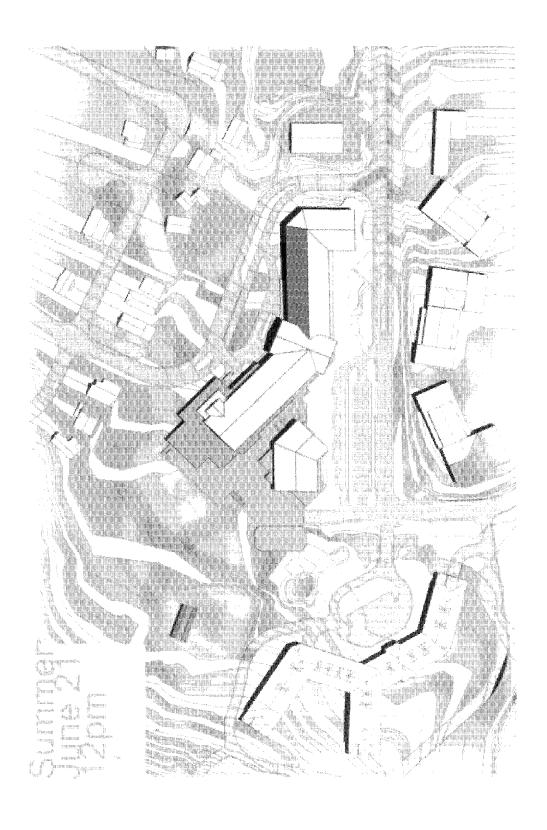
# E.1 HEIGHT ABOVE EXISTING GRADE AT BUILDING CORNERS

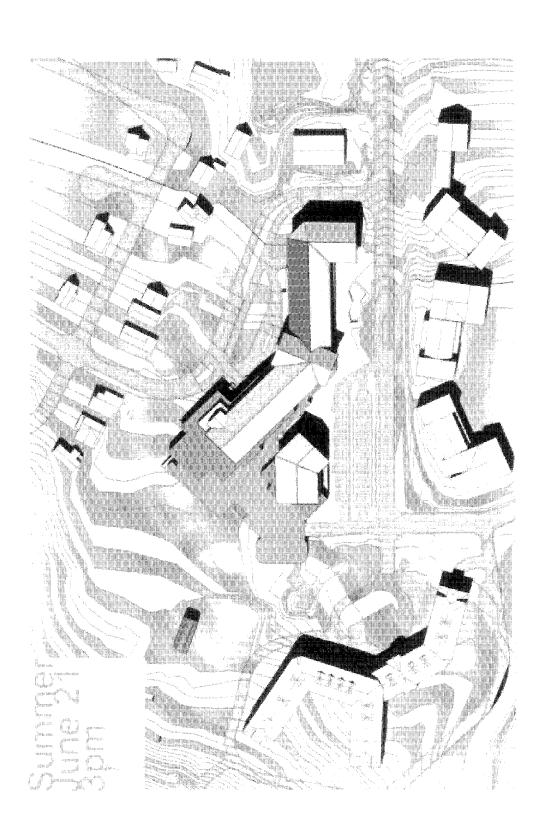

- A. 69'-7"
- B. 70'-7"
- C. 71′-7″
- D. 70'-7"
- E. 36'-0"

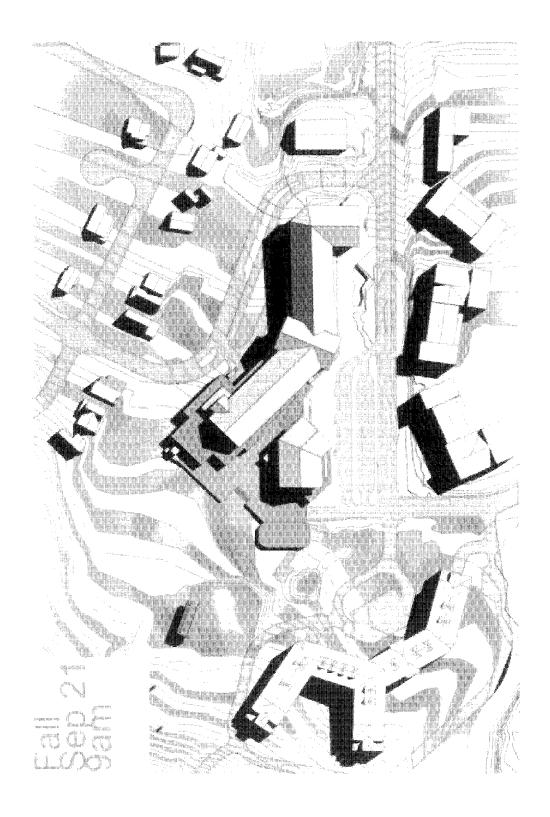

318'-4" / 5 = 63'-8" AVE. HT. = 63'-8"

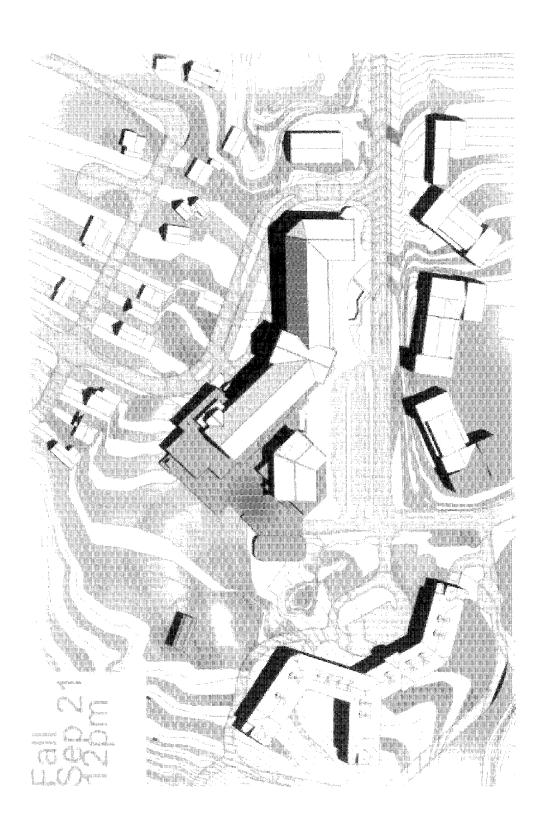

# E.2 HEIGHT ABOVE EXISTING GRADE AT BUILDING CORNERS

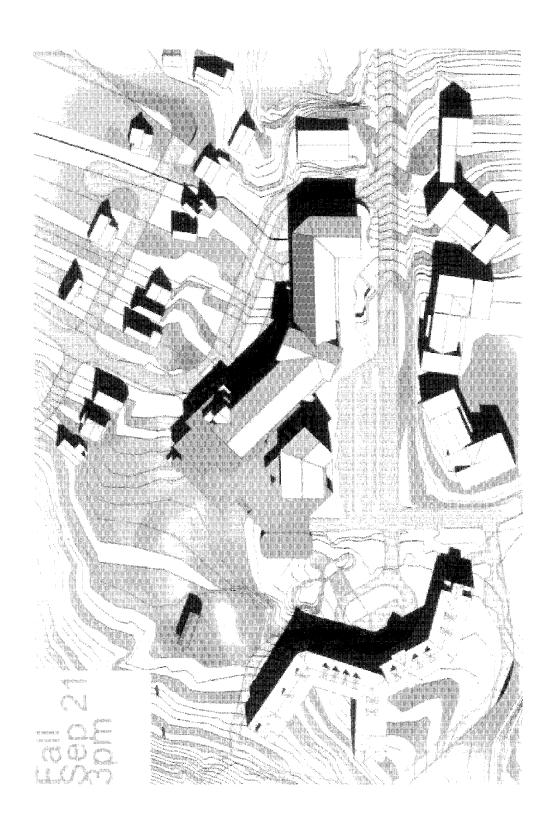

- A. 24'-8"
- B. 69'-8"
- C. 29'-8"
- D. 73′-8″
- E. 73'-8"
- F. 80'-10"
- G. 25'-0"
- H. 82'-10"
- 1. 75′-8″
- J. 75'-8"
- K. 72'-8"
- L. 70'-8"
- M. 72′-8″
- N. 81'-10"
- O. 81'-10"
- P. 29'-8"
- Q. 70'-8"
- R. 26′-8″
- S. 24'-8"

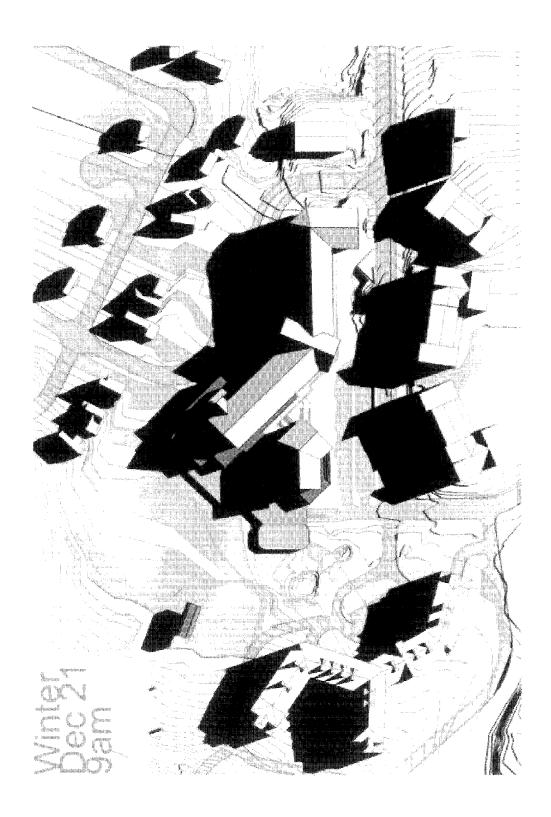

1142'-8" / 19 = 60'-2" AVE. HT. = 60'-2"

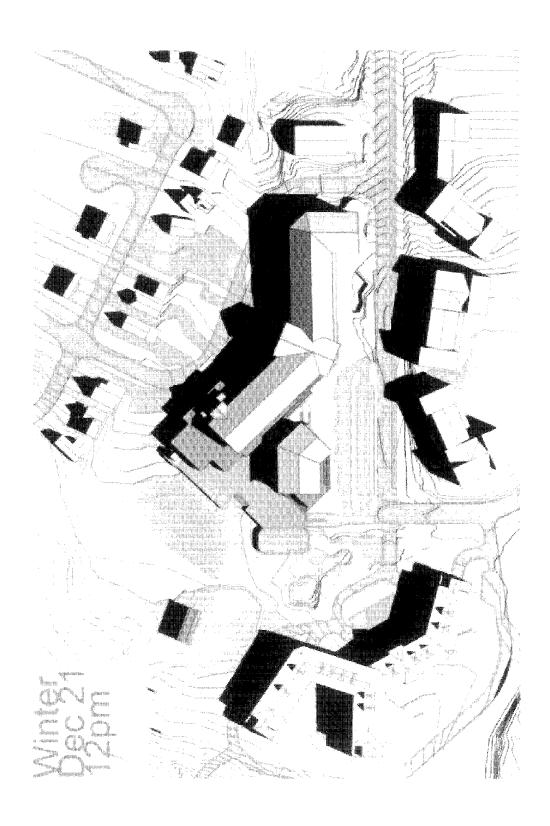


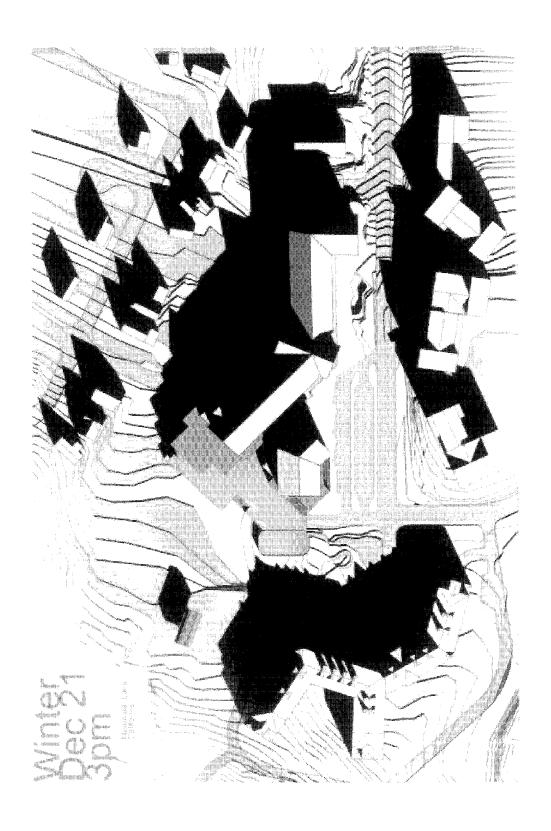



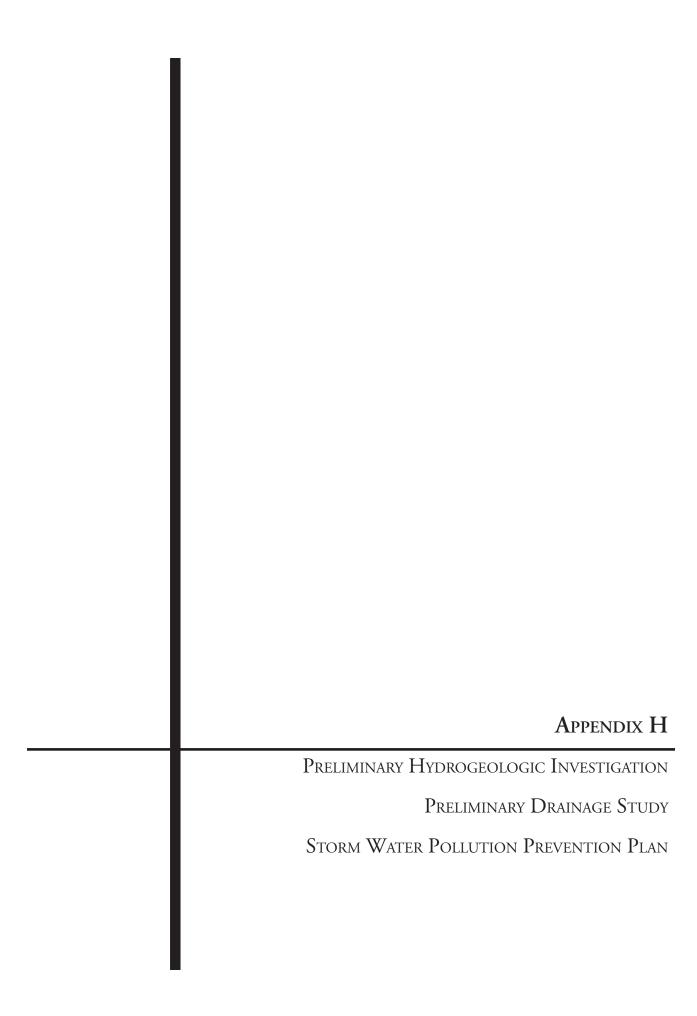
















March 31, 2006

Project No. 3.30644.1

Mammoth Mountain Ski Area PO Box 24 Mammoth Lakes, Ca, 93546

Attention: Mr. Tom Hodges

Subject:

PRELIMINARY HYDROGEOLOGIC INVESTIGATION

MMSA Eagle Base Lodge Mammoth Lakes, California

Reference:

PRELIMINARY GEOTECHNICAL INVESTIGATION

MMSA Eagle Base Lodge

Sierra Geotechnical Services Project No. 3.30644; December 1, 2005

Mammoth Lakes, California

Dear Mr. Hodges:

In accordance with your authorization of our proposal and the MMSA Agreement for Professional Services dated February 20<sup>th</sup>, 2006, we herein submit the results of our preliminary hydrogeologic investigation for the proposed project. The purpose of this study was to assess the on-site hydrologic characteristics and provide conclusions regarding the impacts of construction dewatering (if any) to the surrounding vegetation areas.

We appreciate the opportunity to be of service to you. Should you have any questions regarding this report, please do not hesitate to contact us.

Respectfully,

SIERRA GEOTECHNICAL SERVIC

Íoseph A. Adler Principal Geologist

**CEG 2198** 

AARON ADLER NO 2198 CERTIFIED ENGINEERING

Dean Dougherty, III,

# PRELIMINARY HYDROGEOLOGIC INVESTIGATION

**FOR** 

## MMSA EAGLE BASE LODGE DEVELOPMENT

## MAMMOTH LAKES, CALIFORNIA

MARCH 31, 2006 PROJECT NO. 3.30644.1

Prepared By:

SIERRA GEOTECHNICAL SERVICES, INC. P.O. Box 5024 Mammoth Lakes, California 93546 (760) 934-3992

www.sierrageotechnicalinc.com

# **TABLE OF CONTENTS**

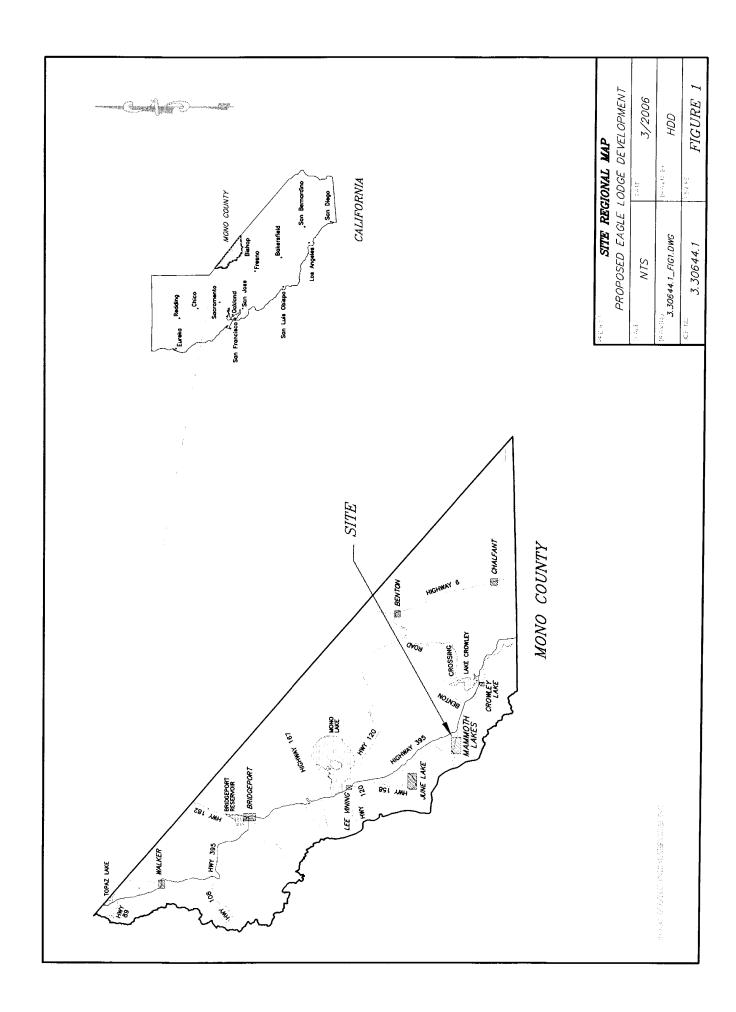
| 1. PURPO  | OSE AND SCOPE1                              |
|-----------|---------------------------------------------|
| 2. SITE D | DESCRIPTION1                                |
| 2 PD O D  | OCED DEVELOPMENT                            |
| 3. PROPC  | OSED DEVELOPMENT2                           |
| 4. GEOL   | OGIC AND HYDROLOGIC CONDITIONS2             |
| 4.1       | Regional Hydrologic Setting                 |
| 4.2       | Local Groundwater3                          |
| 4.3       | Preliminary Groundwater Budget              |
| 5. FIELD  | TESTING5                                    |
| 5.1       | Drawdown6                                   |
| 6. DEVE   | LOPMENT IMPACT6                             |
| 6.1       | Monitoring and Mitigation6                  |
| 7. LIMIT. | ATIONS8                                     |
| 8. REFER  | ENCES9                                      |
|           | LIST OF ATTACHMENTS                         |
| FIGURE 1  | SITE REGIONAL MAP                           |
| FIGURE 2  | SITE TOWN MAP                               |
| FIGURE 3  | SUBSURFACE GEOTECHNIAL MAP                  |
| FIGURE 4  | HYDROGRAPHIC BASIN MAP                      |
| FIGURE 5  | GEOTHERMAL WELL LOCATION                    |
| FIGURE 6  | MONITORING WELL LOCATION AT JUNIPER SPRINGS |



#### 1. PURPOSE AND SCOPE

This report presents the results of a preliminary hydrogeologic investigation for the proposed commercial/residential project to be located west to northwest of the intersection of Meridian Boulevard and Majestic Pines Road, adjacent to the Juniper Ridge Development in Mammoth Lakes, Mono County, California (Figures 1, 2 and 3). The purpose of this investigation was to investigate the site's existing hydrogeologic conditions in order to provide professional opinions and recommendations concerning the following:

- Assessment of existing hydrologic setting and groundwater budget.
- Potential impacts of dewatering during construction and operation to surrounding vegetation.
- Monitoring and Mitigation measures to reduce dewatering impacts.


The scope of this investigation included a review of available geologic, hydrologic and hydrogeologic literature as well as field work which included water level monitoring and pump testing of on-site existing piezometers.

#### 2. SITE DESCRIPTION

The semi-rectangular to "shoe" shaped site is located west to northwest of the intersection of Meridian Boulevard and Majestic Pines Road, adjacent to the Juniper Ridge Development in Mammoth Lakes, Mono County, California (37.6362° N, 118.9890° W). The majority of the site is occupied by a privately owned asphalt paved parking area with associated utilities. However, portions of the site to the northwest and west include undeveloped and lightly improved property owned by the United States Forest Service (USFS).

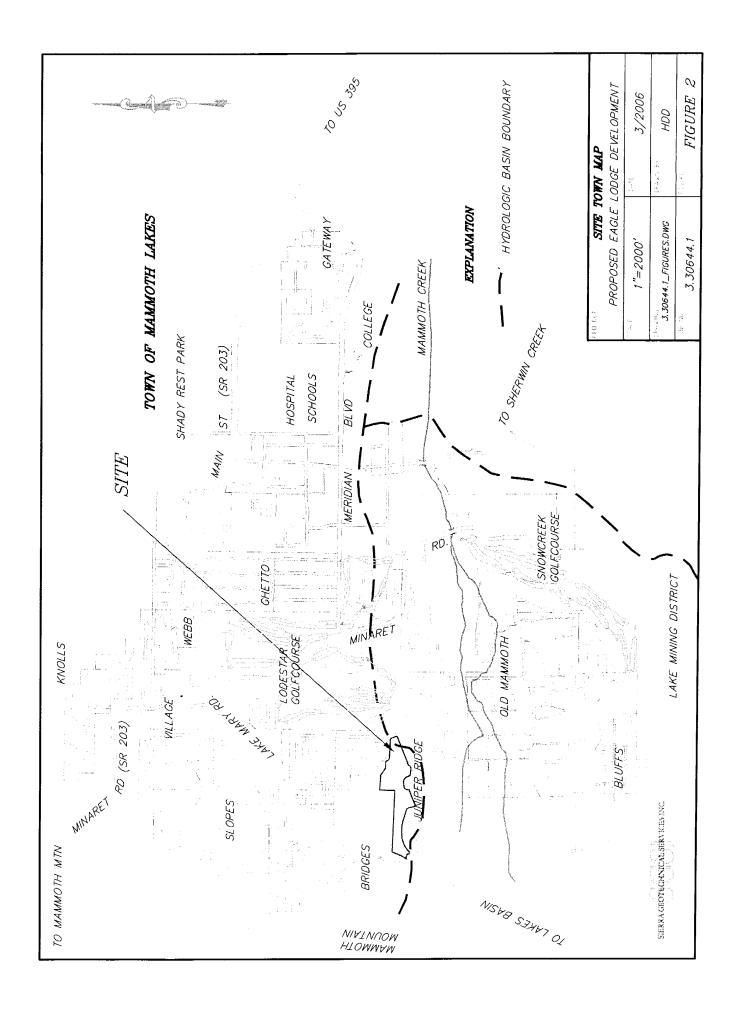
In general, the subject site slopes gradually toward the east/northeast. Ground surface elevations range from approximately 8081' MSL in the northwest corner of the site to approximately 8064' MSL in the northeast. Details of the topography are shown on Figure 4. Drainage is controlled by the topography such that site runoff flows east at approximately 5.3 percent.

Vegetation surrounding the parking area consists of a light growth of shrubs with few trees. Whereas vegetation within the USFS property consists of a light to moderate growth of grasses, shrubs and trees. This site is **not** located on a wetland. It is also not on a water of the state as identified by a blue line on the USGS Quad maps.





#### 3. PROPOSED DEVELOPMENT


Based upon a review of the Request for Proposal distributed by the Mammoth Mountain Ski Area as well as the Eagle Lodge Base Area Development preliminary design prepared by Gensler Architecture, it is our understanding that the proposed project will likely include the construction of a 40,000 sqft. day lodge, 135,000 sqft. of mixed use residential and commercial facilities, structured parking, an ice rink, paved access drives and vehicular drop off areas, as well as associated utilities and other appurtenances. At least 1 to  $2\frac{1}{2}$  levels of underground parking are anticipated.

Foundations systems, although not yet designed, will likely consist of concrete perimeter footings with a concrete slab-on-grade, supporting either reinforced concrete block or reinforced concrete walls below grade, with either a concrete or conventional framing superstructure. Grading will likely include a maximum excavation to approximately 30-feet below ground level for the garage area. As previously noted, this project is in the design process and detailed plans for construction are currently not available. SGSI should review grading and foundation plans prior to construction in order to assure that they will be in conformance with our recommendations.

## 4. GEOLOGIC AND HYDROLOGIC CONDITIONS

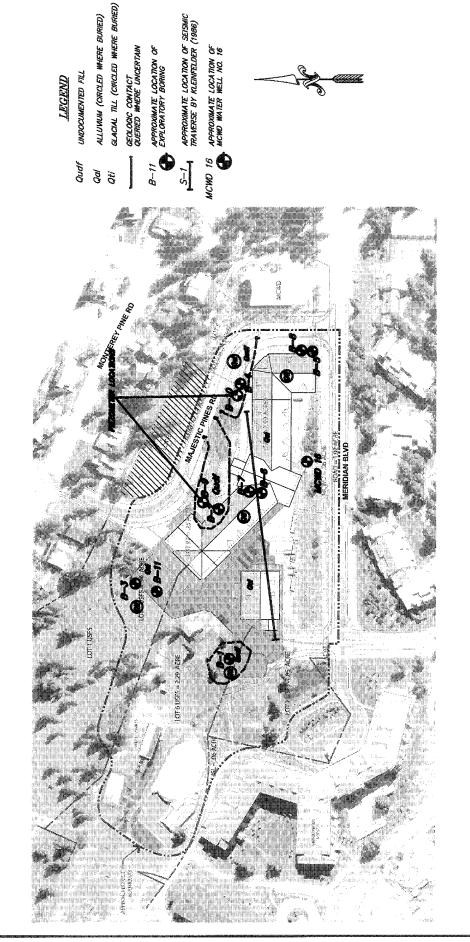
The project site is located within the Sierra Nevada province, a generally north to northwesterly trending, asymmetric, and tilted fault-block, bordered on the east by the Sierra Nevada frontal-fault system. Predominant basement rock types of the Sierra Nevada include Cretaceous granitics with associated Paleozoic roof pendants along the west margin of Mono Basin, and to a lesser degree, Paleozoic meta-sedimentary formations mantled by Pleistocene glacial tills.

More specifically, the project site is located at the southwestern edge of the Long Valley caldera near the eastern flank of the Sierra Nevada. The caldera (collapsed volcano) is an east-west elongate, oval depression formed approximately 760,000 years ago with continued volcanic activity to the present (Bailey, 1989). The pre-volcanic basement rock in the Mammoth Lakes area is predominantly Mesozoic granitic rocks of the Sierra Nevada batholith. The batholith is a series of intrusions that displaced overlying ancient sedimentary sea floor rocks (roof pendants) during the Jurassic and Cretaceous Periods. Piedmont glaciation occurred throughout the Pleistocene leaving a mantle of glacial till covering the basement and volcanic rocks throughout the area now occupied by the Town of Mammoth Lakes.





Review of the exploratory geothermal well data and preliminary interpretations published by Diment and Urban (1990) indicates that glacial till with minor interbeds of basalt extend down to approximately 350-feet below the ground surface in close proximity to the subject site. Based on a lithologic log of Mammoth Lakes Geothermal Reservoir Assessment Project (MLGRAP) Well #2, volcanic basalt and rhyolite material were found in the remainder of the well to an approximate depth of 1,610-feet. The approximate location of MLGRAP Well #2 is 37.6456° north, 118.9733° west, and elevation 7861-feet mean sea level (Figure 5).


Based upon a review of the above referenced report the site is not located within any "Earthquake Fault Zones" or Alquist-Priolo Hazard Zones. The closest active fault to the site is the Hartley Springs fault ( $M_w$ ~6.6) located approximately 0.2 mi (0.4 km) west/northwest of the subject site (SGSI, 2005).

#### 4.1 Regional Hydrologic Setting

The subject site is regionally located within the surface waters of Mammoth Basin, which is composed of six smaller drainage basins, or watersheds, that are ultimately tributaries to both the Owens River and Crowley Lake (CDWR, 1973). More specifically the site is located in the Upper Mammoth Creek watershed (MCWD, 2005a). According to the California's State Water Quality Resources Control Board, Mammoth Basin is part of Section 603.10 of Long Subunit No. 10 of Owens Hydrologic Unit No. 3, located upstream of Crowley Lake (Lahontan, 1994). Crowley Lake is listed as a water body having impaired water quality according to the List of Water Quality Limited Segments, as outlined in Section 303(d) of the federal Clean Water Act (P.L. 92-500, as amended).

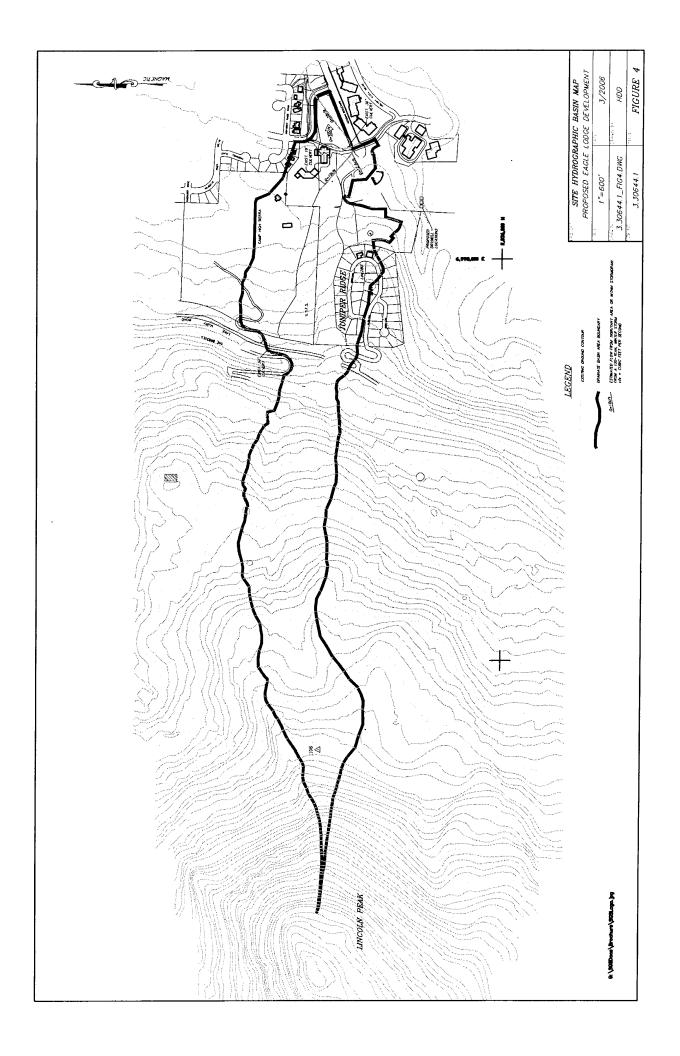
#### 4.2 Local Groundwater

Groundwater underlying the site generally trends in the direction of the topographic gradient, which in this case is east/northeast. According to *USGS Water Resources Investigations Report 85-4183* (Farrar et al., 1985), depth to groundwater beneath the site was approximated at 250 feet below the ground surface (bgs). However, according to Mammoth Community Water District (MCWD) water well records, the depth to the permanent static groundwater aquifer is approximately 450 feet bgs (MCWD, 2005a) as recorded from MCWD Well No. 16, which is located within an easement adjacent the southern property line (Figure 3).



| PROJECT     | SUBSURFACE 6 | SUBSURFACE GEOTECHNICAL MAP |
|-------------|--------------|-----------------------------|
|             | MMSA EAGLE   | MMSA EAGLE BASE LODGE       |
| SCALE: N.   | N. T.S       | ъте. 7/2006                 |
| DRAVING FIC | FIG3.DWC     | BRAVN BY: BM                |
| JOB HO! 3.  | 3.30644.1    | FIGURE 3                    |




During the exploratory drilling conducted for the above referenced investigation light to heavy perched groundwater seepage was encountered in borings B-1, B-3, B-6 through B-7, and B-9 through B-11 at depths varying from approximately  $4\frac{1}{2}$ -feet to 21-feet below grade (Appendix A). Zones of seepage varied based upon the subsurface lithology. In general, seepage occurred above and/or below the well cemented zones where the grain size as well as the amount gravels and cobbles increased.

Two thirty-foot deep piezometers with two-inch diameter casings were installed within Borings B-9 and B-10. Depth to perched groundwater observed in the wells was approximately 2 to 4 feet bgs. The locations of each well are shown on Figure 3.

#### 4.3 Preliminary Groundwater Budget

An estimate of the preliminary groundwater budget for the site is based primarily on the relatively small hydrographic basin, or catchment area, that surrounds the site (Figure 4). The area of this basin measures approximately 128.8 acres. Based on estimated precipitation and evapotranspiration data provided by CDWR (1973), approximately 210 acre-feet per year of precipitation is available to recharge the basin surrounding the site, but approximately 357 acre-feet per year of water is removed by the MCWD. Removal is from two of their horizontal wells that are located beneath Lake Mary Road, directly upslope and to the west of the site, and from MCWD Well No.16.

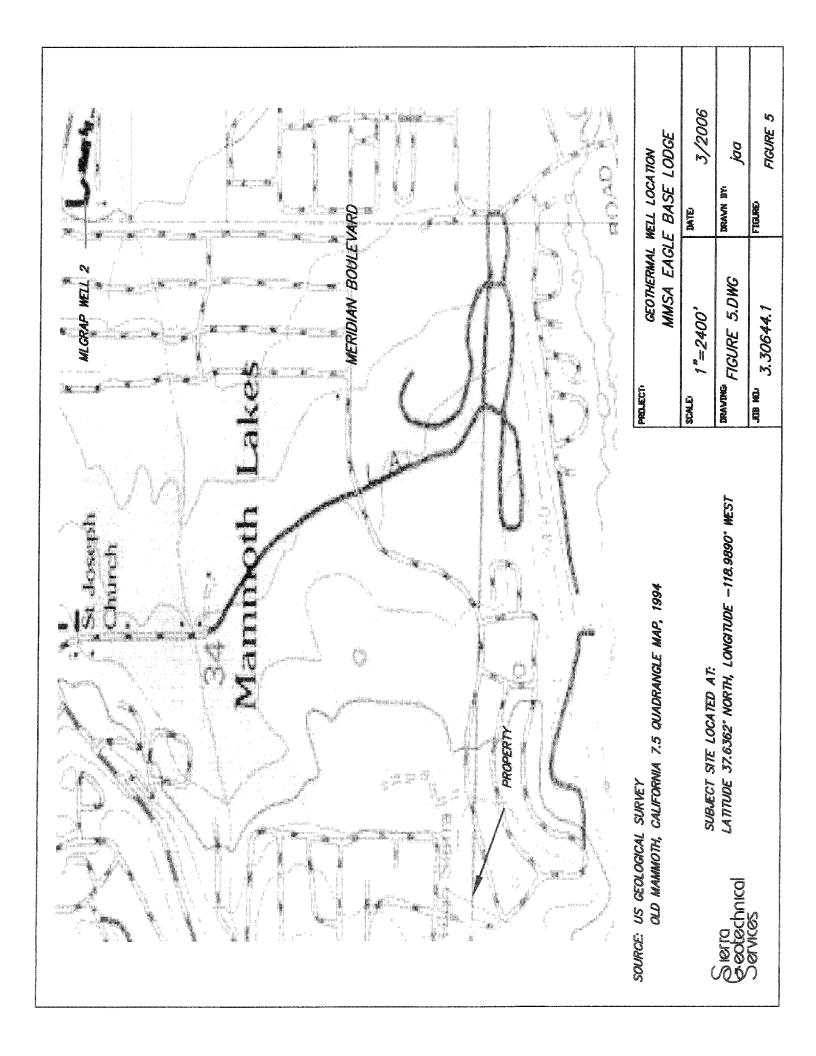
Between 1995 and 2000 Well 16 has been reported to have static levels ranging from 414 to 484 feet bgs, pumping levels between 471 and 492 feet bgs, pumping discharge rates of 350 to 500 gallons per minute (gpm), and a projected annual pumping rate of approximately 0 acre-feet during normal conditions and 135 acre-feet during drought conditions (MCWD, 2005b). Water within the well and therefore the surrounding area is likely replenished from deep recharge emanating from the fractured Lincoln Peak volcanics underlying the glacial material as opposed to percolation from shallow run-off (MCWD 2005a).



#### 5. FIELD TESTING

SGSI performed a pump test with an Envirotech ES-200 Purger with a power booster on March 24, 2006 within Boring B-9 at the site. This test yielded a sustained pumping rate of 1.62 gallons per minute (gpm) for a duration of 35 minutes. Drawdown in the well was estimated at 3 feet, and the well water recharged to its static level at 4.05 feet bgs within 4.5 minutes of measured recovery time. Based on these data, the groundwater underflow through the proposed Eagle Lodge building footprint was estimated using the following formula: Q = kia.

Where: Q = flow rate (gpd) through the excavation footprint k = hydraulic conductivity i = hydraulic gradient (vertical/horizontal)  $a = area of the building excavation footprint <math>\Delta s = change in drawdown per one log cycle of time <math>b = saturated thickness of the aquifer penetrated by the well$ 


Substituting the measurements obtained in the field:

```
T = transmissivity (gpd/ft<sup>2</sup>) T = 264 • Q /\Deltas = 143 gpd/ft = 19 ft<sup>2</sup>/day k = T/b = 0.63 ft/day i = 0.33 a = 100,154 ft<sup>2</sup>
```

 $Q = 1,312 \text{ ft}^3/\text{day} = 9,815 \text{ gpd}$ 

The recorded underflow is comparative to results obtained by SGSI in the fall of 1997 from a monitoring well (B-4, 1997) adjacent the Juniper Springs Lodge development. The results of this pump test indicated a sustained pumping flow of 1.2 gallons per minute (gpm), which yielded a hydraulic conductivity of 0.5 to 0.7 feet per day. This well along with the 3 others placed prior to development of Juniper Springs were unfortunately destroyed during construction of the lodge. The approximate location of well B-4 is shown on Figure 6.

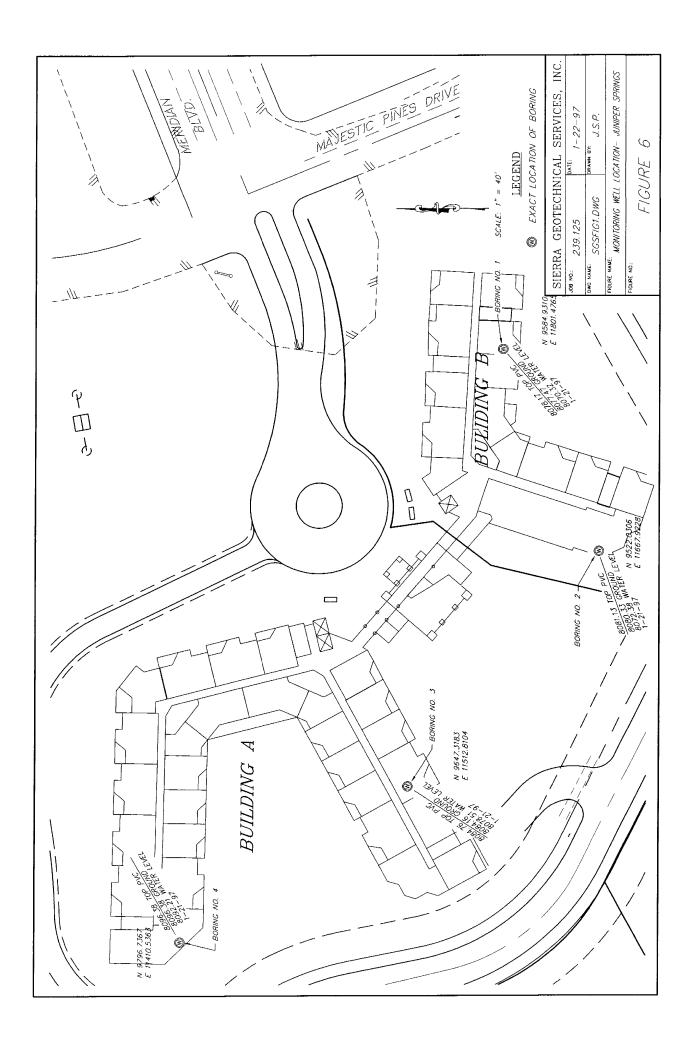
It can be anticipated that approximately 9,815 gpd of water will move into the excavation every day, subject to seasonal variation and to local precipitation events. Please note that these readings were collected prior to the beginning of the spring/summer snowmelt run-off season. Groundwater flows are anticipated to be considerably higher during the run-off period. Additional testing should be performed on a monthly basis during the run-off period in order to acquire maximum flow rate data.

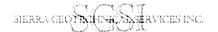




#### 5.1 Drawdown

During the pump test, water levels were continuously recorded in boring B-10, located "down stream" and to the east (Figure 3), to ascertain whether removal of water from B-9 would have an affect on water levels in B-10. Prior to the test water levels in B-10 were recorded at approximately 2 feet bgs. During the testing period the change in water levels in B-10 were negligible (Appendix B).


#### 6. DEVELOPMENT IMPACT


The field data acquired for this study was limited to the use of the existing 2 inch diameter piezometers and their relative distance to each other for acquiring measurements. As previously noted additional monitoring wells surrounding the site had been destroyed. Although no drawdown impact was observed during the field testing, the use of just two piezometers to assess drawdown may not accurately reflect dewatering conditions during construction.

However, based upon the calculated flow rates dewatering during construction should not adversely impact the up-gradient wetland vegetation located outside the project boundary to the northwest of the ski area. Although flow rates will vary depending upon seasonal conditions shallow groundwater flow through the site area should be continuous and not static. Because flow rates are relatively large, and the water condition is not static the bypass/removal of water from the proposed down-gradient construction area should not adversely affect any up-gradient vegetation.

#### 6.1 Monitoring and Mitigation

The water levels within the existing wells should be monitored on a monthly basis (especially during the snow melt run-off periods) to further assess seasonal flow rates. In addition, prior to construction, we recommend that at least 2 monitoring wells be installed adjacent or up gradient of the proposed construction area to aid in the recording of groundwater depths and flow rates. In the event that groundwater drawdown from construction is observed, appropriate mitigation measures shall be designed to protect proximal vegetated areas and employed in conformance with Regional Water Quality Control Board criteria.





We further recommend that the dewatering and prevention of moisture intrusion recommendations contained within the above referenced geotechnical investigation report be adhered to during site development.

Please note that all water removed from the site should be re-introduced back into the down stream drainage system (provided it is free of contaminants and silt) so that down-gradient vegetation and recharge are not negatively affected.



#### 7. LIMITATIONS

This report has been prepared for the sole use and benefit of our client. The conclusions of this report pertain only to the site investigated. The intent of the report is to advise our client of the geologic and geotechnical recommendations relative to the future development of the proposed project. It should be understood that the consulting provided and the contents of this report are not perfect. Any errors or omissions noted by any party reviewing this report, and/or any other geotechnical aspects of the project, should be reported to this office in a timely fashion. The client is the only party intended by this office to directly receive this advice. Unauthorized use of or reliance on this report constitutes an agreement to defend and indemnify Sierra Geotechnical Services Incorporated from and against any liability, which may arise as a result of such use or reliance, regardless of any fault, negligence, or strict liability of Sierra Geotechnical Services Incorporated.

Conclusions and recommendations presented herein are based upon the evaluation of technical information gathered, experience, and professional judgment. Other consultants could arrive at different conclusions and recommendations. Final decisions on matters presented are the responsibility of the client and/or the governing agencies. No warranties in any respect are made as to the performance of the project.

The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether they are due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings within this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of three years.



#### 8. REFERENCES

- Bailey, R.A., 1989, Geologic map of the Long Valley caldera, Mono-Inyo craters volcanic chain, and vicinity, eastern California, U.S. Geological Survey Miscellaneous Investigation Series Map I-1933.
- Brown and Caldwell, and Triad Engineering, 1984, Mammoth Lakes storm drainage master plan: Prepared for Mono County Public Works Department, July.
- CDWR, 1973, Mammoth Basin water resources environmental study: California Department of Water Resources and Mammoth County Water District, p. 41, 44, 69, 70.
- CRWQCB, 1994, Water quality control plan fro the Lahontan Region, north and south basins: California Regional Water Quality Control Board, Lahontan Region, Plate 1, 1:500,000 scale.
- Davis, J.F., 1982, State of California special studies zones official map, NW ¼ Mt. Morrison quadrangle: California Geological Survey, 1:24,000 scale.
- Davis, J.F., 1985, State of California earthquake fault zones official map, NE ¼ Devils Postpile quadrangle: California Geological Survey, 1:24,000 scale.
- Diment, W.H., and T.C. Urban, 1990, Temperatures and natural gamma-ray logs obtained in boreholes MLGRAP #1 and #2, Mammoth Lakes, California: data and preliminary interpretations: U.S. Geological Survey Open-File Report 90-460, 132 p.
- Farrar, C.D., J.M. Neil, and J.F. Howle, 1999, Magmatic carbon dioxide emissions at Mammoth Mountain, California: U.S. Geological Survey Water-Resources Investigations Report 98-4217, 17 p.
- Farrar, C.D., M.L. Sorey, S.A. Rojstaczer, C.J. Janik, R.H. Mariner, T.L. Winnett, and M.D. Clark, 1985, Hydrologic and geochemical monitoring in Long Valley caldera, Mono County, California, 1982-1984: U.S. Geological Survey Water Resources Investigations Report 85-4183, 137 p.
- FEMA, 1992, Flood insurance rate map, Town of Mammoth Lakes, California, Mono County: Federal Emergency Management Agency, National Flood Insurance Program, Community-Panel Number 060724 0002 & 0005 B, Panels 2 and 5 of 5, Revised September 30, 1:6,000 scale and 1:12,000, respectively.
- Hill, D.P., D. Dzurisin, W.L. Ellsworth, E.T. Endo, D.L. Galloway, T.M. Gerlach, M.J.S. Johnston, J. Langbein, K.A. McGee, C.D. Miller, D. Oppenheimer, and M.L. Sorey, 2002, Response plan for volcano hazards in the Long Valley caldera and Mono Craters region, California: U.S. Geological Survey Bulletin 2185, 58 p.
- Kleinfelder, J.H. & Associates, 1983, Geotechnical investigation and hydrogeology study at the proposed Juniper Ridge Development, Mammoth Lakes, California: Revised March 8, File R-1421-119, p.



- MCWD, 2005a, Groundwater management plan for the Mammoth Basin watershed: Mammoth Community Water District, July, 45 p.
- MCWD, 2005b, Urban water management plan, final draft: Mammoth Community Water District, December 22, 43 p.
- Miller, C.D., 1989, Potential hazards from future volcanic eruptions in California: U.S. Geological Survey Bulletin 1847, 17 p.
- Rinehart, C.D., D.C. Ross, and L.C. Pakiser, 1964, Geology and mineral deposits of the Mount Morrison quadrangle, Sierra Nevada, California: U.S. Geological Survey Professional Paper 385, 106 p.
- SGSI, 1997, Results of pump testing related to estimation of flow from proposed subdrains, Eagle Springs Lodge Project: Prepared for Intrawest Mammoth Corporation, July 30, 3 p.

#### APPENDIX A

#### **EXPLORATORY BORING LOGS**

A subsurface field investigation was performed on October 6<sup>th</sup>, and November 8<sup>th</sup> and 9<sup>th</sup> 2005, which included the excavation of eleven 8-inch diameter hollow stem and air rotary continuous flight borings in the proposed development areas. Logs of the exploratory borings are presented herein. The approximate locations of the exploratory borings are shown on Subsurface Geotechnical Map (Figure 3).

Six borings were excavated by a CME-55 truck mounted drill rig on October 6<sup>th</sup> 2005 (B-1 through B-6). Rock refusal was encountered at relatively shallow depths prior to the anticipated foundation depth. Following this drilling a Schramm T660H Rotodrill air rotary drill rig was brought in on November 8<sup>th</sup> and 9<sup>th</sup>, 2005 to complete an additional 5 borings to the anticipated foundation depths (B-7 through B-11).

SISTER GEOVIECE CROSS, SERVICES INC.

### **BORING LOG**

Project Name: MMSA Eagle Base Lodge

Boring No: B-1

Drill Rig Type: CME 55 8-inch Hollow Auger Stem Auger

Driller: Andressen Exploration Drilling
Boring Loc: Northwest end of parking lot

Date: 10/6/05

Project No: 3.30644

Elevation: 8079' MSL

| Depth (ft.) | Sample Type | Graphic Log | Blow Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | carking lo | DESCRIPTION                                                                                                                      | Laboratory Tests |
|-------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0           |             |             | TOTAL COLUMN TO THE COLUMN TO | SP         | Undocumented Fill Brown, moist, loose to medium dense, fine to coarse grained SAND.                                              |                  |
| 5           | SPT         |             | 82/3"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SP-SM      | Glacial Deposits Grayish brown, moist to wet, very dense, fine to coarse SAND, abundant gravels and boulders. Rock refusal.      |                  |
| 8           | SPI         |             | 57/1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | Drill rate ~ 2 inches per 30 min.  Total depth = 8' 1". Groundwater encountered at approximately 4-1/2 feet. Backfilled 10/6/05. |                  |

#### SEERIN - CND的维维自由标题 (SEEVIL) 2.5 节张(C. **BORING LOG** Project Name: MMSA Eagle Base Lodge Boring No: B-2

Drill Rig Type: CME 55 8-inch Hollow Auger Stem Auger Driller: Andressen Exploration Drilling Boring Loc: North end of parking lot within dirt area

Date: 10/6/05 Project No: 3.30644 Elevation: 8074' MSL

| Boring      | Boring Loc: North end of parking lot within dirt area |             |            |         |                                                                                                                                                                                                                                                     |                  |  |  |  |  |
|-------------|-------------------------------------------------------|-------------|------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| Depth (ft.) | Sample Type                                           | Graphic Log | Blow Count | U.S.C.S | DESCRIPTION                                                                                                                                                                                                                                         | Laboratory Tests |  |  |  |  |
| O           |                                                       |             |            | SP      | Undocumented Fill Grayish brown, loose, fine to coarse grained SAND, few cobble clasts, boulders and asphalt debris. Rock refusal at 3-feet. Drill rate - 0 inches per 20 min. Total depth = 3-feet. No groundwater encountered. Backfilled 10/6/05 |                  |  |  |  |  |

#### SWIRA CHYPRIPOLIAUSERVICES INC.

### **BORING LOG**

Project Name: MMSA Eagle Base Lodge

Boring No: B-3

Drill Rig Type: CME 55 8-inch Hollow Auger Stem Auger

**Driller:** Andressen Exploration Drilling **Boring Loc:** Northwest area of site within USFS property

Date: 10/6/05

Project No: 3.30644

Elevation: 8080' MSL

| Depth (ft.) | Sample Type | Graphic Log | Blow Count | U.S.C.S | DESCRIPTION                                                                                                                           | Laboratory Tests |
|-------------|-------------|-------------|------------|---------|---------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0           |             |             |            | SP      | Alluvium  Dark gray to black, moist to wet, silty, loose to medium dense, very fine to medium grained SAND. Few gravels and cobbles.  |                  |
| 5           | SPT         |             | 9 50/4"    |         | Abundant boulders. Rock refusal at 6-feet.  Total depth = 6-feet. Groundwater encountered at approximately 5-feet. Backfilled 10/6/05 |                  |

| SHEEKS | 1,93,539 | STEEPING V | 1 SHEATH | 8.831°a/* |
|--------|----------|------------|----------|-----------|
|        |          |            |          |           |

### **BORING LOG**

Project Name: MMSA Eagle Base Lodge

Boring No: B-4

Drill Rig Type: CME 55 8-inch Hollow Auger Stem Auger

**Driller:** Andressen Exploration Drilling **Boring Loc:** Northeast corner of site north of pavement

Date: 10/6/05

Project No: 3.30644

Elevation: 8065' MSL

| DESCRIPTION  Laboratory Tests  DESCRIPTION  Laboratory Tests | Boring Loc: Northeast corner of site north of pavement |             |             |            |         |                                                                                                                                                                                                                  |                  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------|-------------|------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| SP Grayish brown, loose, fine to coarse grained SAND, few cobble clasts, boulders and asphalt debris.  Rock refusal at 3-feet. Drill rate - 0 inches per 30 min.  Total depth = 3-feet. No groundwater encountered.                                                                                                                                                                                               |                                                        | Sample Type | Graphic Log | Blow Count | U.S.C.S | DESCRIPTION                                                                                                                                                                                                      | Laboratory Tests |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | San         |             | BI         |         | Grayish brown, loose, fine to coarse grained SAND, few cobble clasts, boulders and asphalt debris.  Rock refusal at 3-feet. Drill rate - 0 inches per 30 min.  Total depth = 3-feet. No groundwater encountered. |                  |  |  |

## SARRIKA GALVIBAÇI DAÇINLEN BAÇIN BARINDE **BORING LOG** Project Name: MMSA Eagle Base Lodge Date: 10/6/05 **Project No: 3.30644** Boring No: B-5 Drill Rig Type: CME 55 8-inch Hollow Auger Stem Auger Elevation: 8066' MSL Logged By: PS Driller: Andressen Exploration Drilling Boring Loc: Southeast corner of site south of pavement Sample Type Depth (ft.) DESCRIPTION **Laboratory Tests** 0 Asphalt Concrete 3"+ 3" Base Alluvium SP-SM Brown, moist, medium dense, silty, fine to coarse SAND, few cobble clasts, few boulders. Slow drilling SPT 50/1" at approximately 3-feet. Rock refusal at 4' 1" Total depth = 4' 1". No groundwater encountered. Backfilled 10/6/05

MERKY GROTESPARCH SERVICES PAGE

## **BORING LOG**

Project Name: MMSA Eagle Base Lodge

Boring No: B-6

Drill Rig Type: CME 55 8-inch Hollow Auger Stem Auger Driller: Andressen Exploration Drilling Boring Loc: East central area of site in pavement

**Date:** 10/6/05

Project No: 3.30644

Elevation: 8070' MSL Logged By: PS

| Boring      | Boring Loc: East central area of site in pavement |             |             |         |                                                                                                                                                                                                       |                  |  |  |  |
|-------------|---------------------------------------------------|-------------|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| Depth (ft.) | Sample Type                                       | Graphic Log | Blow Count  | U.S.C.S | DESCRIPTION                                                                                                                                                                                           | Laboratory Tests |  |  |  |
| 5           | SPT                                               |             | 42<br>50/5" | SP      | Asphalt Concrete 3"+ 3" Base Alluvium Grayish brown to brown, moist to wet, medium dense, fine to coarse grained SAND, few cobble clasts, few boulders.  Slow drilling at 5'. Rock refusal at 6-feet. |                  |  |  |  |
|             |                                                   |             |             |         | Slow drilling at 5'. Rock refusal at 6-feet.  Total depth = 6-feet. Groundwater encountered at 41/2-feet.  Backfilled 10/6/05                                                                         |                  |  |  |  |

#### BURGO OF OTEOHOLOGIC AGEOPTES IN 20

#### **BORING LOG**

Project Name: MMSA Eagle Base Lodge Boring No: B-7

Drill Rig Type: Schramm T660H

Driller: Test America Drilling Corp.
Boring Loc: South central area of site in pavement

Date: 11/8/05

Project No: 3.30644 Elevation: 8070' MSL

| Depth (ft.) | Sample Type | Graphic Log | Blow Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U.S.C.S | DESCRIPTION                                                                                                                                                                                                  | Laboratory Tests |
|-------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0           | CAL         |             | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SM      | Alluvium Grayish brown, moist to wet, medium dense, silty, fine to coarse SAND, with few cobble clasts and large boulders minor debris. Minor seepage at approximately 4½-feet.                              | NR               |
| 5           | SY          |             | 32<br>50/5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SP      | Glacial Deposits  Reddish brown to olive brown, moist, medium dense to very dense, fine to coarse SAND, with cobble clasts and few small boulders. Moderately indurated.                                     |                  |
| 10          | BI I K      |             | ACCUMANTAL OF THE PROPERTY OF |         | Moderate groundwater seepage at approximately 10-feet.                                                                                                                                                       | Sieve            |
| 15          | CAL         |             | 50/4"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                              | NR               |
| 20          |             |             | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | Well indurated at approximately 16-feet. Slow drilling. Drill rate 1½-feet in 20 minutes.                                                                                                                    |                  |
| 25          | SPIM        |             | 30<br>50/4"<br>50/1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SP-SM   | Moderately indurated at approximately 21-feet. Heavy groundwater seepage. Very dense, silty, fine to coarse SAND with abundant gravels, few cobble clasts and boulders.                                      | NR               |
| 30          | SPT         |             | 50/3"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                                                                                                                                                                                              |                  |
|             |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Total depth = 30-feet. Grounwater encountered at approximately 4½,<br>10, and 21-feet. Good air circulation from 12 to 27-feet. Lost<br>air at 27-feet. Total drill time 3 hours 10 min. Backfilled 11 8 05. |                  |

#### SIERRA COOTECHNIUME SPRYK AS DVE

#### **BORING LOG**

Project Name: MMSA Eagle Base Lodge Boring No: B-8 Drill Rig Type: Schramm T660H Driller: Test America Drilling Corp. Boring Loc: Southeast end of parking lot

Date: 11/8/05

Project No: 3.30644 Elevation: 8066' MSL

| Boring                   | roc: 20                                                                                                         | outneast    | ena of p   | arking lo |                                                                                                                                 |                               |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Depth (ft.)              | Sample Type                                                                                                     | Graphic Log | Blow Count | U.S.C.S   | DESCRIPTION                                                                                                                     | Laboratory Tests              |
| 0                        |                                                                                                                 |             |            | SP        | Alluvium Brown, moist, medium dense, fine to coarse SAND with abundant gravels. Large boulder at 3-feet.                        |                               |
|                          | SPI                                                                                                             |             | 36<br>50   |           |                                                                                                                                 |                               |
| 10                       | BULK<br>SPT                                                                                                     |             | 50/4"      | SP-SM     | Glacial Deposits Grayish-brown to gray, moist, very dense, silty, very fine to coarse SAND with cobble clasts and few boulders. | Corrosivity, Sieve<br>R-value |
| 15                       | SPT                                                                                                             |             | 50/5"      |           | Total depth = 15'5". Groundwater not encountered. Total drill time - 40 min.                                                    |                               |
|                          |                                                                                                                 |             |            |           | Backfilled 11 9 05.                                                                                                             |                               |
|                          |                                                                                                                 |             |            |           |                                                                                                                                 |                               |
|                          | maraalalaasaa aasaa labaasaa aasaa aasa |             |            |           |                                                                                                                                 |                               |
|                          | AMMONOTONIO ANTONIO A   |             |            |           |                                                                                                                                 |                               |
| ACCUPATION OF THE STREET |                                                                                                                 |             |            |           |                                                                                                                                 |                               |

#### SIERRA OFRITZIERUS ALSERA BISIS PAG

## **BORING LOG**

Project Name: MMSA Eagle Base Lodge Boring No: B-9

Drill Rig Type: Schramm T660H
Driller: Test America Drilling Corp.
Boring Loc: North end of parking lot within dirt area

Date: 11/8/05

**Project No: 3.30644** Elevation: 8076' MSL

| Depth (fi.) | Sample Type  | Graphic Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Blow Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U.S.C.S | DESCRIPTION                                                                                                                                                                                                                    | Laboratory Tests                             |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 0           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SP      | Undocumented Fill Grayish-brown, moist, medium dense, fine to coarse SAND, with cobble clasts and boulders. Minor debris. Boulder at 3 to 4½-feet                                                                              |                                              |
| 10          | SPT<br>SPT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9<br>50/6"<br>50/4"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SP-SM   | Glacial Deposits Light grayish-brown to brown, moist, very dense, silty, very fine to coarse SAND with cobble clasts and boulders. Approximate 8 to 10-inch well inurdated bed at 7-feet.                                      |                                              |
| 15          | BULK<br>BULK |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SM      | Gray, moist, very dense, silty, fine to coarse SAND, with cobbles, and boulders. Groundwater seepage at approximately 17-feet. Well indurated from approximately 17 to 23-feet.                                                | Direct Shear<br>Max. Density, Sieve<br>Sieve |
| 25          | SPT<br>BULK  | AND THE PROPERTY OF THE PROPER | 50/5"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SP      | Dense to very dense, fine to coarse SAND.                                                                                                                                                                                      | Direct Shear                                 |
| 30          |              | And and the state of the state  | A CONTRACTOR OF THE PROPERTY O |         | Gray, moist, very dense, silty, very fine to coarse SAND.  Well indurated.  Total depth = 30-feet. Groundwater seepage encountered at 17-feet.  Piezometer installed to 30-feet. Total drill time 2 hours. Backfilled 11 9 05. | Max. Density<br>Corrosivity<br>Sieve         |

#### **BORING LOG**

Project Name: MMSA Eagle Base Lodge

Boring No: B-10

Drill Rig Type: Schramm T660H

LINE ROY WAS EXCEPTIONED TO LIVE AND

Project No: 3.30644 Elevation: 8065' MSL

Logged By: PS

Date: 11/9/05

Driller: Test America Drilling Corp.

Boring Loc: Northeast end of site north of pavement, south of Majestic Pines

| Depth (ft.) | Sample Type | Graphic Log | Blow Count  | U.S.C.S | DESCRIPTION                                                                                                                                                                                                       | Laboratory Tests |
|-------------|-------------|-------------|-------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0           |             |             |             | SP-SM   | Undocumented Fill Brown, moist, medium dense, silty, fine to coarse SAND, with cobble clasts, and boulders. Minor debris.                                                                                         |                  |
| 5           | SPT         |             | 26<br>50/6" | SP-SM   | Alluvium  Medium brown to light grayish brown, moist, medium dense, to dense, silty, fine to coarse SAND with cobble clasts and boulders. Boulder 3 to 6-feet.                                                    |                  |
| 10          | CAL<br>BULK |             | 50/3"       | SP-SM   | Glacial Deposits Grayish-brown to brown, moist to wet, very dense, silty, very fine to coarse SAND with cobble clasts and boulders.                                                                               | NR               |
| 15          | SPT         |             | 50/5"       |         | Heavy groundwater seepage at approximately 8-feet.  Total depth 15'5" Heavy groundwater seepage encountered at approximately 8-feet. Piezometer installed to 30-feet. Drill time 1hr 30 min. Backfilled 11-10-05. |                  |

#### **BORING LOG**

Project Name: MMSA Eagle Base Lodge

SE SE COLOTERE COLAL SERVICES PAC

Boring No: B-11

Drill Rig Type: Schramm T660H

**Driller:** Test America Drilling Corp. **Boring Loc:** Northwest end of parking lot within dirt, south of USFS property

Date: 11/9/05

**Project No: 3.30644** 

Elevation: 8080' MSL

| Depth (ft.) | Sample Type | Graphic Log       | Blow Count  | U.S.C.S | DESCRIPTION                                                                                                                                                                     | Laboratory Tests             |
|-------------|-------------|-------------------|-------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 0           |             |                   |             | SM      | Alluvium  Dark grayish-brown, moist to wet, medium dense to dense, silty, fine to coarse SAND, with cobble clasts and boulders.                                                 |                              |
| 5           | SPI         |                   | 23<br>50/5" |         | Large boulder at approximately 3 to 5-feet.  Groundwater seepage at approximately 5-feet.                                                                                       |                              |
| 10          | SPT         | No. of the second | 50/6"       | SM      | Glacial Deposits Grayish-brown, moist, very dense, silty, very fine to coarse SAND with abundant gravels, and few cobble clasts. Well indurated bed to approximately 12-inches. |                              |
| 15          | BULK        |                   |             |         | Few boulders.                                                                                                                                                                   | Sieve                        |
| 20          |             |                   | -           |         | Well indurated from approximately 19 to 22-feet.                                                                                                                                |                              |
| 25          | SPT         |                   | 50/4"       | SP-SM   | Gray, moist, very dense, silty, fine to coarse SAND with cobble clasts.                                                                                                         |                              |
| 30          | BULK        |                   |             |         | Well indurated from approximately 27 to 30-feet.                                                                                                                                | Direct Shear<br>Max. Density |
|             |             |                   |             |         | Total depth 30-feet. Groundwater seepage encountered at approximately 5-feet. Drill time 2hrs 10 min. Backfilled 11-10-05                                                       |                              |

# APPENDIX B PUMP TEST RESULTS

### SIERRA GEOTECHNICAL SERVICES INC.

P.O. BOX 5024, MAMMOTH LAKES, CA 93546

(760) 934-3992; (760) 934-8832 Fax

### **PUMP TEST WORKSHEET**

Site Name: Eagle Base Lodge Date: 3/24/06 Page: 1 of 1
Job No. 3.30644.14 Well No. B-9 Observer DD/BM

| Time                                                                                                                                                                                                                                                                                                                                                                                                                                | Job No. 3.30 | <u>644.14</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well No. B-9 |      | Observer DD/BM    |                                |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|-------------------|--------------------------------|--------------|
| 12:25       4.05'       -       Static         12:40       NA       -         12:50       NA       -         12:58       NA       1.62       Pump Removed         0.00       6.2       Recovery (R)       R         0.5 min       6.0       R       R         2 min       5.5       R       R         2.5 min       4.95       R         3 min       4.85       R         3.5 min       4.7       R         4 min       4.4       R | Time         |               | Pump<br>Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notes        | Time | Depth to<br>Water | Pump<br>Rate                   | Notes        |
| 12:40       NA       -         12:50       NA       -         12:58       NA       1.62         0.00       6.2       Recovery (R)         0.5 min       6.0       R         1.5 min       5.5       R         2 min       5.1       R         2.5 min       4.95       R         3 min       4.85       R         3.5 min       4.7       R         4 min       4.4       R                                                         | 12:05        | 4.05'         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                   |                                |              |
| 12:50       NA       -         12:58       NA       1.62         0.00       6.2       Recovery (R)         0.5 min       6.0       R         1.5 min       5.5       R         2 min       5.1       R         2.5 min       4.95       R         3 min       4.85       R         3.5 min       4.7       R         4 min       4.4       R                                                                                        | 12:25        | 4.05'         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Static       |      |                   |                                |              |
| 12:58 NA 1.62 Pump Removed  0.00 6.2 Recovery (R)  0.5 min 6.0 R  1.5 min 5.5 R  2 min 5.1 R  2.5 min 4.95 R  3 min 4.85 R  3.5 min 4.7 R  4 min 4.4 R                                                                                                                                                                                                                                                                              | 12:40        | NA            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                   |                                |              |
| 0.00       6.2       Recovery (R)         0.5 min       6.0       R         1.5 min       5.5       R         2 min       5.1       R         2.5 min       4.95       R         3 min       4.85       R         3.5 min       4.7       R         4 min       4.4       R                                                                                                                                                         | 12:50        | NA            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                   |                                |              |
| 0.5 min     6.0     R       1.5 min     5.5     R       2 min     5.1     R       2.5 min     4.95     R       3 min     4.85     R       3.5 min     4.7     R       4 min     4.4     R                                                                                                                                                                                                                                           | 12:58        | NA            | 1.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |      |                   |                                | Pump Removed |
| 1.5 min     5.5     R       2 min     5.1     R       2.5 min     4.95     R       3 min     4.85     R       3.5 min     4.7     R       4 min     4.4     R                                                                                                                                                                                                                                                                       | 0.00         | 6.2           | Recovery (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |      |                   |                                |              |
| 2 min     5.1     R       2.5 min     4.95     R       3 min     4.85     R       3.5 min     4.7     R       4 min     4.4     R                                                                                                                                                                                                                                                                                                   | 0.5 min      | 6.0           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                   |                                |              |
| 2.5 min     4.95     R       3 min     4.85     R       3.5 min     4.7     R       4 min     4.4     R                                                                                                                                                                                                                                                                                                                             | 1.5 min      | 5.5           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                   |                                |              |
| 3 min 4.85 R  3.5 min 4.7 R  4 min 4.4 R                                                                                                                                                                                                                                                                                                                                                                                            | 2 min        | 5.1           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                   |                                |              |
| 3.5 min 4.7 R<br>4 min 4.4 R                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5 min      | 4.95          | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                   |                                |              |
| 4 min 4.4 R                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 min        | 4.85          | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                   |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.5 min      | 4.7           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                   |                                |              |
| 4.5 min 4.05 R                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 min        | 4.4           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                   |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5 min      | 4.05          | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |                   |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                   |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                   |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |               | Deli'r ss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |      |                   |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ļ    |                   |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                   | of the Pre-Edita Roll and Pre- |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |               | IAMAN TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |      |                   |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                   |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |               | 10 may 20 |              | - 47 |                   |                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |      |                   |                                |              |

Site Name: Eagle Base Lodge

Job No. 3.30644.1

| Location<br>Code | Date    | Time  | Depth to<br>Water | Previous Depth to Water | Measured<br>By | Description of Measuring Point         |
|------------------|---------|-------|-------------------|-------------------------|----------------|----------------------------------------|
| B-10             | 3/24/06 | 12:25 | 2.1'              | -                       | BM             | Top of Pipe                            |
| B-10             | 3/24/06 | 12:30 | 2.11'             | -                       | BM             | Top of Pipe                            |
| B-10             | 3/24/06 | 12:35 | 2.1'              | -                       | BM             | Top of Pipe                            |
| B-10             | 3/24/06 | 12:40 | 2.1'              | -                       | BM             | Top of Pipe                            |
| B-10             | 3/24/06 | 12:45 | 2.11'             | -                       | BM             | Top of Pipe                            |
| B-10             | 3/24/06 | 12:50 | 2.1'              | -                       | BM             | Top of Pipe                            |
| B-10             | 3/24/06 | 12:55 | 2.1'              | -                       | BM             | Top of Pipe                            |
| B-10             | 3/24/06 | 12:58 | 2.1'              | -                       | BM             | Top of Pipe                            |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                | · · · · · · · · · · · · · · · · · · ·  |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                | ////////////////////////////////////// |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                | 1781                                   |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                |                                        |
|                  |         |       |                   |                         |                |                                        |

Page 1 of 1



| To: MMSA                                                                 | Date: March 31, 2006 Job No. 3.30644.1 |
|--------------------------------------------------------------------------|----------------------------------------|
| PO BOX 24                                                                | Attention: Mr. Tom Hodges              |
| MAMMOTH LAKES, CA 93546                                                  | Subject: Eagle Base Lodge              |
|                                                                          |                                        |
| We are sending you: 🛛 Attached 🔲 Und                                     | er Separate Cover                      |
|                                                                          | ral Express                            |
| Facsimile (total pages including this sheet - )                          | Fax No.                                |
|                                                                          |                                        |
| the following items: Description  Bound Wet Stamped Copies – Preliminary | / Hydro Investigation                  |
| 1 Unbound Xerox copy – Preliminary Hydro                                 |                                        |
| - Onocuma Neron Copy Trommany Typere                                     | , congainer                            |
|                                                                          |                                        |
|                                                                          |                                        |
|                                                                          |                                        |
|                                                                          |                                        |
|                                                                          |                                        |
|                                                                          |                                        |
|                                                                          |                                        |
| For your review and commer                                               | nt                                     |
| •                                                                        |                                        |
| ☐ For your review and commer☐ For information and coordination           |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| For information and coordination                                         |                                        |
| •                                                                        |                                        |
| For information and coordination                                         |                                        |

sgsi@thainc.com



## **Preliminary Drainage Study**

FOR

#### **EAGLE LODGE**

Owner Mailing Address:

Mammoth Mountain Ski Area Post Office Box 24 Mammoth Lakes, CA 93546 Phone: (760) 934-2571 Attn: Tom Hodges x3243 Construction Project Address:

Eagle Lodge Meridian Boulevard & Majestic Pines Mammoth Lakes, Ca 93546

**Date of Amended Report:** 

August 2006

Job No. 1737.2

Engineer: biad/holmes associates

Post Office Box 1570
Mammoth Lakes, Ca 93546
Phone: (760) 934-7588
Fax: (760) 934-5619
triad@THAinc.com
David Laverty, LS, Principal
Tom Platz, RCE, Principal

Paul E. Roten, P.E. C56891

PROFESSIONAL PROPERTY OF CALIFORNIA

August 11, 2006

Date



## Eagle Lodge

| Table of Contents                                                                                    |                          |
|------------------------------------------------------------------------------------------------------|--------------------------|
| 1 - Project                                                                                          |                          |
| 2 - Objective                                                                                        | 2                        |
| 3 - Watershed and Hydrologic Conditions                                                              | 3                        |
| 4 - Assumptions                                                                                      | 3                        |
| 5 - Offsite Drainage Facilities                                                                      |                          |
| 6 - Onsite Drainage Facilities                                                                       | 4                        |
| 7 - Infiltration / Retention Facilities                                                              |                          |
| 8 – Erosion Protection                                                                               | 5                        |
| 9 - Conclusions                                                                                      | 6                        |
| APPENDIX Figures                                                                                     |                          |
| Hydrologic Calculations                                                                              |                          |
| Hydraulic Calculations                                                                               |                          |
| Retention / Infiltration Basin Calculations                                                          |                          |
| Reference Material                                                                                   | epartment, July 1984     |
| Brown and Caldwell and Triad Engineering, Plate 8 and portion of Table 6-1                           |                          |
| <sup>2</sup> Design Manual, Mammoth Lakes Storm Drainage and Erosion Control, Prepared for Mono      | County Public Works      |
| Department, July 1984, Brown and Caldwell and Triad Engineering, excerpts as referenced              |                          |
| <sup>3</sup> Water Quality Control Plan for the Lahontan Region, North and South Basins, prepared by | the State of California, |
| Regional Water Quality Control Board, Lahontan Region, Chapter 4.8                                   |                          |



#### **Preliminary Drainage Study – Eagle Lodge**

#### 1 - Project Description

The Eagle Lodge project is located at the west end of Meridian Boulevard. Refer to Vicinity Maps in Appendix A.

The project site encompasses approximately 8.68 acres. This includes the area of the existing temporary Eagle Lodge Base Facility (tent), the existing parking area, parts of Meridian Boulevard, and Majestic Pines Road, the Bike Path route, as well as areas where utilities may be installed. Since this project is in its conceptual phase, the area identified may be revised during the design process, but should stay within the acreage we have considered.

Presently this site is almost completely disturbed. It includes Majestic Pines Road, Meridian Boulevard, a 2 acre parking lot, the temporary Eagle Lodge Base Facility, lift towers and other miscellaneous facilities. Areas that do not include improvements are generally disturbed. The project site drainage sheets from west to east along slopes of 1% to 10%. Site elevations range between 8,100 feet and 8060 feet above mean sea level.

The proposed project consists of the removal of the temporary Eagle Lodge Base Facility and parking lot, reconstruction of portions of Majestic Pines Road and Meridian Boulevard, construction of new Base Lodge Facilities and paved surfaces in an area that includes the existing parking lot, plus utility work, and grading in the surrounding area. The new Base Lodge Facility will include an underground parking structure, commercial property, condominium project, associated transportation, parking and utilities. Large earthmoving equipment will be used in this construction.

A sketch of the proposed development is shown on Exhibit 5 in Appendix A.

Drainage Study 1 of 7 Eagle Lodge



#### 2 - Watershed and Hydrologic Conditions

The project is located completely within the Town of Mammoth lakes Tributary Subarea III-5 as identified in the Mammoth Lakes Storm Drainage Master Plan<sup>1</sup>. Offsite storm water enters the site in sheet flow and in a natural swale from the west. The area tributary used in the calculations for this report has been determined using the Mammoth Lakes Storm Drainage Master Plan<sup>1</sup> and new topographic information from the Town aerial photo maps prepared in the year 2000. Also a portion of this subarea bypasses the site and is therefore not tributary. Final tributary areas will be determined during final design as inlets are placed in their final locations.

Runoff from this site is tributary to the Town of Mammoth Lakes Separate Storm Sewer System (TMLSSS). This system is made up of underground and surface storm drainage facilities. On and Offsite flow from this site is conveyed in an existing 36 inch CMP that outlets at the southwest corner of the Sierra Star (also known as Loadstar) Golf Course. From the Golf Course runoff crosses Meridian Boulevard twice, enters a storm drain in Jaoquin to Dorrance, where it outflows into a natural channel in the Shady Rest Parcel. A large inlet is located adjacent to Center Street that collects the runoff from this location. The runoff is conveyed to Main Street then into natural and manmade channels that outlet into Murphy Gulch. Runoff through Murphy Gulch goes through two desiltation basins, prior to entering a pipe that crosses under Highway 203 and entering Mammoth Creek.

At the south west side of this property is an existing retention / infiltration pond that is for the existing Juniper Springs facilities. This facility will not be used for this project.

A soils investigation by Sierra Geotechnical Services, Inc. in December, 2005 encountered light to heavy groundwater seepage on the site at depths varying from approximately 4½-feet to 21-feet below grade. Based on this study the project area consists of a relatively thin layer of alluvium topsoil underlain by alluvium/glacial moraine deposits. The glacial till with minor interbeds of basalt extend down to approximately 350-feet below the ground surface. (SGSI, 2005)

Drainage Study 2 of 7 Eagle Lodge



A Preliminary Hydrogeologic Investigation by Sierra Geotechnical (SGSI, 2006) discusses groundwater, and dewatering requirements for this site.

#### 3 - Objective

In this drainage study we will:

- preliminarily estimate hydrologic runoff quantities
- preliminarily size drainage facilities
- preliminarily size retention / infiltration facilities
- estimate increase in runoff due to site improvements

#### 4 - Assumptions

Offsite runoff quantity results after this site are included in the Town of Mammoth Lakes Storm Drainage Master Plan<sup>1</sup>, as shown on Plate 8 and as noted in Table 6-1, attached.

The hydrology calculations for this drainage report are based on the Design Manual<sup>2</sup> and included in Appendix B. Hydraulic Calculations are generally based on Manning's, Darcy-Weisbech, and Bernoulli's equations. LANDesk programs were used for the some of the Hydraulic Calculations, with remaining Hydraulic equations and Hydrologic Calculations written to Excel Spreadsheet programs. Hydraulic Calculations are included in Appendix C.

Retention / Infiltration pipe systems and drywells will be designed to contain 1 hour of a 20 year intensity storm, which is assumed to be 1 inch (0.83 feet) \* Area (square feet) \* C (infiltration coefficient) as required by the Water Quality Control Plan for the Lahontan Region<sup>3</sup>.

References are included in Appendix E.

Drainage Study 3 of 7 Eagle Lodge



#### 5 - Offsite Drainage Facilities

The entire tributary area that contains this site has a flow of 180 cfs according to the Town of Mammoth Lakes Master Plan<sup>1</sup> in a storm of 100 year intensity (including areas that are not directly tributary to this site). This study identifies the area that is directly tributary to this site (see Exhibit 3 in Appendix A). The area shown is based on what is directly tributary to the site and does not include the site itself or runoff that bypasses the site. Based on calculations in conformance with the Storm Drainage Design Manual<sup>2</sup> runoff in the offsite tributary area will be 103.8 cfs in a storm of 100 year intensity. The final area will be determined once final inlet locations have been determined.

Presently there is a 36" storm drain from the southwest corner diagonal across the site to the northeast corner of the site. This storm drain will be removed. There are two existing 36" storm drain pipes across Majestic Pines. These will remain. Offsite runoff will be collected in a new inlet installed upstream of this project and conveyed to a new storm drainage facility that will be connected to the existing 2-36" storm drains that cross under Majestic Pines and continue to the Golf Course. The route of this new storm drain has been preliminarily determined to be from the northwest side of the project, to the intersection of Meridian and the west intersection with Majestic Pines, along Meridian Boulevard, north at the east intersection with Majestic Pines, and connected to the existing 2-36" storm drain pipes. These facilities will be sized for a storm of 100 year intensity. It is estimated that this runoff can be contained in one 36" smooth flow storm drain pipe at 2.1% or one 42" smooth flow storm drain pipe at 1%.

#### 6 - Onsite Drainage Facilities

Onsite storm drainage facilities will be designed based on the final site concept. The total quantity of runoff developed by the site in a storm of 100 year intensity is 9.9 cfs. A cmp pipe of 18" diameter can convey this entire amount. Therefore the maximum size of onsite storm drains will not need to exceed 18". The underground parking garage will have elevations that will be lower than all surrounding grades or storm drainage, so will need to have a sump pump system that "lifts" stormwater to the surface. Since this is a parking

Drainage Study 4 of 7 Eagle Lodge



garage it is recommended that this water be conveyed through a device that removes oil and silt, prior to reintroduction into the storm water system.

Based on Predeveloped conditions as shown in Exhibit 4 of Appendix A under a storm of 100 year intensity, the site would contribute 8.4 cfs to this tributary area. Based on Proposed conditions as shown on Exhibit 5 of Appendix A under a storm of 100 year intensity, the site will contribute 9.9 cfs to this tributary area. This is an increase of 1.5 cfs. The total runoff tributary to and including this site equals the offsite runoff of 103.8 cfs plus the existing onsite runoff of 8.4 cfs or 112.2 cfs. The percentage increase in runoff rate for this area is therefore 1.5/112.2 or less than 2 percent. This increase will be offset by the required infiltration / retention facilities until these facilities have reached full capacity. The actual quantity of runoff will be reduced by the infiltration / retention facility capacity.

#### 7 - Infiltration / Retention Facilities

The site has a total improved acreage of 8.68 acres. C values were taken from the Hydrologic calculations for storms of 100 year intensity. The table in Appendix D shows the summary of the Infiltration facility calculations.

There are several options that will be determined during the design phase for infiltration and retention. These options are preliminarily explored and shown in Appendix D.

#### 8 - Erosion Protection

Grading shall be limited as much as possible. Graded areas shall be protected against erosion once they are brought to final grade. No graded areas are to be left unstabilized between April 15th and October 15<sup>th</sup>. A Notice of Intent will be required to connect this project with the NPDES for small construction projects in the State of California, as well as a SWPPP in conformance with the Lahontan Regional Water Quality Control Board<sup>3</sup> requirements.

Though this site is presently disturbed, all final surfaces should be stabilized to eliminate the potential for erosion.

Drainage Study 5 of 7 Eagle Lodge



#### 9 - Conclusions

A preliminary analysis of storm water flows and quantities has been made as per Town of Mammoth Lakes Master Plan and Design Manual and Regional Water Quality Control Board Requirements.

The land upstream from the project site is relatively steep, so there is no impact to sites above this based on surface runoff or snowfall to sites. The runoff rate to downstream areas may increase during a storm of 100 year intensity by an amount of 1-2 percent. In storms of lower intensity, runoff rate may be reduced due to the new retention / infiltration facilities. Runoff Quantities to downstream area will be reduced by quantity of runoff held in the retention / infiltration facilities. Runoff will continue to be conveyed in the location identified in the Town of Mammoth Lakes Storm Drainage Master Plan<sup>1</sup>.

Drainage facilities shall be selected to adequately collect and convey historic runoff across the site and outflow in as close to historic conditions as practicable. The final location and details of drainage facilities will be determined during the design process in preparation of the improvement plans. The criteria followed during the design process should address issues such as safety, erosion protection and water quality, as well as conforming to the requirements of the Clean Water Act, the State and regional Lahontan Water Quality Control Board.

Retention / Infiltration systems will be designed to collect the first flush as required by the Town of Mammoth Lakes and the Lahontan Regional Water Quality Control Board. Since the existing site did not have infiltration / retention facilities, and since there was a significant amount of existing impervious surfaces, this aspect of the project will be a significant improvement to the existing conditions.

A Notice of Intent must be filed to be part of the State of California NPDES CAS000002 for small construction projects as part of the Federal Clean Water Act. A Storm Water Pollution Prevention Plan must be prepared to conform to this NPDES. Runoff quality will be managed during construction with the SWPPP. After construction runoff quality will be managed with landscaping and sediment traps prior to the infiltration facilities.

Drainage Study 6 of 7 Eagle Lodge



A system that ensures the storm drainage facilities for on and offsite flows and infiltration / retention basins should be put in place. Particular items requiring maintenance include but are not limited to cleaning of grates, removal of foreign materials from storm drainage pipes, maintenance as necessary to inlet facilities and retention basins, and repairs as necessary to damaged facilities. Source control has been stated by the Lahontan regional water quality control board as the best way to limit sediment transport in stormwater. Therefore, the landscape is a part of the sediment elimination system and must be maintained.

This site is not located on a wetland or a stream. It is also not on a water of the state as identified by a blue line on the USGS Quad maps. The site is downstream from an identified wetland area. Based on the Preliminary Hydrogeologic Investigation study by Sierra Geotechnical Services, this site will not negatively affect the upstream wetland (SGSI 2006)

Drainage Study 7 of 7 Eagle Lodge

<sup>&</sup>lt;sup>1</sup>Mammoth Lakes Storm Drainage Master Plan, Prepared for Mono County Public Works Department, July 1984, Brown and Caldwell and Triad Engineering.

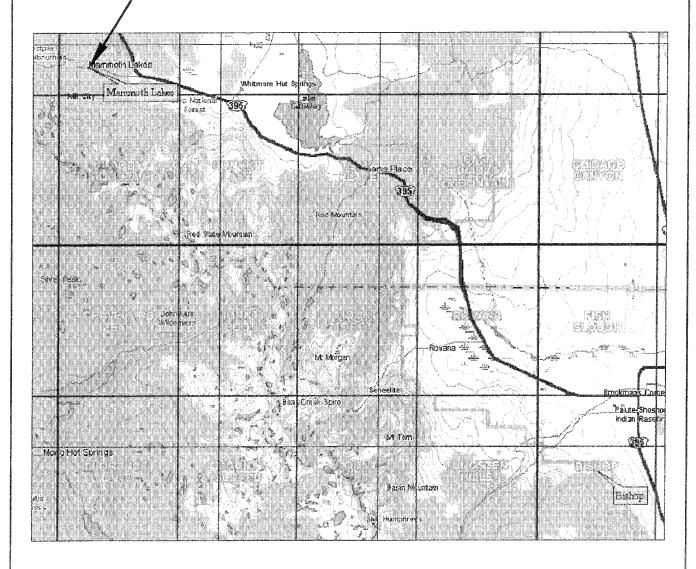
<sup>&</sup>lt;sup>2</sup>Design Manual, Mammoth Lakes Storm Drainage and Erosion Control, Prepared for Mono County Public Works Department, July 1984, Brown and Caldwell and Triad Engineering, see Appendix E for excerpts.

<sup>&</sup>lt;sup>3</sup>Water Quality Control Plan for the Lahontan Region, North and South Basins, prepared by the State of California, Regional Water Quality Control Board, Lahontan Region, see Appendix E for excerpts.



## **Preliminary Drainage Study**

**FOR** 


## **Eagle Lodge**

**APPENDIX A** 

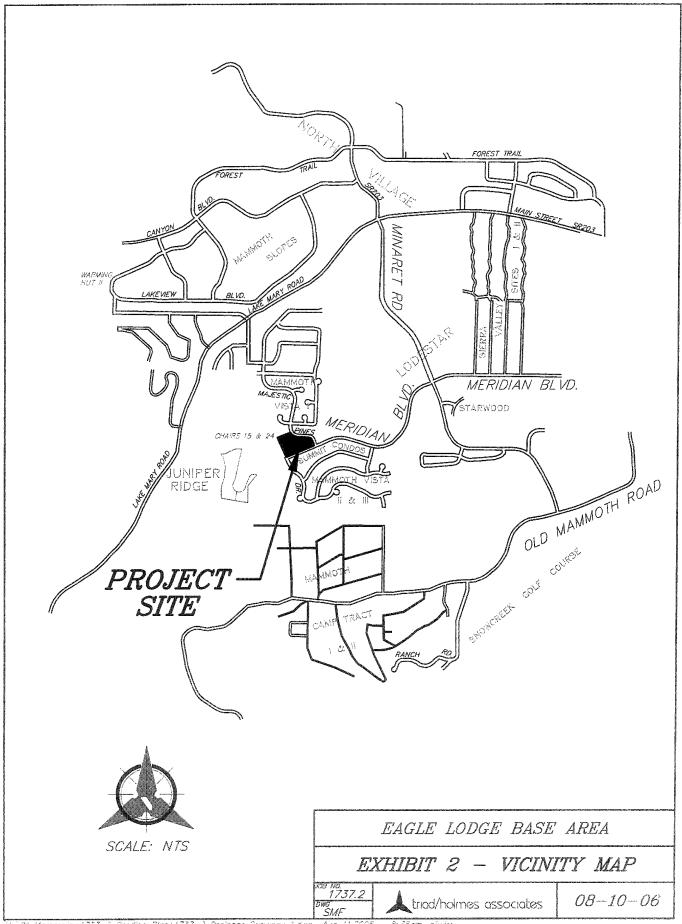
**FIGURES** 

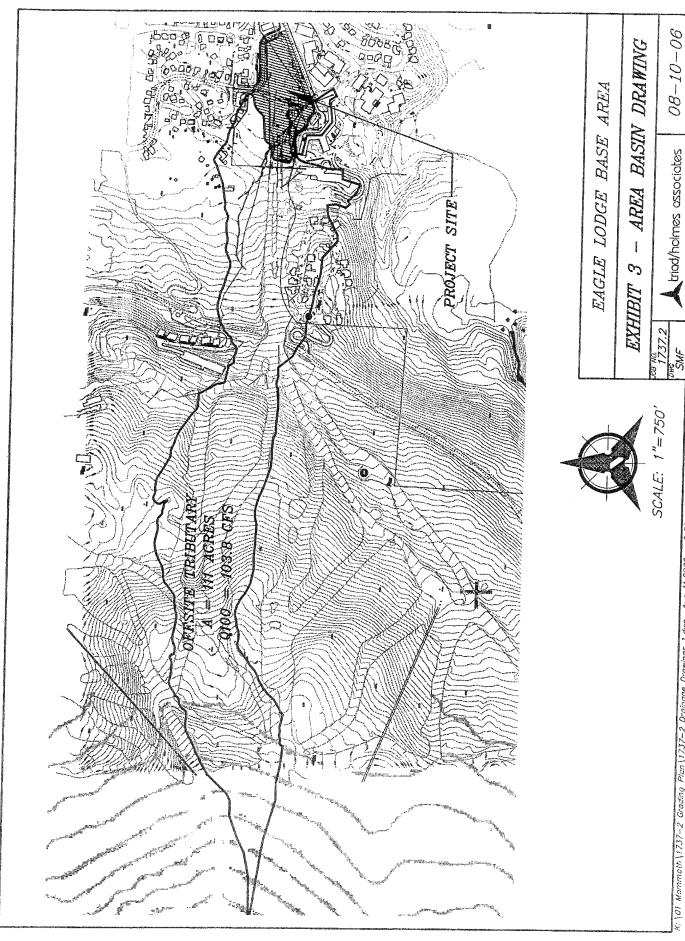
Drainage Study Eagle Lodge

#### - PROJECT SITE



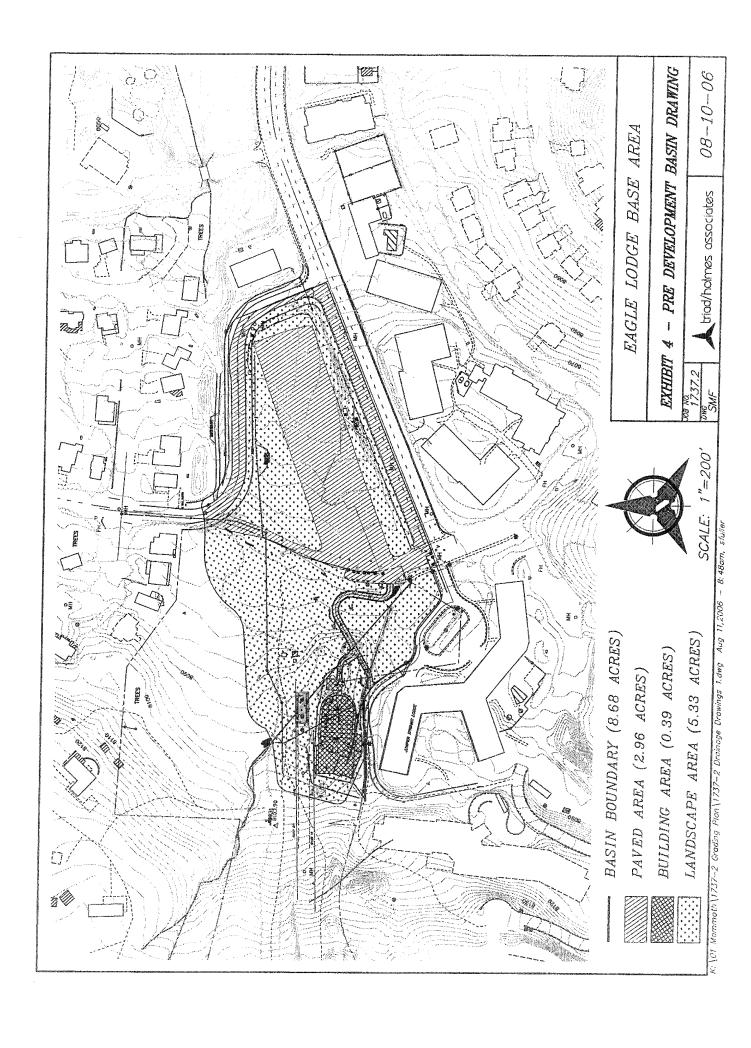


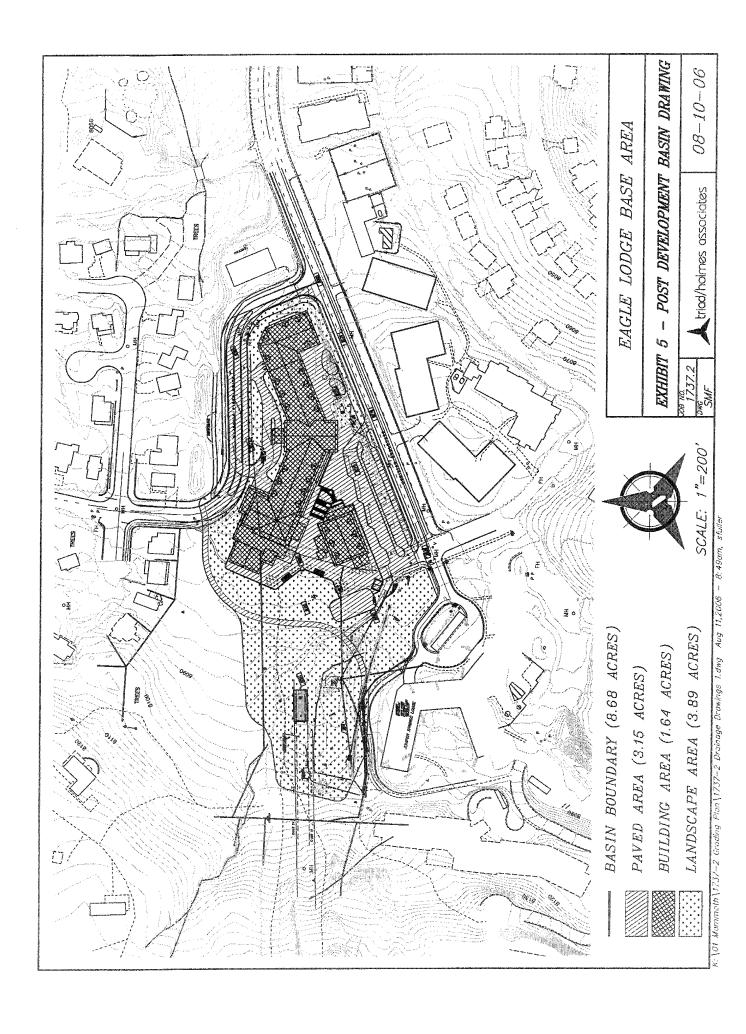

EAGLE LODGE BASE AREA


EXHIBIT 1 - REGIONAL MAP

00B NO. 1737.2

triad/holmes associates


08-10-06






triod/holmes associates

K: \D1 Mammoth\1737-2 Grading Plan\1737-2 Drainage Drawings 1.dwg Aug 11,2006 - 8:39am, stulle







FOR

**Eagle Lodge** 

#### **APPENDIX B**

**HYDROLOGY** 

# EAGLE LODGE

# Hydrology Calculations - Summary

|      |           |                  |                       |          | Š                 |
|------|-----------|------------------|-----------------------|----------|-------------------|
|      |           |                  |                       |          | Comments          |
|      |           |                  |                       |          | IJ                |
|      |           |                  |                       |          |                   |
|      |           |                  |                       |          |                   |
|      |           |                  |                       |          |                   |
|      |           |                  |                       |          |                   |
| <br> |           |                  |                       | ····     | Page              |
|      |           |                  |                       | Ğ        | Š.                |
|      |           |                  |                       |          | w                 |
|      |           |                  |                       |          | ¥0.88             |
| <br> |           |                  |                       |          |                   |
|      | 1000 1000 |                  | ģ                     | ğ        | Ł                 |
|      |           |                  | Summer                | Avenage  | factor            |
|      |           |                  | (I)                   |          | *2                |
|      |           |                  |                       | Summer   | 2                 |
|      |           |                  |                       | 8        | Intensity         |
|      |           |                  |                       | ű        | ŝ                 |
|      |           | ÿ .              | ğ                     | 200      | Interso           |
|      |           | )<br>10          | ğ                     | 2        | ě                 |
| <br> |           | .01              | w                     |          | b-t               |
|      |           |                  | ě                     | Average  | Gostar            |
|      |           |                  | **                    | Š        | ŝ                 |
| <br> |           | *****            | Winter Worter Exceeds | •        |                   |
|      |           |                  | n.                    | Intensit | ٧.                |
|      |           |                  | *                     | Int      |                   |
|      |           | Œ                | S                     |          | Interval          |
|      |           | è 5              | ¥                     | 88       | £                 |
|      |           | 3                | ŭ                     |          | Ä                 |
|      |           | Coceeds Winter Q | Interval Exceeden     | ţo.      |                   |
|      |           | ğ                | 946                   | Ç        | Design Q   Design |
| <br> |           | w                | м                     |          |                   |
|      |           |                  |                       |          | Œ                 |
|      |           |                  |                       |          | 2                 |
|      |           |                  |                       |          |                   |
|      |           |                  |                       |          | ğ                 |
|      |           |                  |                       |          | đ                 |
|      |           |                  |                       |          |                   |
|      |           |                  |                       |          |                   |
|      |           |                  |                       |          |                   |
|      |           |                  |                       |          |                   |
|      |           |                  |                       |          | 1046              |

| Offsite Tributary 1   | 103.8 | Offsite Tributary 1 103.8 Q160 103.8 1.3 0.7 82.6 1.7 0.4 111 2 | 103.8        | 1.3 | 0.7 | 82.6            | 1.7 | 4.0 | \$100 de<br>\$100 de<br>\$100 de | 7  | 2                                                                               |
|-----------------------|-------|-----------------------------------------------------------------|--------------|-----|-----|-----------------|-----|-----|----------------------------------|----|---------------------------------------------------------------------------------|
| Development 2         | 4.0   | 8.4 Q100 8.4 1.4 0.7 8.1 1.8 0.5                                | 8.4          | 1.4 | 0.7 | 8.1             | 1.8 | 0.5 | 8,68                             | 4  | PreDevelopment 2 6.4 Q100 8.4 1.4 0.7 8.1 1.8 0.5 8.68 4 Existing Basin Drawing |
| PostDevelopment 3 9.9 | 6.6   | Q100 9.1 1.4 0.8 9.9 1.8                                        | Q100 9.1 1.4 | 4   | 9.0 | 0.8 9.9 1.8 0.6 | 1.8 | 9.0 |                                  | \$ | 8.68 6 Proposed Basin Drawing                                                   |

| Area Description: Offsite Tributary | 1         |
|-------------------------------------|-----------|
| Area Description: Offsite Tributary | <br>18:15 |
|                                     | <br>JE 17 |
|                                     |           |
|                                     | - 11      |

| Q=1.008CIA | Q2   | <b>Q</b> 5 | Q10  | Q20  | <b>Q</b> 50 | Q100  |
|------------|------|------------|------|------|-------------|-------|
| Winter     | 14.4 | 28.3       | 43.1 | 57.2 | 81.6        | 103.8 |
| Summer     | 14.9 | 29.2       | 38.1 | 51.6 | 67.3        | 82.6  |

| Weighted C Factor  |        |        |         |         |         |          |
|--------------------|--------|--------|---------|---------|---------|----------|
| Storm Frequency    | 2 Year | 5 Year | 10 Year | 20 Year | 50 Year | 100 Year |
| Roofs              | 0.10   | 0.10   | 0.10    | 0.10    | 0.10    | 0.10     |
| Paving             | 0.09   | 0.09   | 0.09    | 0.09    | 0.09    | 0.09     |
| Agg drives & walks | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| unpaved corp yards | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Winter "B" Soils   | 0.15   | 0.24   | 0.31    | 0.37    | 0.46    | 0.50     |
| Winter "C" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Winter "D" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Summer "B" Soils   | 0.07   | 0.11   | 0.14    | 0.18    | 0.21    | 0.24     |
| Summer "C" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Summer "D" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Winter Coefficient | 0.34   | 0.42   | 0.50    | 0.55    | 0.64    | 0.69     |
| Summer Coefficient | 0.25   | 0.30   | 0.32    | 0.36    | 0.40    | 0.43     |

| Intensity                                      |                                                |          |         |         |             |                                        |
|------------------------------------------------|------------------------------------------------|----------|---------|---------|-------------|----------------------------------------|
| Winter Precipitatio                            | n Design Curve (Fig                            | ure 1-4) |         |         | (tc = 1.03) | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Storm Frequency                                | 2 Year                                         | 5 Year   | 10 Year | 20 Year | 50 Year     | 100 Year                               |
| Precipitation, in.                             | 0.39                                           | 0.62     | 0.80    | 0.95    | 1.17        | 1.39                                   |
| Intensity                                      | 0.38                                           | 0.60     | 0.78    | 0.92    | 1.14        | 1.35                                   |
| Winter Precipitatio                            | n Design Curve (Fig                            | ure 1-4) |         |         | (tc = 1.)   |                                        |
| Storm Frequency                                | 2 Year                                         | 5 Year   | 10 Year | 20 Year | 50 Year     | 100 Year                               |
| Precipitation, in.                             | 0.38                                           | 0.60     | 0.78    | 0.93    | 1.15        | 1.36                                   |
| Intensity                                      | 0.38                                           | 0.60     | 0.78    | 0.93    | 1.15        | 1.36                                   |
| Summer Precipitation Design Curve (Figure 1-5) |                                                |          |         |         | (tc = .404) |                                        |
| Storm Frequency                                | 2 Year                                         | 5 Year   | 10 Year | 20 Year | 50 Year     | 100 Year                               |
| Precipitation, in.                             | 0.21                                           | 0.35     | 0.43    | 0,52    | 0.61        | 0.70                                   |
| Intensity                                      | 0.53                                           | 0.88     | 1.05    | 1.28    | 1.50        | 1.74                                   |
| Summer Precipitation                           | Summer Precipitation Design Curve (Figure 1-5) |          |         |         | (tc = 1.)   |                                        |
| Storm Frequency                                | 2 Year                                         | 5 Year   | 10 Year | 20 Year | 50 Year     | 100 Year                               |
| Precipitation, in.                             | 0.36                                           | 0.58     | 0.71    | 0.86    | 1.03        | 1.20                                   |
| Intensity                                      | 0,36                                           | 0.58     | 0.71    | 0,86    | 1.03        | 1.20                                   |

| Areas                |             |           |         |             |
|----------------------|-------------|-----------|---------|-------------|
|                      | Coefficient |           |         |             |
| type of area         | Winter, C   | % of area | Acreage | Weighted C  |
| Roofs                | 0.95        | 10%       | 11.10   | 0.10        |
| Paving               | 0.90        | 10%       | 11.10   | 0.09        |
| Agg drives å walks   | 0.80        | 0%        | 0.00    | 0.00        |
| unpaved corp yards   | 0.75        | 0%        | 0,00    | 0.00        |
| "B" Soils (RF*RR*NF) | varies      | 80%       | 88.80   | p.          |
| "C" Soils (RF*RR*NF) | varies      | 0%        | 0.00    | John Salves |
| "D" Sails (RF*RR*NF) | varies      | 0%        | 0,00    | 7           |
| Total                |             | 100%      | 111.00  |             |

| Overland Flow to Compo                                                   |                 | · · · · · · · · · · · · · · · · · |                                                    |                                      |                              |
|--------------------------------------------------------------------------|-----------------|-----------------------------------|----------------------------------------------------|--------------------------------------|------------------------------|
| Overland Condition                                                       |                 | Length, feet                      | slope                                              | Lo/So                                | tco, hours                   |
| Unpoved and Unplowed in Winte                                            | г               | 1500                              | 0.2                                                | 7500                                 | 1.03                         |
| Paved and never Plowed in Winte                                          | er              | 0                                 | 0.02                                               | 0                                    | 0.00                         |
| unpaved and plowed in winter                                             |                 | 0                                 | 0.02                                               | 0                                    | 0.00                         |
| paved and plowed winter                                                  |                 | 0                                 | 0.02                                               | 0                                    | 0.00                         |
|                                                                          |                 |                                   |                                                    | tco winter                           | 1.03                         |
|                                                                          |                 |                                   |                                                    | tcc                                  | 0.00                         |
|                                                                          |                 |                                   | Total time of conc                                 | entration winter, tc                 | 1.03                         |
|                                                                          |                 |                                   |                                                    |                                      |                              |
| Overland Flow to Compoi                                                  | nent, tco (Figu | ıre 1-2) Summ                     | er                                                 |                                      | <u> </u>                     |
| Overland Flow to Compose Unpaved Summer                                  | nent, tco (Figu | ıre 1-2) Summ<br>1500             | 0.2                                                | 7500                                 | 0.40                         |
| · · · · · · · · · · · · · · · · · · ·                                    | nent, tco (Figu | ·                                 | ·                                                  | 7500<br>0                            | 0.40                         |
| Unpaved Summer                                                           | nent, tco (Figu | 1500                              | 0.2                                                |                                      |                              |
| Unpaved Summer                                                           | nent, tco (Figu | 1500                              | 0.2                                                | 0                                    | 0.00<br>0.40                 |
| Unpaved Summer                                                           | nent, tco (Figu | 1500<br>0                         | 0.2                                                | 0<br>tco summer                      | 0.00<br>0.40<br>0.00         |
| Unpaved Summer                                                           |                 | 1500<br>0                         | 0.2                                                | 0<br>tco summer                      | 0.00<br>0.40<br>0.00         |
| Unpaved Summer paved summer                                              |                 | 1500<br>0                         | 0.2                                                | 0<br>tco summer                      | 0.00<br>0.40<br>0.00         |
| Unpaved Summer paved summer  Channel Flow to Compone                     |                 | 1500<br>0                         | 0.2<br>0.01                                        | 0 tco summer tcc tration summer, tc  | 0.00<br>0.40<br>0.00<br>0.40 |
| Unpaved Summer paved summer  Channel Flow to Compone Channel Description |                 | 1500<br>0                         | 0.2<br>0.01<br>otal time of concer<br>Length, feet | 0 tco summer tcc stration summer, tc | 0.00<br>0.40<br>0.00<br>0.40 |

| Storm Frequency            | 2 Year | 5 Year | 10 Year | 20 Year | 50 Year | 100 Year |
|----------------------------|--------|--------|---------|---------|---------|----------|
| Winter Storm "B" Soils, RF | 0.19   | 0.30   | 0.39    | 0.46    | 0.57    | 0.63     |
| Cn=RF*RR*NF                | 0.19   | 0.30   | 0.39    | 0.46    | 0.57    | 0.63     |
| Winter Storm "C" Soils, RF | 0.34   | 0.53   | 0.65    | 0.73    | 0.80    | 0.84     |
| Cn=RF*RR*NF                | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0,00     |
| Barren Rocky Soil "D", RF  | 0.81   | 0.84   | 0.85    | 0.87    | 0.89    | 0.90     |
| Cn=RF*RR*NF                | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
|                            |        |        |         |         |         |          |
| Storm Frequency            | 2 Year | 5 Year | 10 Year | 20 Year | 50 Year | 100 Year |
| Summer Storm "B" Soils, RF | 80.0   | 0.14   | 0.17    | 0.22    | 0.27    | 0.30     |
| Cn=RF*RR*NF                | 80,0   | 0.14   | 0.17    | 0.22    | 0.27    | 0.30     |
| Summer Storm "C" Soils, RF | 0.18   | 0.29   | 0.35    | 0.43    | 0.51    | 0.59     |
| Cn=RF*RR*NF                | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
|                            | 0.81   | 0.83   | 0.85    | 0.86    | 0.88    | 0.89     |
| Barren Rocky Soil "D", RF  | 0.01   | 0.00   | 0.00    | 9.00    | 0.00    | 0.07     |

|   |           | Reduction Ratio, RR | (Figure 1-6)               |     |
|---|-----------|---------------------|----------------------------|-----|
|   | Soil Type | Overland Slope      | Slope Reduction Ration, RR | · · |
|   | 11834     | 20%                 | 1.00                       |     |
|   | "C"       | 0%                  | 0.73                       | ·   |
| 0 | "D"       | 0%                  | 0.73                       | PR  |

| Natural Area Size Fac | tor, NF (Figure 1-8) |                                   |  |
|-----------------------|----------------------|-----------------------------------|--|
| Soil Type             | Tributary Area       | Natural Area Reduction Factor, NF |  |
| "8"                   | 88.8                 | 1.00                              |  |
| "C"                   | 0,0                  | 0                                 |  |
| "D"                   | 0.0                  | 0                                 |  |

| Area Description: PreDevelopment |  |
|----------------------------------|--|
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |
|                                  |  |

| Q=1.008 <i>C</i> I <i>A</i> | Q2  | Q5  | Q10 | Q20 | Q50 | Q100 |
|-----------------------------|-----|-----|-----|-----|-----|------|
| Winter                      | 1.5 | 2.7 | 3.9 | 5.0 | 6.8 | 8.4  |
| Summer                      | 1.9 | 3.4 | 4.3 | 5.5 | 6.8 | 8.1  |

| Weighted C Factor  |        |        | ·       | ·       |         | agastinist (1900) Palmiras kirikan makan kirikan makan kan |
|--------------------|--------|--------|---------|---------|---------|------------------------------------------------------------|
| Storm Frequency    | 2 Year | 5 Year | 10 Year | 20 Year | 50 Year | 100 Year                                                   |
| Roofs              | 0.04   | 0.04   | 0.04    | 0.04    | 0.04    | 0.04                                                       |
| Paving             | 0.31   | 0.31   | 0.31    | 0.31    | 0.31    | 0.31                                                       |
| Agg drives å walks | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00                                                       |
| unpaved corp yards | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00                                                       |
| Winter "B" Soils   | 0.11   | 0.17   | 0.22    | 0.26    | 0.33    | 0.36                                                       |
| Winter "C" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00                                                       |
| Winter "D" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00                                                       |
| Summer "8" Soils   | 0.05   | 0.08   | 0.10    | 0.13    | 0.15    | 0.17                                                       |
| Summer "C" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00                                                       |
| Summer "D" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00                                                       |
| Winter Coefficient | 0.46   | 0.52   | 0.57    | 0.61    | 0.67    | 0.71                                                       |
| Summer Coefficient | 0.40   | 0.43   | 0.45    | 0.48    | 0.50    | 0.52                                                       |

| Intensity            |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |             |          |
|----------------------|--------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|----------|
| Winter Precipitation | Design Curve (Fig  | jure 1-4) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | (tcc = 1.)  |          |
| Storm Frequency      | 2 Year             | 5 Year    | 10 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 Year | 50 Year     | 100 Year |
| Precipitation, in.   | 0.39               | 0.60      | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93    | 1.15        | 1,36     |
| Intensity            | 0.38               | 0.60      | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93    | 1.15        | 1,36     |
| Winter Precipitation | Design Curve (Fig  | jure 1-4) | - Commission of the Commission |         | (tcc = 1.0) |          |
| Storm Frequency      | 2 Year             | 5 Year    | 10 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 Year | 50 Year     | 100 Year |
| Precipitation, in.   | 0.38               | 0.60      | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93    | 1.15        | 1.36     |
| Intensity            | 0.38               | 0,60      | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93    | 1.15        | 1.36     |
| Summer Precipitation | n Design Curve (Fi | gure 1-5) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | (tcc = .38) |          |
| Storm Frequency      | 2 Year             | 5 Year    | 10 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 Year | 50 Year     | 100 Year |
| Precipitation, in.   | 0.21               | 0.34      | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50    | 0.58        | 0.67     |
| Intensity            | 0.54               | 0.91      | 1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,32    | 1.55        | 1.79     |
| Summer Precipitation | n Design Curve (Fi | gure 1-5) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | (tcc = 1.0) |          |
| Storm Frequency      | 2 Year             | 5 Year    | 10 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 Year | 50 Year     | 100 Year |
| Precipitation, in.   | 0.36               | 0.58      | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86    | 1.03        | 1.20     |
| Intensity            | 0.36               | 0.58      | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86    | 1.03        | 1.20     |

| Areas                |             |           |         |            |
|----------------------|-------------|-----------|---------|------------|
|                      | Coefficient |           |         |            |
| type of area         | Winter, C   | % of area | Acreage | Weighted C |
| Roofs                | 0.95        | 4%        | 0.39    | 0.04       |
| Paving               | 0.90        | 34%       | 2.96    | 0.31       |
| Agg drives & walks   | 0.80        | 0%        | 0.00    | 0.00       |
| unpaved corp yards   | 0.75        | 0%        | 0.00    | 0.00       |
| "B" Soils (RF*RR*NF) | varies      | 61%       | 5.33    |            |
| "C" Soils (RF*RR*NF) | varies      | 0%        | 0.00    | ranies.    |
| "D" Soils (RF*RR*NF) | varies      | 0%        | 0.00    | 20,        |
| Total                |             | 100%      | 8.68    |            |

|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ure 1-2) Winte                        | ·                  |                                     |                                    |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|-------------------------------------|------------------------------------|
| Overland Condition                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Length, feet                          | slope              | Lo/So                               | tco, hours                         |
| Unpaved and Unplowed in W                     | inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 600                                   | 0.1                | 6000                                | 1.00                               |
| Paved and never Plowed in W                   | /inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                     | 0.02               | 0                                   | 0.00                               |
| unpaved and plowed in winte                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                     | 0.02               | 0                                   | 0.00                               |
| paved and plowed winter                       | 301.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                     | 0.02               | 0                                   | 0.00                               |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                                     |                    | tco winter                          | 1.00                               |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                    | tcc                                 | 0.00                               |
|                                               | The state of the s | · · · · · · · · · · · · · · · · · · · | Total time of cond | entration winter, to                | 1.00                               |
| Overland Flow to Com                          | ponent, tco (Figi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ure 1-2) Summ                         | er                 |                                     |                                    |
| Unpaved Summer                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600                                   | 0.1                | 6000                                | 0.38                               |
| paved summer                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                     | 0.01               | 0                                   | 0.00                               |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                    |                                     |                                    |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                    | tco summer                          | 0.38                               |
| oodadaa aabaabhaabhaabhaabhaabhaabhaabhaabhaa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | ······             | tco summer                          | 0.38                               |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                     | otal time of conce |                                     |                                    |
| Channel Flow to Comp                          | onent, tcc (Figur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | otal time of conce | tec                                 | 0.00                               |
| Channel Flow to Comp                          | onent, tcc (Figur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | otal time of conce | tcc<br>ntration summer, tc          | 0.00                               |
|                                               | onent, tcc (Figur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                    | tcc<br>ntration summer, tc          | 0.00<br>0.38                       |
| Channel Description                           | onent, tcc (Figur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Length, feet       | tcc<br>ntration summer, tc<br>slope | 0.00<br>0.38<br>tcc, hours         |
| Channel Description Unimproved Channel        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Length, feet<br>O  | tcc ntration summer, tc slope 0.02  | 0.00<br>0.38<br>tcc, hours<br>0.00 |

| Storm Frequency            | 2 Year | 5 Year | 10 Year | 20 Year | 50 Year | 100 Year |
|----------------------------|--------|--------|---------|---------|---------|----------|
| Winter Storm "B" Soils, RF | 0.19   | 0.30   | 0.39    | 0.46    | 0.57    | 0.63     |
| Cn=RF*RR*NF                | 0.18   | 0.28   | 0.36    | 0.43    | 0.53    | 0.59     |
| Winter Storm "C" Soils, RF | 0.34   | 0.53   | 0.65    | 0.73    | 0.80    | 0.84     |
| Cn=RF*RR*NF                | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Barren Rocky Soil "D", RF  | 0.81   | 0.84   | 0.85    | 0.87    | 0.89    | 0.90     |
| Cn=RF*RR*NF                | 0.00   | 0.00   | 0.00    | 0.00    | 0,00    | 0.00     |
|                            |        |        |         |         |         |          |
| Storm Frequency            | 2 Year | 5 Year | 10 Year | 20 Year | 50 Year | 100 Yea  |
| Summer Storm "B" Soils, RF | 0.08   | 0.14   | 0.17    | 0.22    | 0.27    | 0.30     |
| Cn=RF*RR*NF                | 0.08   | 0.13   | 0.16    | 0.20    | 0.25    | 0.28     |
| Summer Storm "C" Soils, RF | 0.18   | 0.29   | 0.35    | 0.43    | 0.51    | 0.59     |
| Cn=RF*RR*NF                | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Barren Rocky Soil "D", RF  | 0.81   | 0.83   | 0.85    | 0,86    | 0.88    | 0.89     |
| <del></del>                | 0.00   | 0.00   | 0.00    | 0.00    | 0,00    | 0.00     |

| Reduction Ratio, RR (Figure 1-6) |                |                            |                                        |  |  |  |
|----------------------------------|----------------|----------------------------|----------------------------------------|--|--|--|
| Soil Type                        | Overland Slope | Slope Reduction Ration, RR |                                        |  |  |  |
| "B"                              | 0.93           |                            |                                        |  |  |  |
| "C"                              | 0%             | 0.73                       |                                        |  |  |  |
| "D"                              | 0%             | 0.73                       | ************************************** |  |  |  |

| Natural Area Size Factor, NF (Figure 1-8) |                |                                   |  |  |  |  |  |
|-------------------------------------------|----------------|-----------------------------------|--|--|--|--|--|
| Soil Type                                 | Tributary Area | Natural Area Reduction Factor, NF |  |  |  |  |  |
| "B"                                       | 5.3            | 1.00                              |  |  |  |  |  |
| "C"                                       | 0.0            | 0                                 |  |  |  |  |  |
| "D"                                       | 0.0            | 0                                 |  |  |  |  |  |

|                                   |  | 3 |
|-----------------------------------|--|---|
|                                   |  |   |
|                                   |  |   |
| Area Description: PostDevelopment |  |   |
|                                   |  |   |
|                                   |  |   |
|                                   |  |   |

| Q=1.008 <i>C</i> I <i>A</i> | Q2  | Q5  | Q10 | Q20 | Q50 | Q100 |
|-----------------------------|-----|-----|-----|-----|-----|------|
| Winter                      | 2.0 | 3.3 | 4.6 | 5.7 | 7.5 | 9.1  |
| Summer                      | 2.6 | 4.5 | 5.5 | 6.9 | 8.4 | 9.9  |

| Storm Frequency    | 2 Year | 5 Year | 10 Year | 20 Year | 50 Year | 100 Year |
|--------------------|--------|--------|---------|---------|---------|----------|
| Roofs              | 0.18   | 0.18   | 0.18    | 0.18    | 0.18    | 0.18     |
| Paving             | 0.33   | 0.33   | 0.33    | 0.33    | 0.33    | 0.33     |
| Agg drives & walks | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| unpaved corp yards | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Winter "B" Soils   | 0.08   | 0.12   | 0.16    | 0.19    | 0.24    | 0.26     |
| Winter "C" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Winter "D" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Summer "B" Soils   | 0.04   | 0.06   | 0.07    | 0.09    | 0.11    | 0.13     |
| Summer "C" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Summer "D" Soils   | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Winter Coefficient | 0.59   | 0.63   | 0.67    | 0.70    | 0.74    | 0.77     |
| Summer Coefficient | 0.54   | 0.56   | 0.58    | 0.60    | 0.62    | 0.63     |

| Intensity          |                      |           |         |            |             |                                         |  |
|--------------------|----------------------|-----------|---------|------------|-------------|-----------------------------------------|--|
| Winter Precipitati | on Design Curve (Fig | jure 1-4) |         | (tcc = 1.) |             |                                         |  |
| Storm Frequency    | 2 Year               | 5 Year    | 10 Year | 20 Year    | 50 Year     | 100 Year                                |  |
| Precipitation, in. | 0.39                 | 0.60      | 0.79    | 0.93       | 1.15        | 1.36                                    |  |
| Intensity          | 0.38                 | 0.60      | 0.78    | 0.93       | 1.15        | 1.36                                    |  |
| Winter Precipitati | on Design Curve (Fig | jure 1-4) |         |            | (tcc = 1.0) |                                         |  |
| Storm Frequency    | 2 Year               | 5 Year    | 10 Year | 20 Year    | 50 Year     | 100 Year                                |  |
| Precipitation, in. | 0.38                 | 0.60      | 0.78    | 0.93       | 1.15        | 1.36                                    |  |
| Intensity          | 0.38                 | 0.60      | 0.78    | 0.93       | 1.15        | 1.36                                    |  |
| Summer Precipitat  | ion Design Curve (Fi | gure 1-5) |         |            | (tcc = .38) | ······································  |  |
| Storm Frequency    | 2 Year               | 5 Year    | 10 Year | 20 Year    | 50 Year     | 100 Year                                |  |
| Precipitation, in. | 0.21                 | 0.34      | 0.41    | 0.50       | 0.58        | 0.67                                    |  |
| Intensity          | 0.54                 | 0.91      | 1.09    | 1.32       | 1.55        | 1.79                                    |  |
| Summer Precipitat  | ion Design Curve (Fi | gure 1-5) |         |            | (tcc = 1.0) | *************************************** |  |
| Storm Frequency    | 2 Year               | 5 Year    | 10 Year | 20 Year    | 50 Year     | 100 Year                                |  |
| Precipitation, in. | 0.36                 | 0.58      | 0.71    | 0.86       | 1.03        | 1.20                                    |  |
| Intensity          | 0.36                 | 0.58      | 0.71    | 0.86       | 1.03        | 1.20                                    |  |

|                      | Coefficient |           |         |            |
|----------------------|-------------|-----------|---------|------------|
| type of area         | Winter, C   | % of area | Acreage | Weighted C |
| Roofs                | 0.95        | 19%       | 1.64    | 0.18       |
| Paving               | 0.90        | 36%       | 3.15    | 0.33       |
| Agg drives & walks   | 0.80        | 0%        | 0.00    | 0.00       |
| unpaved corp yards   | 0.75        | 0%        | 0.00    | 0.00       |
| "B" Soils (RF*RR*NF) | varies      | 45%       | 3.89    | P-         |
| "C" Soils (RF*RR*NF) | varies      | 0%        | 0.00    | Sa de      |
| "D" Sails (RF*RR*NF) | varies      | 0%        | 0.00    | ] 3        |
| Total                |             | 100%      | 8.68    |            |

| Overland Flow to Co         | mponent, tco (Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ure 1-2) Winte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2r                    |                      |            |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|------------|
| Overland Condition          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Length, feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | slope                 | Lo/So                | tco, hours |
| Unpaved and Unplowed in V   | Vinter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                   | 6000                 | 1.00       |
| Paved and never Plowed in ' | Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                  | 0                    | 0.00       |
| unpaved and plowed in wint  | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                  | 0                    | 0.00       |
| paved and plowed winter     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                  | 0                    | 0.00       |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | tco winter           | 1.00       |
|                             | A CONTRACTOR OF THE PARTY OF TH | WOOD OF THE PERSON OF THE PERS | 1970-10 d-1-7-0 lain- | tcc                  | 0.00       |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total time of conc    | entration winter, to | 1.00       |
| Overland Flow to Co         | nponent, tco (Fig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ure 1-2) Summ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ier                   |                      |            |
| Unpaved Summer              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1                   | 6000                 | 0.38       |
| paved summer                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                  | 0                    | 0.00       |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | tco summer           | 0.38       |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | tcc                  | 0.00       |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | otal time of concer   | itration summer, tc  | 0.38       |
| Channel Flow tc Com         | ponent, tcc (Figu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | re 1-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                      |            |
| Channel Description         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Length, feet          | slope                | tcc, hours |
| Unimproved Channel          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                     | 0.02                 | 0.00       |
| Riprap-Lined Channel        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                     | 0.02                 | 0.00       |
| Pipe or Concrete-Lined Cho  | nnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                     | 0.02                 | 0.00       |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |            |

| Storm Frequency            | 2 Year | 5 Year | 10 Year | 20 Year | 50 Year | 100 Year |
|----------------------------|--------|--------|---------|---------|---------|----------|
| Winter Storm "B" Soils, RF | 0.19   | 0.30   | 0.39    | 0.46    | 0.57    | 0.63     |
| Cn=RF*RR*NF                | 0.18   | 0.28   | 0.36    | 0.43    | 0.53    | 0.59     |
| Winter Storm "C" Soils, RF | 0.34   | 0.53   | 0.65    | 0.73    | 0.80    | 0.84     |
| Cn=RF*RR*NF                | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
| Barren Rocky Soil "D", RF  | 0.81   | 0.84   | 0.85    | 0.87    | 0.89    | 0.90     |
| Cn=RF*RR*NF                | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |
|                            |        |        |         |         |         |          |
| Storm Frequency            | 2 Year | 5 Year | 10 Year | 20 Year | 50 Year | 100 Year |
| Summer Storm "B" Soils, RF | 0.08   | 0.14   | 0.17    | 0.22    | 0.27    | 0.30     |
| Cn=RF*RR*NF                | 0.08   | 0.13   | 0.16    | 0.20    | 0.25    | 0.28     |
| Summer Storm "C" Soils, RF | 0.18   | 0.29   | 0.35    | 0.43    | 0.51    | 0.59     |
| Cn=RF*RR*NF                | 0.00   | 0.00   | 0,00    | 0,00    | 0.00    | 0,00     |
| Barren Rocky Soil "D", RF  | 0.81   | 0.83   | 0.85    | 0.86    | 0.88    | 0,89     |
| Cn=RF*RR*NF                | 0.00   | 0.00   | 0.00    | 0.00    | 0.00    | 0.00     |

| Reduction Ratio, RR (Figure 1-6)                    |     |      |  |  |  |  |  |  |
|-----------------------------------------------------|-----|------|--|--|--|--|--|--|
| Soil Type Overland Slope Slope Reduction Ration, RR |     |      |  |  |  |  |  |  |
| "B"                                                 | 10% | 0.93 |  |  |  |  |  |  |
| "C"                                                 | 0%  | 0.73 |  |  |  |  |  |  |
| "D"                                                 | 0%  | 0.73 |  |  |  |  |  |  |

|             | Natural Area Size Factor, NF (Figure 1-8) |                |                                   |  |  |  |  |  |
|-------------|-------------------------------------------|----------------|-----------------------------------|--|--|--|--|--|
|             | Soil Type                                 | Tributary Area | Natural Area Reduction Factor, NF |  |  |  |  |  |
|             | "B"                                       | 3.9            | 1.00                              |  |  |  |  |  |
| Man Control | "C"                                       | 0.0            | 0                                 |  |  |  |  |  |
|             | "D"                                       | 0.0            | 0                                 |  |  |  |  |  |



FOR

**Eagle Lodge** 

#### **APPENDIX C**

**HYDRAULICS** 

# 18" cmp

|                           | enter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | calced |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Pipe Diameter (inches)    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18     |
| Pipe Diameter (feet)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.50   |
| Slope (s)                 | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| Friction Factor(n)        | 0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| Depth (inches)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18     |
| Depth (feet)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.50   |
| Depth (percentage)        | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100%   |
| Area                      | WORLD STATE OF THE | 1.77   |
| Wetted Perimeter          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.71   |
| Hydraulic radius          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.38   |
| Quantity (cfs)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.18  |
| Quantity (gpm)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4570.1 |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Velocity (fps)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.76   |
| radius                    | one transcer contrate and a contrate transfer began what equation and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.75   |
| cos length                | Samuel Control (*) (Samo) (1995) (Samo) (Sam | -0.75  |
| angle (radians)           | alamanda andre a de montre andre de la completa de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.14   |
| angle degrees             | a to the state of the second state of the second second state of the second second state of the second seco | 180.0  |
| sin length                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00   |
| two triangle areas        | American en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00   |
| sector area               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.77   |
| total area of pipe        | Carrier and Control of the Control o | 1.77   |
| area at depth             | Mark Special Conference (1997) and the special control of the second of the special special control of the special control of t | 1.77   |
| Wetted Perimeter at depth | Processor of the Commission of | 4.71   |
| Circumfirence             | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.71   |

#### 36" hancor

|                           | enter                                    | calced  |
|---------------------------|------------------------------------------|---------|
| Pipe Diameter (inches)    | 36                                       | 36      |
| Pipe Diameter (feet)      |                                          | 3.00    |
| Slope (s)                 | 0.021                                    |         |
| Friction Factor(n)        | 0.012                                    |         |
| Depth (inches)            |                                          | 36      |
| Depth (feet)              |                                          | 3.00    |
| Depth (percentage)        | 100%                                     | 100%    |
|                           |                                          | 7.07    |
| Area Wetted Perimeter     |                                          | 7.07    |
|                           |                                          | 9.42    |
| Hydraulic radius          |                                          | 0.75    |
| Quantity (cfs)            |                                          | 104.71  |
| Quantity (gpm)            |                                          | 47014.7 |
|                           |                                          |         |
| Velocity (fps)            |                                          | 14.81   |
|                           | 777-77-79-79-79-79-79-79-79-79-79-79-79- |         |
| radius                    |                                          | 1.50    |
| cos length                |                                          | -1.50   |
| angle (radians)           |                                          | 3.14    |
| angle degrees             |                                          | 180.0   |
| sin length                |                                          | 0.00    |
| two triangle areas        |                                          | 0.00    |
| sector area               |                                          | 7.07    |
| total area of pipe        |                                          | 7.07    |
| area at depth             | ***************************************  | 7.07    |
| Wetted Perimeter at depth |                                          | 9.42    |
| Circumfirence             |                                          | 9.42    |

#### 42" hancor

|                           | enter | calced  |
|---------------------------|-------|---------|
| Pipe Diameter (inches)    | 42    | 42      |
| Pipe Diameter (feet)      |       | 3.50    |
| Slope (s)                 | 0.01  |         |
| Friction Factor(n)        | 0.012 |         |
| Depth (inches)            |       | 42      |
| Depth (feet)              |       | 3.50    |
| Depth (percentage)        | 100%  | 100%    |
|                           |       |         |
| Area                      |       | 9.62    |
| Wetted Perimeter          |       | 11.00   |
| Hydraulic radius          |       | 0.88    |
|                           |       |         |
| Quantity (cfs)            |       | 108.99  |
| Quantity (gpm)            |       | 48938.3 |
|                           |       |         |
| Velocity (fps)            |       | 11.33   |
|                           |       |         |
| radius                    |       | 1.75    |
| cos length                |       | -1.75   |
| angle (radians)           |       | 3.14    |
| angle degrees             |       | 180.0   |
| sin length                |       | 0.00    |
| two triangle areas        |       | 0.00    |
| sector area               |       | 9.62    |
| total area of pipe        |       | 9.62    |
| area at depth             |       | 9.62    |
| Wetted Perimeter at depth |       | 11.00   |
| Circumfirence             |       | 11.00   |



FOR

**Eagle Lodge** 

**APPENDIX D** 

**RETENTION / INFILTRATION BASIN** 



#### **Triad/Holmes Associates**

Job No.

1737.2

Date:

8/11/2006

Napa

Fax: (707) 251-9108 Fax: (650) 366-0298

Bishop Mammoth Lakes San Luis Obispo Fax: (760) 873-8024 Fax: (760) 934-5619 Fax: (805) 544-8932

760) 934-5619 Redwood City 805) 544-8932

#### **Runoff Volume and Drywell Sizing Calulation**

based on Lahontan RWQCB Design Parameters

Input

Rainfall (First Inch)

1 in/hr =

0.083 ft/hr

Percolation Rate

0 in/hr =

0 ft/hr

(Initial assumptions are for 0 percolation rate. This may be revised based on percolation testing.)

| Tributary Area          | ributary Area Runo |     | ff Coefficient                  |
|-------------------------|--------------------|-----|---------------------------------|
| Roof Area               | 71438.4 S.F.       | 19% | 0.95 Roof Area                  |
| Pavement Area           | 137214 S.F.        | 36% | 0.9 Pavement Area               |
| Gravel/Aggregate Area   | 0 S.F.             | 0%  | 0.8 Gravel/Aggregate Area       |
| Unpaved Industrial Area | 0 S.F.             | 0%  | 0.75 Unpaved Industrial Area    |
| Landscaping Area        | 169448.4 S.F.      | 45% | 0.46 Landscaping Area           |
| Total Area              | 378100.8 S.F.      |     | 0.71 Average Runoff Coefficient |

Average Runoff Volume = Total Area \* Average Runoff Coefficient \* Rainfall (First Inch)

Average Runoff Volume =

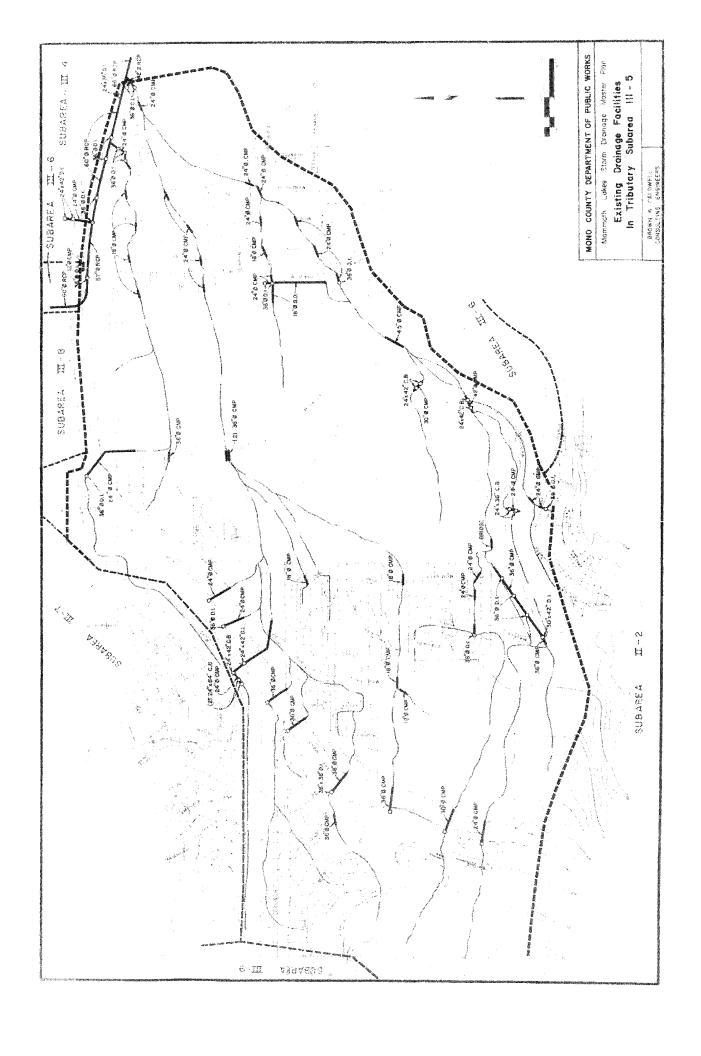
22442 C.F.

#### Storage capacity required

(This sizing is preliminary, final sizing will be determined during the design process)

#### **Approximate Drywell Sizing Options**

|          |                                     | Typical Cubic<br>foot storage<br>per square<br>foot of facility | approximate<br>square footage<br>required | width | approximate size<br>length |     |
|----------|-------------------------------------|-----------------------------------------------------------------|-------------------------------------------|-------|----------------------------|-----|
| Option A | Drywells (10 foot deep)             | 3                                                               | 7481                                      |       | 20                         | 374 |
| Option B | Conspan                             | 8                                                               | 2805                                      |       | 20                         | 140 |
| Option C | Rainstore 3 (6 foot deep)           | 5                                                               | 4488                                      |       | 20                         | 224 |
| Option D | Hancor (3 foot diameter pipes)      | 2.5                                                             | 8977                                      |       | 20                         | 449 |
| ·        | (These options have been considered | to allow for initial                                            | space requireme.                          | nts.) |                            |     |




FOR

**Eagle Lodge** 

**APPENDIX E** 

REFERENCE MATERIAL



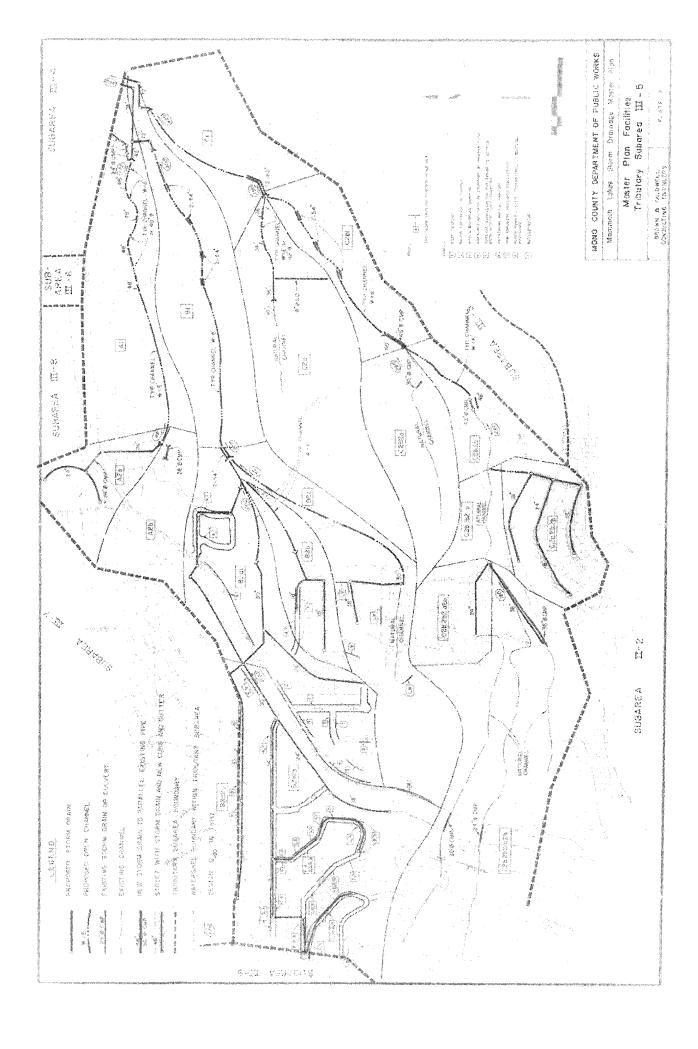



Table 6-1. Master Plan Design Flows, cfs, continued

| Watershed     | Q <sub>20</sub> | Q <sub>50</sub> | Q <sub>100</sub> | Design Season |
|---------------|-----------------|-----------------|------------------|---------------|
| Subarea III-3 |                 |                 |                  |               |
| A2b.2a        | 55              | 69              | 86               | W             |
| A2b. 2b       | 31              | 37              | 46               | W             |
| A2b.2         | 82              | 104             | 130              | W             |
| A2b.1         | 20              | 25              | 31               | W             |
| A2b           | 97              | 124             | 152              | W             |
| A2a           | 39              | 48              | 62               | S             |
| A2            | 130             | 161             | 200              | W             |
| AI            | . 4             | 5               | 6                | W             |
| A             | 134             | 172             | 212              | W             |
| Subarea total | 134             | 172             | 212              | W             |
| Subarea III-4 |                 |                 |                  |               |
| В             | 89              | 132             | 177              | W             |
| A             | 52              | 73              | 95               | W             |
| Subarea total | 141             | 205             | 272              | W             |
| Subarea III-5 |                 | 444             |                  |               |
| C2b.2b2.a2b   | 105             | 145             | 180              | W             |
| C2b.2b2.a2a   | 12              | 15              | 18               | S             |
| C2b.2b2.a2    | 115             | 158             | 195              | W             |
| C2b.2b2.a     | 121             | 166             | 210              | W             |
| C2b. 2b2.b    | 21              | 25              | 30               | S             |
| C2b. 2b       | 136             | 18 <b>8</b>     | 233              | W             |
| C2b. 2a       | 28              | 34              | 41               | S             |
| C2b, 2        | 171             | 232             | 290              | W             |
| C2b           | 187             | 253             | 310              | W             |
| C2a           | 59              | 71              | 90               | S             |
| C2            | 234             | 313             | 390              | W             |
| C             | 257             | 343             | 420              | W             |
| B2a.2b        | 70              | 84              | 105              | S             |
| B2a. 2a       | 26              | 32              | 38               | S             |
| B2a.2         | 96              | 114             | 140              | S             |
| B2a           | 136             | 164             | 200              | S             |
| 92b           | 13              | 17              | 22               | S             |
| B2c           | 41              | 54              | 70               | W             |
| B2            | 168             | 218             | 270              | W             |
| 8             | 198             | 245             | 300              | S             |
| A2a           | 23              | 27              | 36               | S             |
| A2b           | 22              | 27              | 36               | S             |
| A2            | 45              | 54              | 69               | S             |
| Ai            | 48              | 56              | 70               | S             |
| A             | 91              | 108             | 135              | S             |
| Subarea total | 510             | 660             | 800              | ¥             |

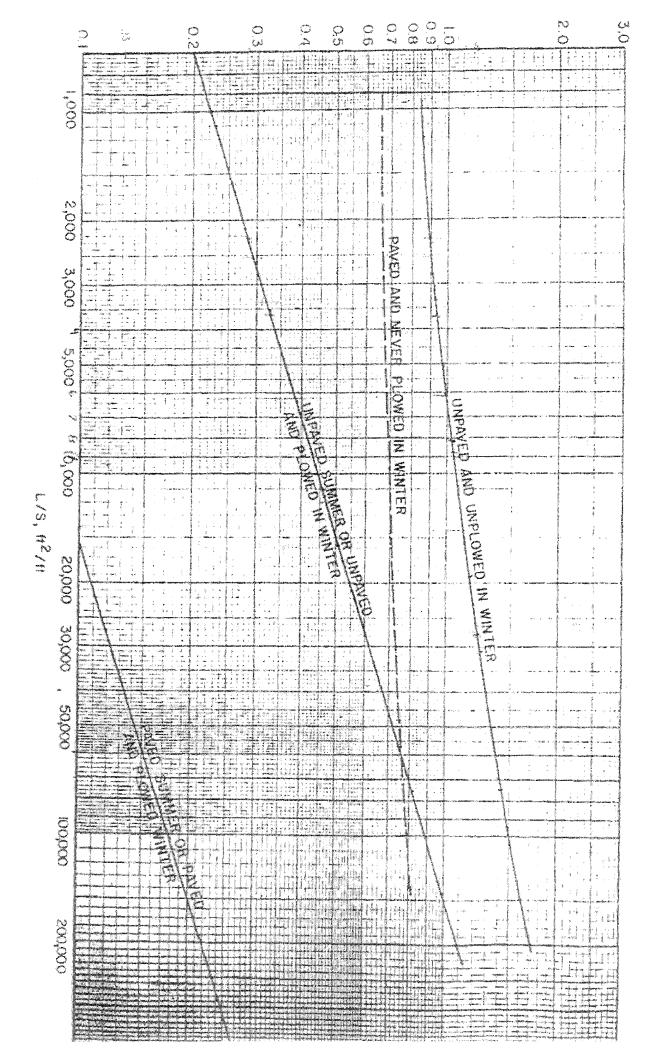



Figure 1-2 Overland Flow to Component, too

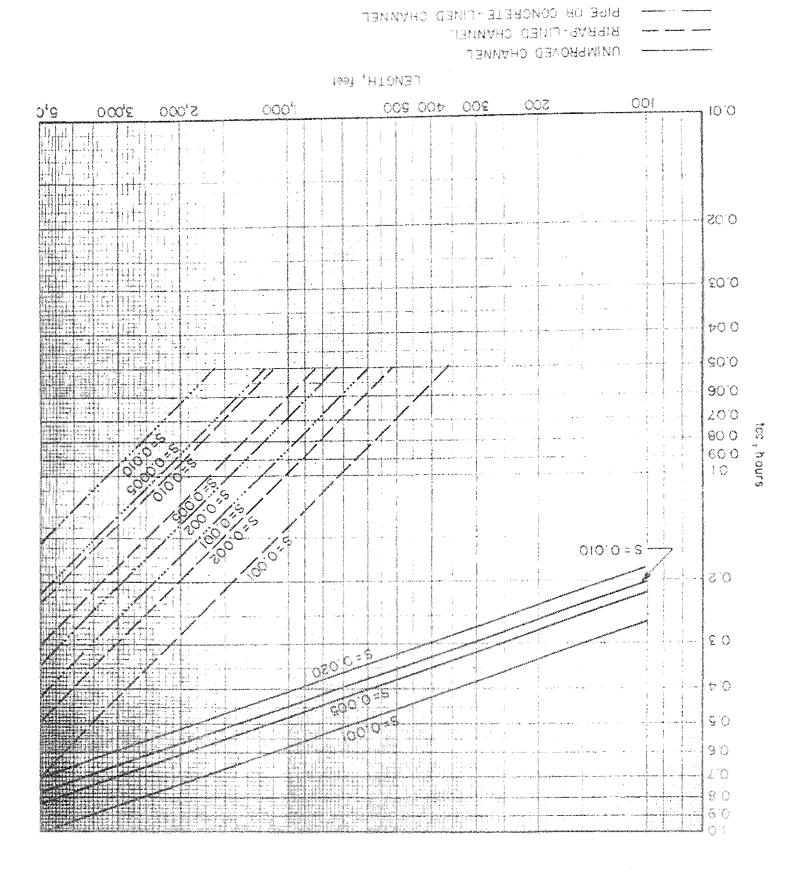



Figure 1-3 Channel Flow to Component, to-inging

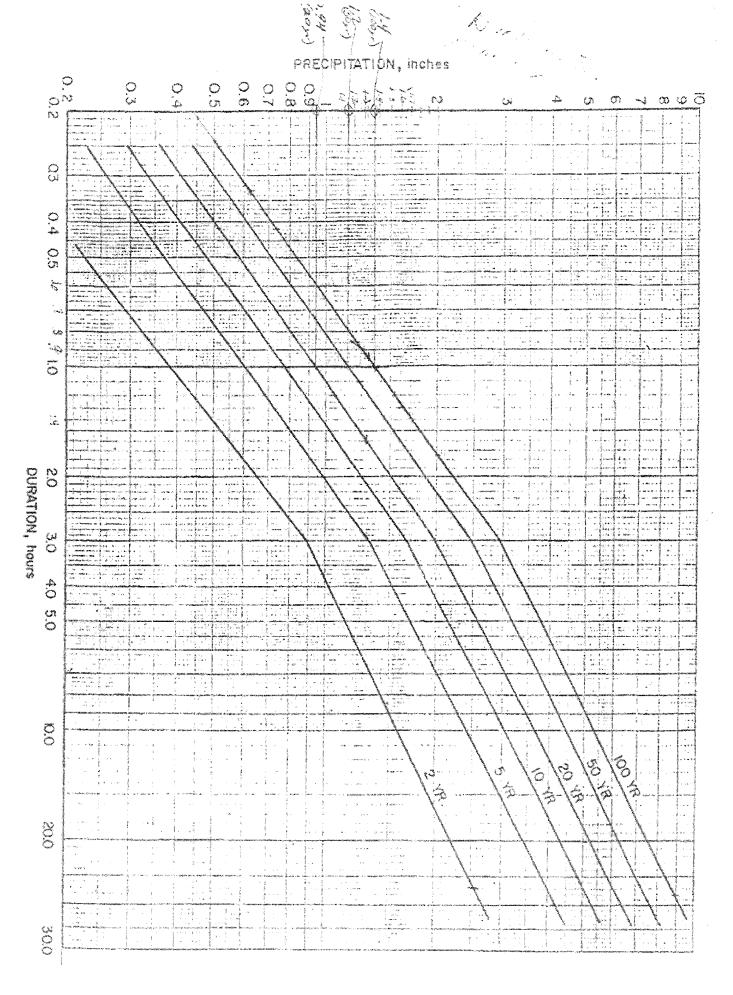



Figure 1-4 Winter Precipitation Design Curve

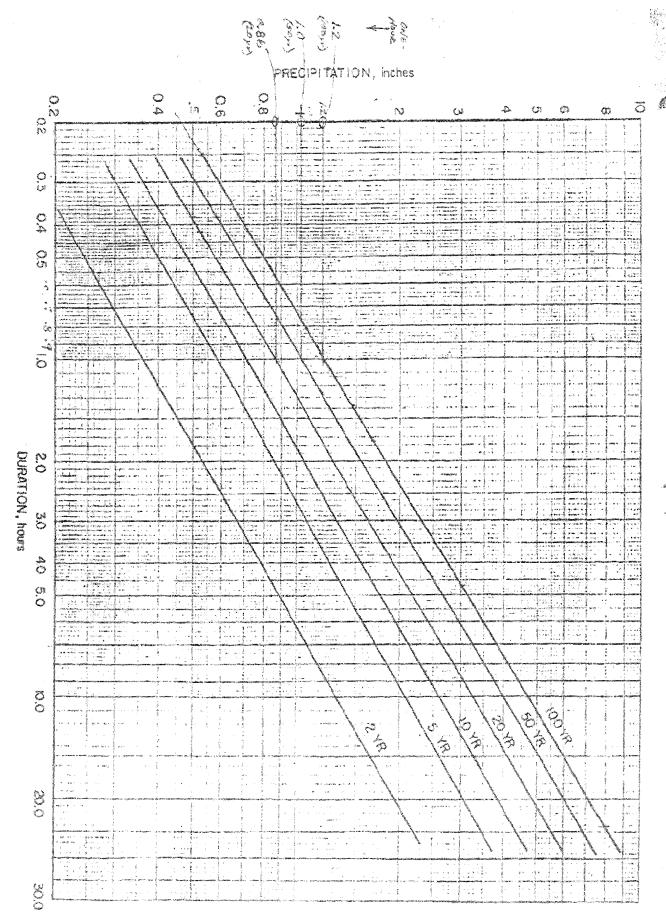
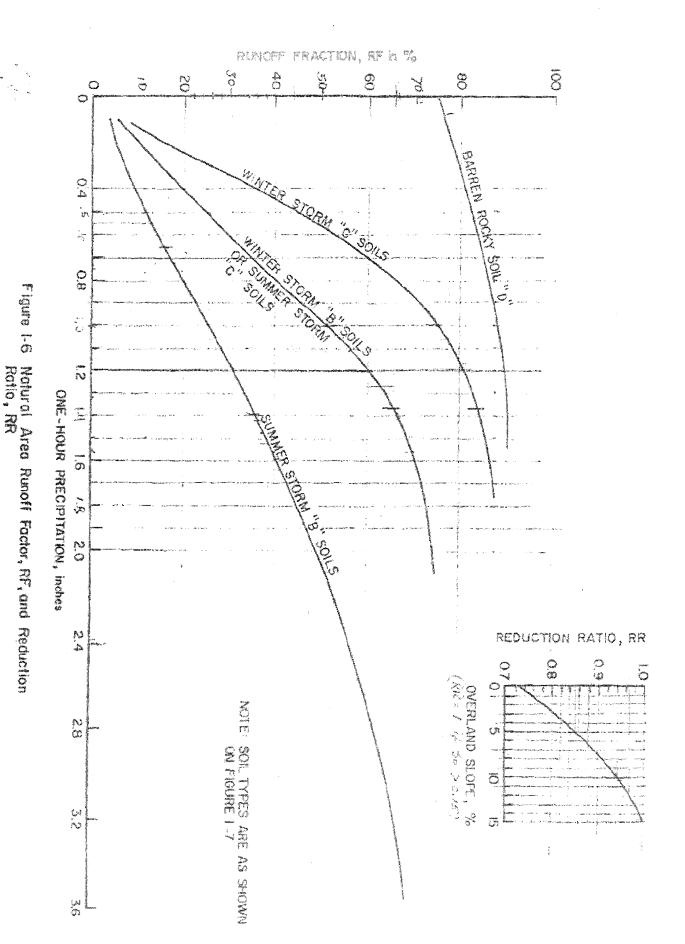
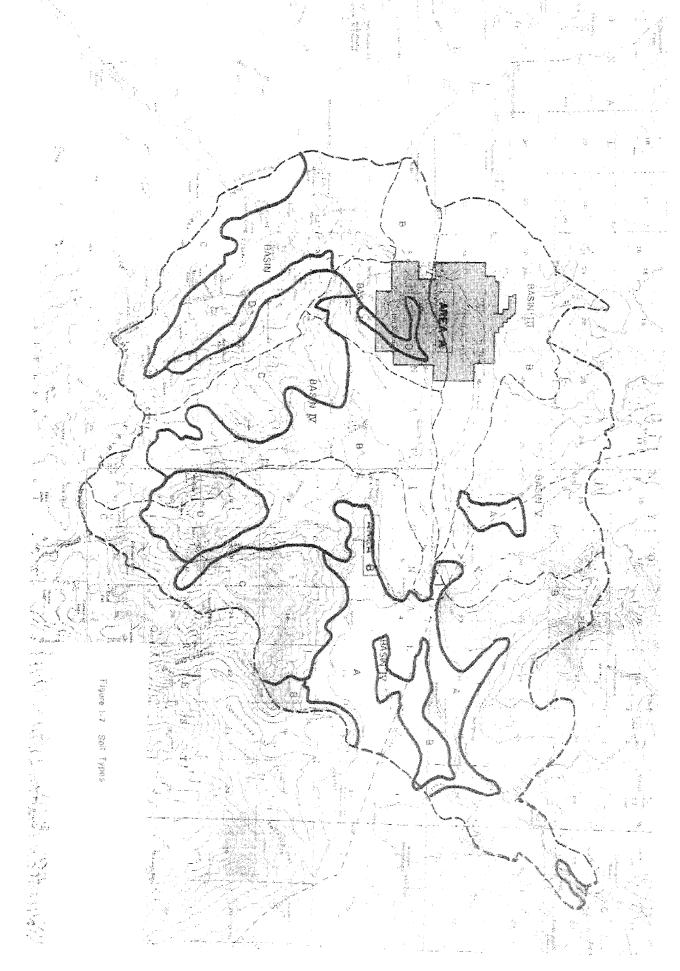





Figure I-5 Summer Precipitation Design Curve

15-1





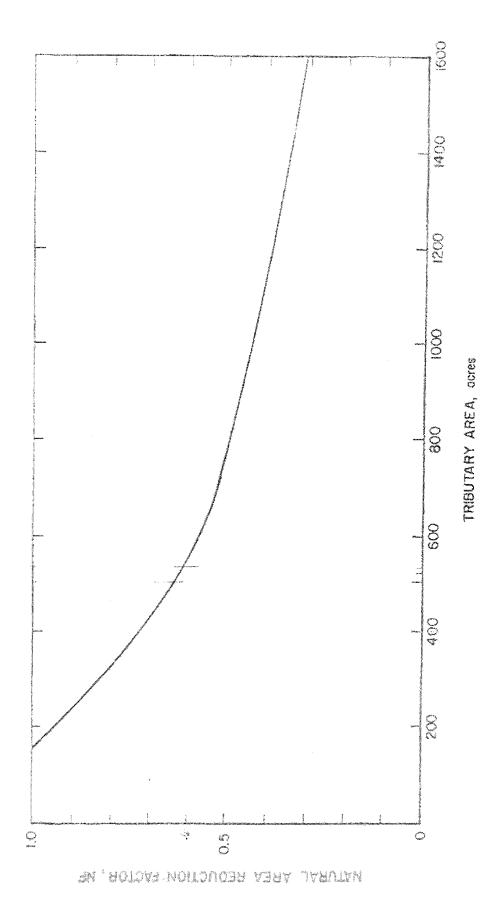



Figure I-8 Natural Area Size Factor, NF

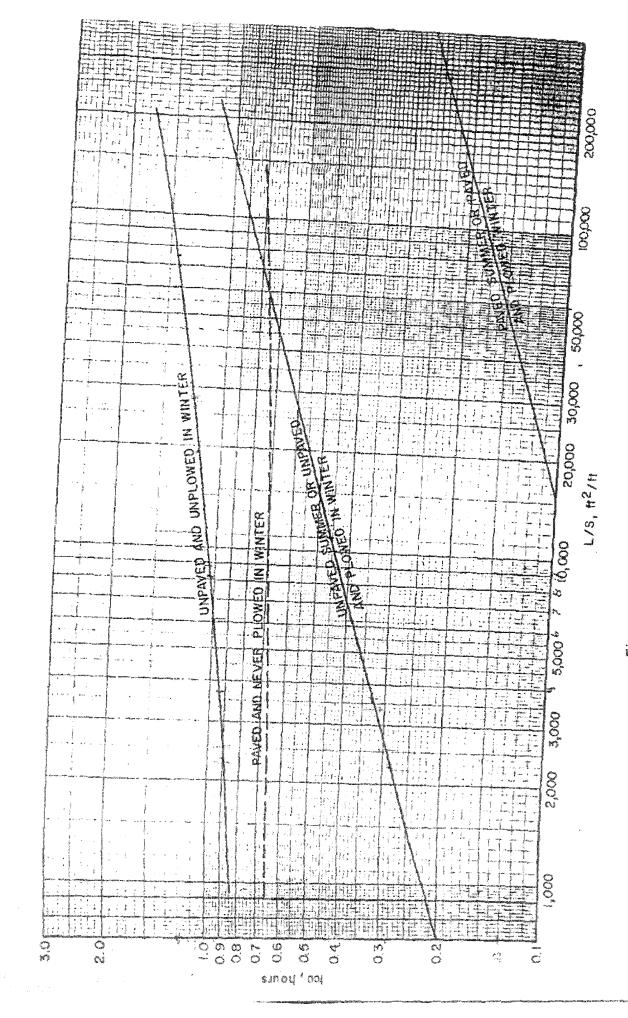



Figure 1-2 Overland Flow to Camponent, too

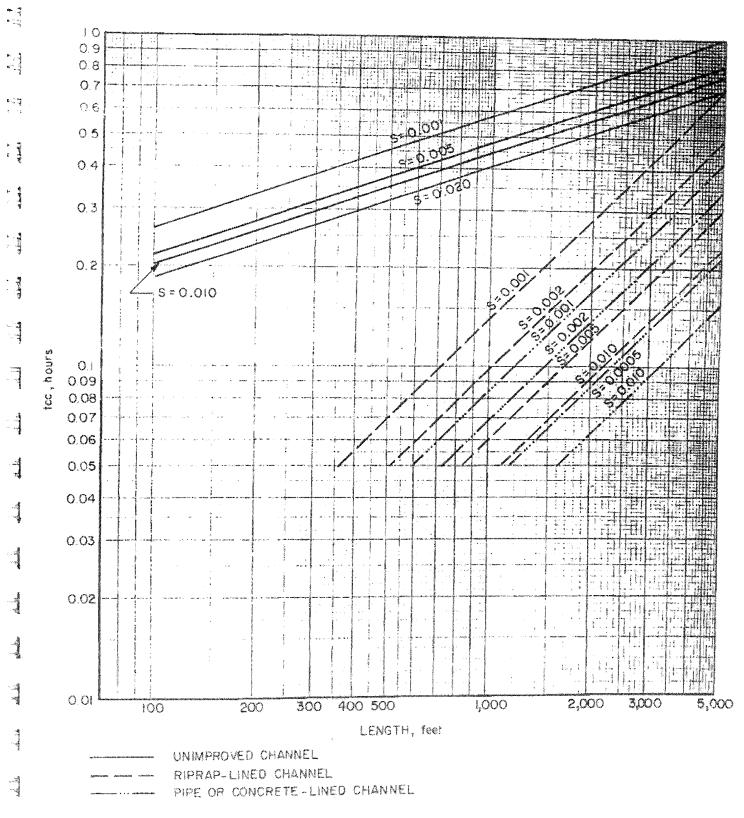



Figure 1-3 Channel Flow to Component, too

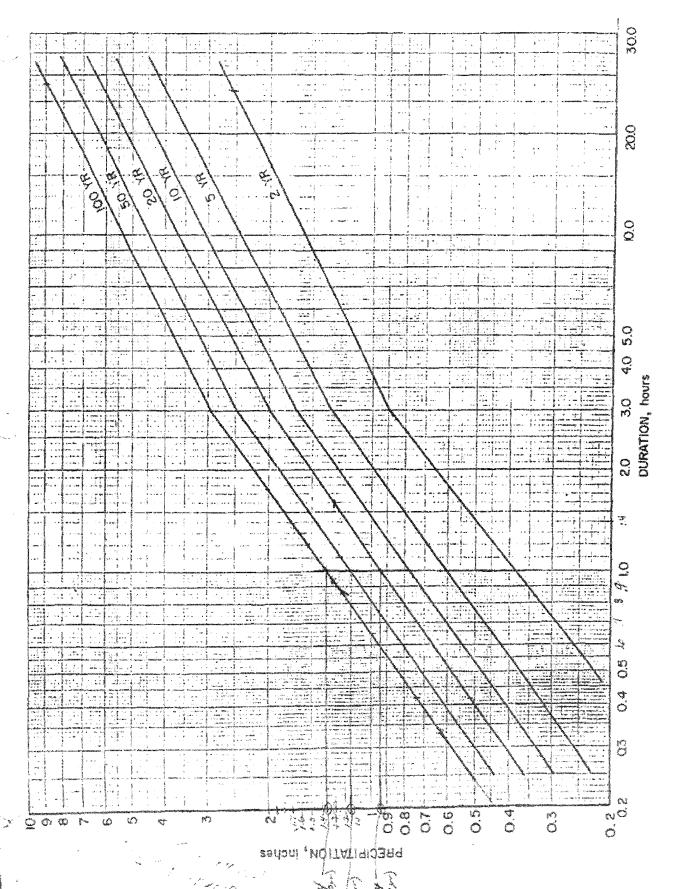
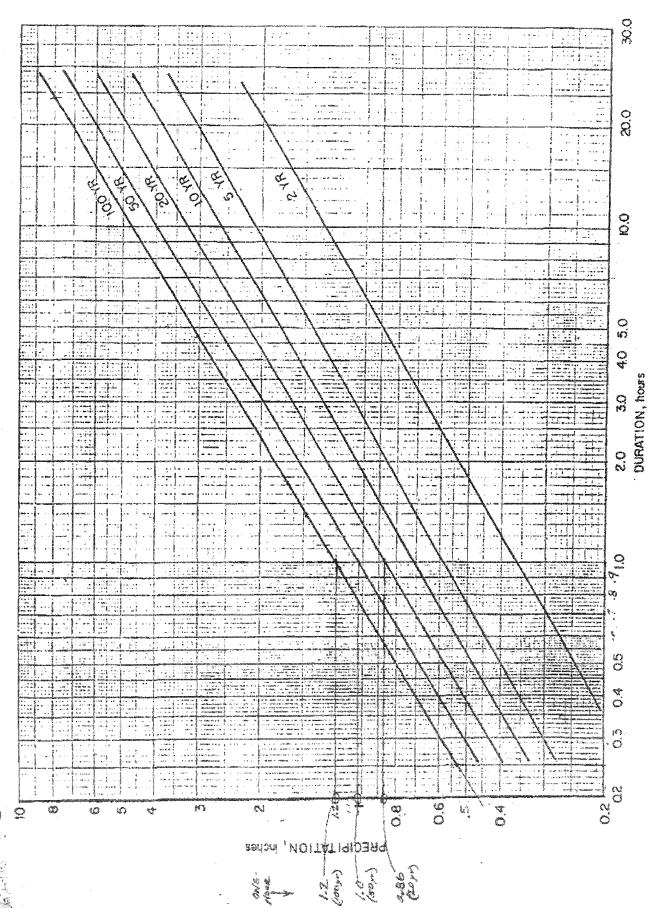
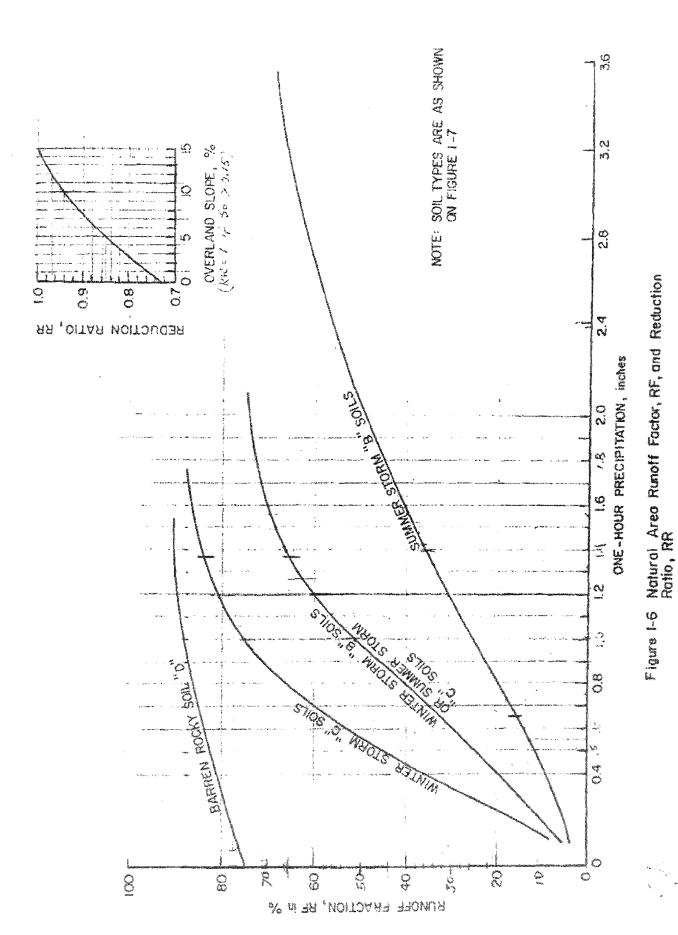
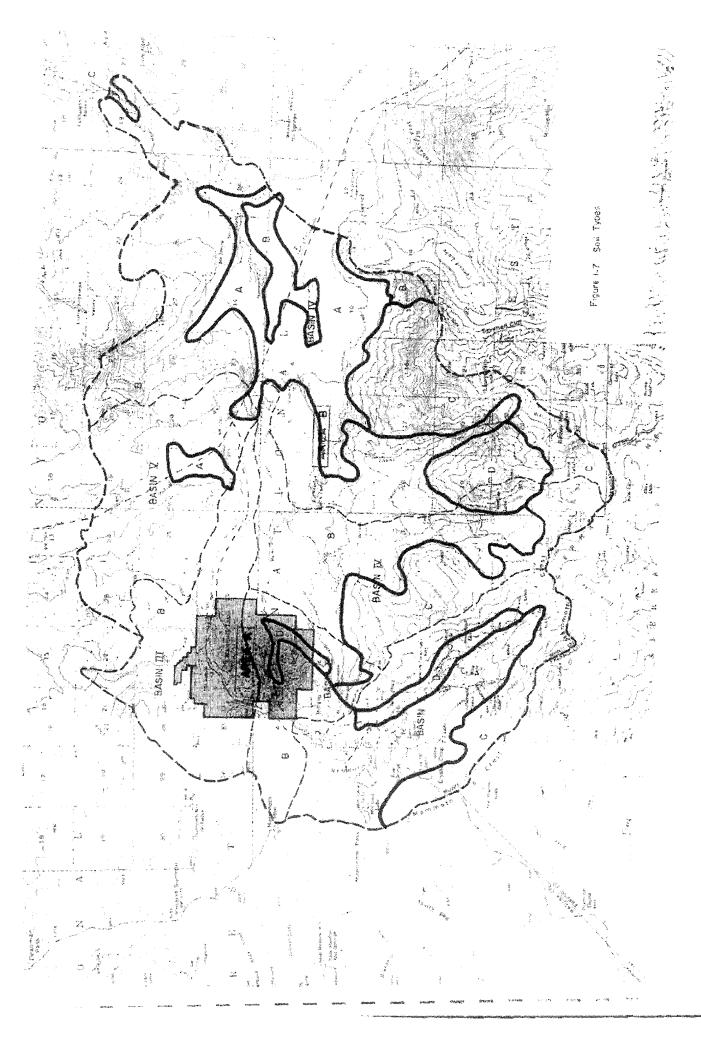




Figure 1-4 Winter Precipitation Design Curve




A ....


Brut. to A

1

7

Figure 1-5 Summer Precipitation Design Curve





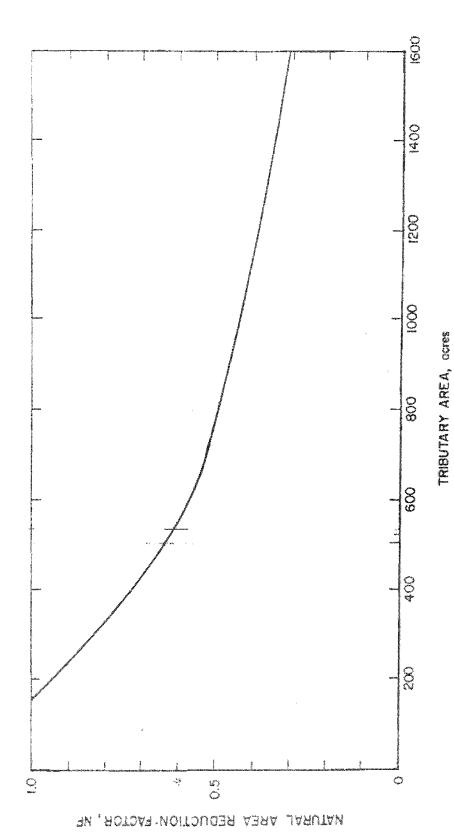



Figure 1-8 Natural Area Size Factor, NF

# 4.8 LAND DEVELOPMENT

The construction and maintenance of urban and commercial developments can impact water quality in many ways. Construction activities inherently disturb soil and vegetation, often resulting in accelerated erosion and sedimentation. Stormwater runoff from developed areas can also contain petroleum products, nutrients, and other contaminants.

This section contains a discussion of the potential water quality impacts expected to result from land development activities, followed by control measures to reduce or offset water quality impacts from such activities.

## **Construction Activities and Guidelines**

Construction activities often produce erosion by disturbing the natural ground surface through scarifying, grading, and filling. Floodplain and wetland disturbances often reduce the ability of the natural environment to retain sediment and assimilate nutrients. Construction materials such as concrete, paints, petroleum products, and other chemicals can contaminate nearby water bodies. Construction impacts such as these are typically associated with subdivisions, commercial developments, and industrial developments.

## Control Measures for Construction Activities

The Regional Board regulates the construction of subdivisions, commercial developments, industrial developments, and roadways based upon the level of threat to water quality. The Regional Board will request a Report of Waste Discharge and consider the issuance of an appropriate permit for any proposed project where water quality concerns are identified in the California Environmental Quality Act (CEQA) review process. Any construction activity whose land disturbance activities exceed five acres must also comply with the statewide general NPDES permit for stormwater discharges (see "Stormwater" section of this Chapter).

The following are guidelines for construction projects regulated by the Regional Board, particularly for projects located in portions of the Region where

erosion and stormwater threaten sensitive watersheds. The Regional Board recommends that each county within the Region adopt a grading/erosion control ordinance to require implementation of these same guidelines for all soil disturbing activities:

- Surplus or waste material should not be placed in drainageways or within the 100-year floodplain of any surface water.
- All loose piles of soil, silt, clay, sand, debris, or other earthen materials should be protected in a reasonable manner to prevent any discharge to waters of the State.
- Dewatering should be performed in a manner so as to prevent the discharge of earthen material from the site.
- All disturbed areas should be stabilized by appropriate soil stabilization measures by October 15th of each year.
- 5. All work performed during the wet season of each year should be conducted in such a manner that the project can be winterized (all soils stabilized to prevent runoff) within 48 hours if necessary. The wet season typically extends from October 15th through May 1st in the higher elevations of the Lahontan Region. The season may be truncated in the desert areas of the Region.
- 6. Where possible, existing drainage patterns should not be significantly modified.
- After completion of a construction project, all surplus or waste earthen material should be removed from the site and deposited in an approved disposal location.
- Drainage swales disturbed by construction activities should be stabilized by appropriate soil stabilization measures to prevent erosion.
- All non-construction areas should be protected by fencing or other means to prevent unnecessary disturbance.
- 10. During construction, temporary protected gravel dikes, protected earthen dikes, or sand bag dikes should be used as necessary to prevent discharge of earthen materials from the site

10/94 4.8-1

#### Ch. 4, IMPLEMENTATION

during periods of precipitation or runoff.

- 11. Impervious areas should be constructed with infiltration trenches along the downgradient sides to dispose of all runoff greater than background levels of the undisturbed site. Infiltration trenches are not recommended in areas where infiltration poses a risk of ground water contamination.
- Infiltration trenches or similar protection facilities should be constructed on the downgradient side of all structural drip lines.
- 13. Revegetated areas should be continually maintained in order to assure adequate growth and root development. Physical erosion control facilities should be placed on a routine maintenance and inspection program to provide continued erosion control integrity.
- 14. Waste drainage waters in excess of that which can be adequately retained on the property should be collected before such waters have a chance to degrade. Collected water shall be treated, if necessary, before discharge from the property.
- 15. Where construction activities involve the crossing and/or alteration of a stream channel, such activities should be timed to occur during the period in which stream flow is expected to be lowest for the year.
- 16. Use of materials other than potable water for dust control (i.e., reclaimed wastewater, chemicals such as magnesium chloride, etc.) is strongly encouraged but must have prior Regional Board approval before its use.

### Specific Policy and Guidelines for Mammoth Lakes Area

To control erosion and drainage in the Mammoth Lakes watershed at an elevation above 7,000 feet (Figure 4.8-1), the following policy and guidelines apply:

#### Policy:

A Report of Waste Discharge is required not less than 90 days before the intended start of construction activities of a **new development** of either (a) six or more dwelling units, or (b) commercial developments involving soil disturbance on one-quarter acre or more.

The Report of Waste Discharge shall contain a description of, and time schedule for implementation, for both the interim erosion control measures to be applied during project construction, and short- and long-term erosion control measures to be employed after the construction phase of the project. The descriptions shall include appropriate engineering drawings, criteria, and design calculations.

#### Guidelines:

- Drainage collection, retention, and infiltration facilities shall be constructed and maintained to prevent transport of the runoff from a 20-year, 1hour design storm from the project site. A 20year, 1-hour design storm for the Mammoth Lakes area is equal to 1.0 inch (2.5 cm) of rainfall.
- Surplus or waste materials shall not be placed in drainageways or within the 100-year flood plain of surface waters.
- All loose piles of soil, silt, clay, sand, debris, or earthen materials shall be protected in a reasonable manner to prevent any discharge to waters of the State.
- Dewatering shall be done in a manner so as to prevent the discharge of earthen materials from the site.
- All disturbed areas shall be stabilized by appropriate soil stabilization measures by October 15 of each year.
- 6. All work performed between October 15th and May 1st of each year shall be conducted in such a manner that the project can be winterized within 48 hours.
- 7. Where possible, existing drainage patterns shall not be significantly modified.
- After completion of a construction project, all surplus or waste earthen material shall be removed from the site and deposited at a legal

4.8-2

point of disposal.

- Drainage swales disturbed by construction activities shall be stabilized by the addition of crushed rock or riprap, as necessary, or other appropriate stabilization methods.
- All nonconstruction areas shall be protected by fencing or other means to prevent unnecessary disturbance.
- 11. During construction, temporary erosion control facilities (e.g., impermeable dikes, filter fences, hay bales, etc.) shall be used as necessary to prevent discharge of earthen materials from the site during periods of precipitation or runoff.
- 12. Revegetated areas shall be regularly and continually maintained in order to assure adequate growth and root development. Physical erosion control facilities shall be placed on a routine maintenance and inspection program to provide continued erosion control integrity.
- 13. Where construction activities involve the crossing and/or alteration of a stream channel, such activities shall be timed to occur during the period in which streamflow is expected to be lowest for the year.

#### Land Development/Urban Runoff Control Actions for Susan River Watershed

- To protect riparian vegetation and wetlands from land disturbance activities, the Regional Board shall recommend that Lassen County and the City of Susanville require new development or any land disturbing activities to include buffer strips of undisturbed land, especially along the Susan River and its tributaries.
- 2. The Regional Board, with assistance from the City of Susanville and the California Department of Transportation (Caltrans), should conduct monitoring of the Susan River and Plute Creek within the City of Susanville to assess impacts from urban runoff. Control measures should be planned and implemented based on the results of the monitoring. The monitoring plan should be developed to identify nonpoint sources needing control. Monitoring proposals will be submitted by the Regional Board, and work will be conducted as resources allow and as the Susan River gains

priority.

- 3. The Regional Board shall encourage and assist other agencies in watershed restoration efforts along the Susan River.
- 4. The Regional Board shall encourage the City of Susanville and Lassen County to adopt a comprehensive grading ordinance. These ordinances should require, for all proposed land disturbing activities, the use of Best Management Practices to reduce erosion and stormwater runoff, including but not limited to temporary and permanent erosion control measures.
- The Regional Board shall encourage the City of Susanville, Lassen County and Caltrans to implement Best Management Practices to reduce erosion and stormwater runoff when constructing and maintaining roads, both paved and unpaved, under their jurisdiction.

## Road Construction and Maintenance

Road construction activities often involve extensive earth moving, including clearing, scarifying, excavating for bridge abutments, disturbing or modifying floodplains, cutting, and filling. Additionally, the potential for land disturbance exists from construction materials, equipment maintenance, fuel storage facilities, and general equipment use.

Once constructed, impervious road surfaces create another source of water pollution. Oils, greases, and other petroleum products, along with such toxic materials as battery acid, antifreeze, etc., may be deposited along the road surfaces. These contaminants become suspended or dissolved in any stormwater runoff that is generated on the road surfaces. Unless otherwise treated, these contaminants will flow toward local surface or ground waters. (See "Stormwater" section of this Chapter.)

Road maintenance can be potentially threatening to water quality in a number of ways. Below-grade culverts slowly fill with sediment and are cleaned out periodically, sometimes by flushing accumulated sediment into downstream drainageways. Grading of shoulders and drainageways can detach sediments and increase the risk of erosion into nearby surface

10/94 4.8-3

#### Ch. 4. IMPLEMENTATION

waters. Road surfaces may be repainted or resealed with materials that harden quickly, but which can be washed off while still fresh by stormwater runoff.

In the winter, roads are often snowy, icy, or wet. To reduce winter road hazards, maintenance crews may remove the snow or ice, apply sand to provide added traction, and/or apply deicing chemicals to melt the snow and ice. Sand is rapidly dissipated or crushed by the traffic, and must be replaced frequently. Great quantities of sediment enter drainageways and/or surface waters due to this practice. Snow may be removed mechanically via snowplow or snowblower. This practice is not particularly detrimental to water quality in itself, but the snow often carries substances from the roadway when removed. Sediments, chemical deicers, and vehicle fluids may travel much farther than they would otherwise, possibly reaching area surface waters. Ice and small accumulations of snow may be removed with chemical deicers. The deicer in widest use is rock salt (sodium chloride), due to its low cost, high availability, and predictable results.

Winter road maintenance was brought to the forefront in 1989 when significant numbers of roadside trees in the Lake Tahoe Basin suddenly started dying. The public outcry caused many environmental groups and regulatory agencies, including the Regional Board, to look more closely at what had been a more or less unscrutinized, unregulated process in the past. Data began to show that Caltrans was using very high amounts of salt each winter, and the figure seemed to increase from one year to the next. The consensus of the various regulatory agencies was that Caltrans should reduce salt use, explore various alternate deicers, and monitor the impacts of salt applications on soil, water, and vegetation. Salt use decreased significantly from 1989-1992, due to more careful application procedures and to drought conditions.

At least three alternate deicers have been explored: calcium magnesium acetate, potassium acetate, and magnesium chloride with corrosion inhibitors. These products have shown some promise, but further study is required. The cost to switch to an alternate deicer will be significant. The road departments are unwilling to make the switch unless an alternate deicer is demonstrably better environmentally, will not require too much adjustment on the part of the maintenance crews and equipment, and will actually

do an effective and predictable job when applied.

However, Caltrans' monitoring of vegetation showed minimal and temporary salt accumulation within the vegetation. During the spring, any salt that had accumulated in the vegetation was flushed out from the plant material. The impacts of chemical deicers on fish and wildlife within the Lahontan Region have not been studied.

## Control Measures for Road Construction and Maintenance

(Additional control measures for roads are included in the "Stormwater" section of this Chapter.)

The Regional Board regulates road construction and maintenance projects within the Lahontan Region. concentrating efforts on major construction and construction in sensitive areas. Major construction projects and those projects in sensitive areas are most often regulated under individual WDRs, and are routinely inspected. Less significant projects may be issued conditional waivers of WDRs. The Regional Board has also adopted road maintenance waste discharge requirements for some governments in the Region. Road construction and maintenance in the Lake Tahoe Basin is also regulated under municipal NPDES Stormwater Permits (see Chapter 5).

For all road projects, the Board requires that construction be conducted in a manner which is protective to water quality, and that, at the end of a given project, the site be restabilized and revegetated. These requirements are detailed in a Management Agency Agreement with Caltrans regarding the implementation of BMPs. Additionally, all road projects are to be in compliance with the Caltrans Statewide 208 Plan (CA Dept. of Transportation 1980), which was approved by the State Board in 1979. This Plan contains a commitment to implement BMPs, but does not include great detail on the BMPs themselves. The State Board should encourage Caltrans to update its 208 plan to provide such detail, with particular attention to:

- stormwater/erosion control along existing highways
- erosion control during highway construction and

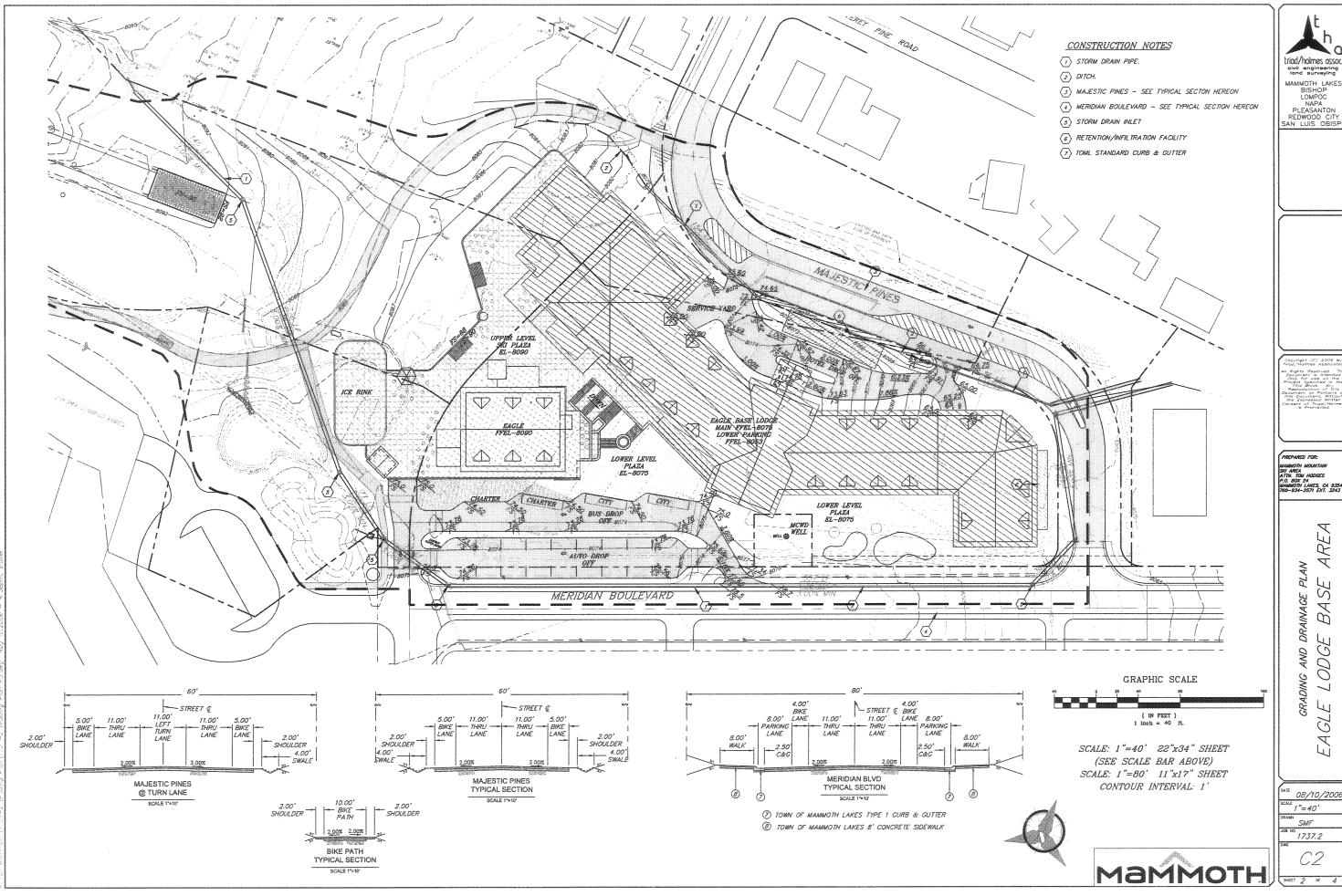
4.8-4 10/94

#### maintenance

- reduction of direct discharges (e.g., through culverts)
- reduction of runoff velocity
- infiltration, detention and retention practices
- management of deicing compounds, fertilizer, and herbicide use
- spill cleanup measures
- treatment of toxic stormwater pollutants

Since much of the implementation of BMPs on highways is done by Caltrans' contractors, the selection of qualified contractors and ongoing education of construction and maintenance personnel on BMP techniques are particularly important.

In the Lake Tahoe Basin, all governmental agencies assigned to maintain roads are required to bring all roads in the Lake Tahoe Basin into compliance with current "208" standards within a specified time schedule. That is, all existing facilities must be retrofitted to handle the stormwater runoff from the 20-year, 1-hour storm, and to restabilize all eroding slopes. The twenty-year time frame for this compliance process ends in 2008.


The Regional Board should allow salt use to continue as one component of a comprehensive winter maintenance program. However, the Regional Board should continue to require that it be applied in a careful, well-planned manner, by competent, trained crews. Should even the "proper" application of salt be shown to cause adverse water quality impacts, the Regional Board should then require that it no longer be used in environmentally sensitive areas, such as the Lake Tahoe Basin. Similarly, should an alternate deicer be shown to be effective, environmentally safe, and economically feasible, its use should be encouraged in lieu of salt.

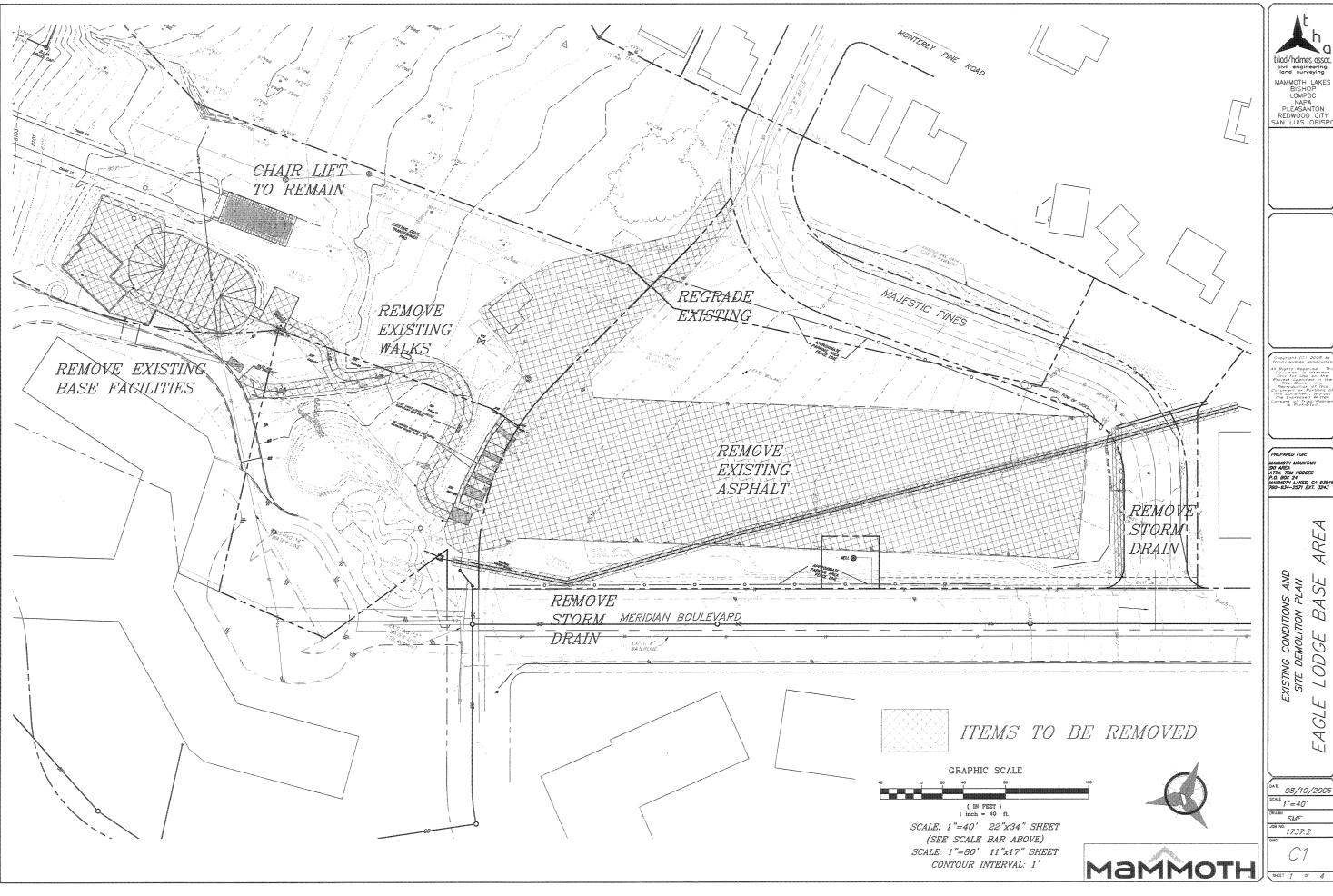
10/94 4.8-5

Sawmill Cutoff Rd 395 Mammoth Lakes Olastate Hwy Mammoth Mt. Old Mammoth Twin Lakes Horseshoe Lake Sherwin Lakes Lake Mary Lake George Valentine Lake N

Approximate Erosion Control Policy Area

Figure 4.8-1 OWENS HYDROLOGIC UNIT




triad/holmes assoc. MAMMOTH LAKES BISHOP LOMPOC NAPA

PREPARED FOR: MAMMOTH MOUNTAIN SKI AREA ATTN. TOM HODGES P.O. BOX 24 MAMMOTH LAKES, CA 93544 760-934-2571 EXT. 3243

> RE, V DING AND DRAINAGE PLAN LODGE BASE A GRADING J EAGLI

08/10/2006 1"=40'

SMF 1737.2



tried/holmes assoc

PREPARED FOR:
MANNOTH MOUNTAIN
SKI AREA
ATTN: TOM HODGES
P.O. BOX 24
MANNOTH LAKES, CA 93546
760-934-2571 EXT. 3243

08/10/2006

#### EROSION CONTROL NOTES

- 1. General Permit:
- a. This Storm Water Pollution Prevention Plan (SWPPP) is authorized under the Federal Clean Water Act (CWA), General Permit, NPDES CASOOOO2, and the State Water Quality Control Board (SWRCB) Order No. 99 - 08 - DWO. This General Permit prohibits the discharge of materials other than storm water and authorized non-storm water
- discharges.
  The SWPPP shall remain on the construction site while the site is under construction. during working hours, commencing with the initial construction activity and ending with
- termination of coverage under the General Permit.
  c. The SWPPP must be implemented at the appropriate level to protect water quality at all times throughout the life of the project. Non-storm water BMP's (Best Management Practices) must be implemented year round.

  For the purposes of this General Permit, the SWPPP shall be considered to be this
- plan, all text included in this SWPPP documentation, and all references made by this SWPPP.
- Conformance to this SWPPP is the minimum requirement. Modifications must be made as necessary to conform with the intent of the SWRCB Order No. 39 - 08 - DWQ and the NPDES General Permit No. CASOOOOO2.
- f. This document is not intended and cannot be relied upon to create rights, substantive
- or procedural, enforceable by any party in litigation with the United States.

  g. The Owner is ultimately responsible for the Storm Water Discharge from this site. The Owner shall inform all Contractors, Subcontractor, Future Owners or any other
- Authorized Representatives of these SWPPP requirements.

  All requirements of the Improvement Plan shall be incorporated into this plan by
- 2. General Frosion Control Measures (based on specific plan): Construction Phase Strategies, Activities, and Revegetation Plans to reduce short-term and long-term erosion and sedimentation, such as:
- a. If excavation occurs during the rainy season, storm runoff shall be regulated by temporary ansite detention basins with multiple discharge points to natural drainages and wetlands. Stockpiles of loose material shall be covered and runoff shall be diverted away from exposed soil material. If work is stopped due to rains, a positive grading away from the slopes shall be provided to carry the surface runoff to areas to where flow can be controlled, such as temporary detention basins. Sediment basin/traps shall be designed with efficiency to trap the modal size of soil particles on the site and shall be located and operated to prevent offsite sediment transport. trapped sediment shall be reused or removed to an approved disposal site.
- b. Temporary erosion control measures including the placement of properly trenched staked straw rolls and straw matting along the base of disturbed slapes and on drainage ways at the downstream site margins shall be provided until perennial revegetation or landscaping is established and can prevent discharge of sediment into drainages.
- c. After completion of grading, erosion protection shall be provided on all slopes including cut and fill slopes to reduce erosion problems during the rainy season. Based on the greater chance of precipitation, permanent or temporary reveaetation and/or erosion protection shall be installed within two days of grading slaped areas between Novemi 1 and April 1. Revegetation should be facilitated by mulching, hydroseeding or other methods suitable for landscaping. Temporary revegetation shall use a local annual grass adapted to the naturally low rainfall amounts (e.g. Panoche Red Brome), and shall be continued until permanent revegetation is successfully established. Permanent revegetation /landscaping of slopes shall emphasize perennial ground coverings, shrubs, and trees that are drought-tolerant, including native species, to improve the probability of slope and soil stabilization.
- 3. Non-Storm Discharges:

This General Permit prohibits the discharge of materials other than storm water and authorized non-storm water discharges. It is recognized that certain non-storm water discharges may be necessary for the completion of construction projects. Such discharges include, but are not limited to, irrigation of vegetative erosion control measures, pipe flushing and testing, street cleaning, and dewatering. Such discharges are allowed by this General Permit provided they are not relied upon to clean up failed or inadequate construction or post-construction RMP's designed to keep materials These authorized non-storm water discharges shall (1) be infeasible to eliminate, (2) comply with BMP's as described in the SWPPP, and (3) not cause or may be required to be permitted by the local RWOCB (e.g., some RWOCB's have adopted General Permits for dewatering discharges). This General Permit is performance-based to the extent that it prohibits the discharge of storm water that causes or threatens to cause pollution, contamination, or nuisance; but it also allows the owner/developer to determine the most economical, effective, and possibly innovative BMP's.

- a. Weekly inspections shall be performed to verify the performance of BMP's.
  b. The construction site shall be inspected prior to anticipated storm events and after actual storm events. During extended storm events, inspections must be made during
- each 24-hour period. c. The goals of these inspections are (1) to identify areas contributing to a storm water discharge; (2) to evaluate whether measures to reduce pollutant loadings identified in the SWPPP are adequate and properly installed and functioning in accordance with the terms of the General Permit; and (3) whether additional control practices or corrective maintenance activities are needed. If additional control practices or corrective maintenance activities are needed to be required, they shall be implemented immediately, and the SWPPP updated if necessary.

  d. Equipment, materials, and workers must be available for rapid response to failures and
- e. All corrective maintenance to BMP's shall be performed as soon as possible, depending upon worker safety
- These inspections, along with corrective measures, must be documented, and the documentation must be filed within this SWPPP.
- 5. Training:
- Individuals responsible for installation, inspection, maintenance, and repair of BMP's must be appropriately trained. Documentation of this training shall be filed within this SWPPP. At a minimum:
- a. Employees and subcontractors, and those responsible for their installation, maintenance and inspection shall read and have copies available during use, the appropriate BMP of ACTIVITY sheets from Appendix Q of this SWPPP.
- b. Employees and subcontractors shall also be fully trained with this plan and all requirements of this plan and SWRCB Order No. 99 - 08 - DWQ and the NPDES General Permit No. CAS000002.
- c. Weekly training meetings shall be held. At these meetings, BMP success and failures shall be discussed, as well as maintenance requirements. Responsible persons shall be assigned with appropriate tasks.
- 6. Entry.

The discharger shall allow the RWOCB, SWRCB, USEPA, and/or authorized representatives of the municipal operator of the separate storm sewer system receiving the discharge upon the presentation of credentials and other documents as may be required by to enter construction site, access records, inspect construction site, and sample or monitor at reasonable times.

7. Maintenance of BMP's:

BMP's shall be maintained and operated such that they reduce or eliminate pollutants from exiting the site to the greatest extent possible. If selected BMP's ore not working as required, the BMP installation must be improved, or new BMP's shall be selected. If construction operations change, the schedule changes or unexpected site conditions are encountered, the SMPPP must be reviewed to verify compliance with the General Permit requirements. If changes are needed, the SWPPP must be updated, amended, or revised to reflect those changes.

8. Compliance and Non-Compliance Reportina:

Discharger must certify annually that construction activities are in compliance with the requirements of the General Permit and the SWPPP. This Certification shall be

The discharger will give advance notice to the RWOCB and local storm water management agency of any planned changes in the construction activity which may result in noncompliance with General Permit requirements.

- 9. Monitoring Program for Sedimentation / Siltation. This site is not located directly on a water body listed for turbidity, so it is not to sampling and analysis requirements for sedimentation or siltation based
- 10. Monitoring Program for Pollutants Not Visually Detectable in Storm

The sampling and analysis program (section 600) may be required under certain conditions. Examples of construction sites that may require sampling and analysis include: sites that are known to have contaminants spilled or spread on the ground; sites where construction practices include the application of soil amendments, such as gypsum; or sites having uncovered stockpiles of material exposed to storm water If there is a site discharge that could contain a pollutant, or if specifically requested by the RWQCB, then the sampling and analysis program must be

- 11. Penalties for Violations of Permit Conditions
- a. Section 309 of the CWA provides significant penalties for any person who violates a permit condition implementing Sections 301, 302, 306, 307, 308, 318, or 405 of the CWA or any permit condition or limitation implementing any such section in a permit issued under Section 402. Any person who violates any permit condition of this General Permit is subject to a civil penalty not to exceed \$27,500 per calendar day of such violation, as well as any other appropriate sanction provided by Section 309 of the CWA.
- The Porter-Cologne Water Quality Control Act also provides for civil and criminal penalties which in some cases are greater than those under the CWA.
- 12. Oil and Hazardous Substance Spill

In the event of a Oil or Hazardous Substance Spill, An Oil Spill Report (included in Attachment T) shall be filled out and submitted as required.

13. Potential Pollutants

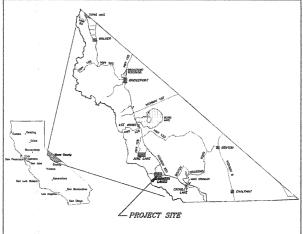
In the event of a significant spill, a significant spill report (included in Attachment T) shall be filled out and submitted as required. The Discharge Reporting Log in Attachment T must also be filled out. These as well as any other Potential Pollutant which may come in contact with Storm Water must be entered onto the Potential Pollutant form (included in Attachment T). At this time Contractor and/or Owner must verify with the Lahontan Regional Water Quality Control Board if testing will be required.

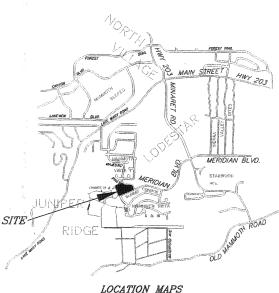
14. Construction Schedulina

Construction Scheduling based on Erosion Control BMP ES-1 shall be provided prior to construction activities.

Grading shall be limited as much as possible. Earth disturbing activities shall be between October 15 and April 15. During this time, the site shall be "Winterized". No graded areas shall be left unstabilized between October 15 and April 15.

The storm drain to collect offsite runoff shall be built prior to the earth disturbing


General Interim Erosion Control Measures (Pre-Construction): (REFER TO APPENDIX Q FOR COMPLETE DESCRIPTION OF BMP'S)


- Employee / Subcontractor Training: Responsible Managers, Inspectors Contractors, Subcontractors and Employees must be trained appropriately for the Installation, Maintenance and Inspection of BMP's. Proof of training shall be filed in the SWPPP.
- 2. Preservation of Existing Vegetation (EC-2): Native vegetation shall be retained protected, and supplemented wherever possible. Exposure of soil areas shall be limited to the immediate area required for construction operations. The native vegetative ground cover shall not be destroyed, removed or disturbed more than 15
- 3. Grading areas shall be clearly marked and no equipment or vehicles shall disturb slopes or drainages outside of the grading area
- 4 Contractor shall keen informed to potential weather conditions and Limit excavation contractor shaw keep informed to potential weather conditions and Limit excovation and grading activities to the dry weather conditions. This reduces the chance of severe erosion from intense rainfall and surface runoff, as well as the potential for soil saturation in swale areas. Reduce the probability of significant wind erosion during the dry season, which would occur due to the wind regime and fine soils, by nenting a dust abatement program

General Interim Erosion Control Measures (during construction): (REFER TO APPENDIX Q FOR COMPLETE DESCRIPTION OF BMP'S)

- Employee / Subcontractor Training: Responsible Managers, Inspectors Contractors, Subcontractors and Employees must be trained appropriately for the Installation, Maintenance and Inspection of BMP's. Proof of training shall be filed in the SWPPP.
- 2. Efforts must be taken to reduce the tracking of sediment onto public or private roads at all times. Stabilized Construction Entrances (BMP TC-1, TC-2, and TC-3) must be maintained to reduce potential for tracking. Trucks shall not leave site with large amounts of dirt on truck, trailer or tires. Public and private roads shall be inspected and cleaned as necessary (BMP SC-7). Road cleaning operations must be done in such a way as to avoid the washing of accumulated sediment or sit into the storm drain system. Road cleaning operations must also avoid creating dust. Preferable methods of road cleaning include use of road sweepers with water applied prior to sweeping operation and a vacuum system to
- 3. Preservation of Existing Vegetation (BMP EC-2): Native vegetation shall be retained, protected, and supplemented wherever possible. Exposure of sail area shall be limited to the immediate area required for construction operations. The native vegetative ground cover shall not be destroyed, removed or disturbed more than 15 days prior to grading
- 4. Limit excavation and grading activities to the dry weather conditions. (BMP EC-1) This reduces the chance of severe erosion from intense rainfall and surface runoff, as well as the potential for soil saturation in swale areas. Reduce the probability of significant wind erosion during the dry season, which would occur due to the wind regime and fine soils, by implementing a dust abatement program (BMP WE-1).
- 5. Water Conservation Practices shall used for this project (BMP NS-1)
- 6. Dewatering (BMP NS-2): Dewatering is not anticipated. If dewatering is performed, the contractor shall use sediment controls and test the groundwater for pollution, to prevent or reduce the discharge of pollutonts to storm water.
- 7. Paving Operations (BMP NS-3): Contractor shall prevent or reduce the discharge of rounity operations (point in 2-3). Controctor stain prevent or reduce the absolution, properly disposing operations, using measures to prevent runon and runoff pollution, properly disposing of wastes and training employees and subcontractors. Drainage courses shall be protected. An ansite mixing plant is not allowed by this SWPPP. A separate industrial activities permit would be required to allow an onsite mixing plant.
- Vehicle and Equipment Cleaning (BMP NS-8): It is anticipated that offsite facilities shall be used for Equipment Cleaning. If vehicle and equipment cleaning operations are performed onsite, contractor shall conform to this BMP.
- 9. Vehicle and Equipment Fueling (BMP NS-9): It is anticipated that Vehicle and Equipment fueling will take place offsite. Contractor shall prevent fuel spills and leaks, and reduce their impacts to storm water by using offsite facilities, fueling in designated areas only, enclosing or covering stored fuel, implementing spill controls, and training employees and subscontractors. If vehicle and equipment fueling operations are performed onsite, contractor shall conform to this RMP
- 10. Vehicle and Equipment Maintenance (BMP NS-10): Contractor shall prevent or reduce the discharge of pollutants to storm water from vehicle and equipment maintenance by running a "dry site". This involves using offsite facilities, performing work in designated areas only, providing cover for materials stored outside, checking for leaks and spills, containing and cleaning up spills immediately, and training employees and subcontractors. If vehicle and e quipment maintenance operations are performed onsite, contractor shall conform to this
- 11. Dust Control (BMP WE-1): Dust control measures shall be used to stabilize soil from wind erosion, and reduce dust generated by construction activities
- 12. Material Delivery and Storage (BMP WM-01): Hazardous Materials storage onsite shall be minimized. Spécific areas shall be designated for material storage. Designated areas shall not be near drainage paths or waterways. Materials (except soil, gravel and sand) shall not be stored on the ground (consider pallets). Stored materials shall be covered during rainy season, or when a storm is predicted within 24 hours.
- 13. Material Use (BMP WM-02): Use of hazardous materials; such as fertilizers, herbicides, and pesticides: shall be minimized. Alternate materials (non-hazardous) shall be used where positive and / or use of hazardous material shall be minimized. Employees and subcontractors shall be trained in the use of these materials. Do not over apply fertilize herbicides, and pesticides. Stockpile operations shall employ procedures and practices to r apply fertilizers. reduce or eliminate air and stormwater pollution (BMP WM-03).
- 14. Spill Prevention and Control (BMP WM-04): Hazardous materials shall be protected from vandalism. Place stockpile of spill cleanup materials where it will be readily accessible. Employees shall be trained in spill prevention and cleanup. Designated responsible individual shall be available at all times Hazardous materials are stored onsite.
- 15. Solid Waste Management (BMP WM-05): Contractor shall prevent or reduce the discharge of pollutants to storm water from solid or construction waster by providing designated waste collection areas and containers, arranging for regular disposal, and training employees and
- 16. Hazardous Waste Management (BMP WM-06): Hazardous waste materials shall be removed from the site at the earliest convenience. Prevent or reduce the discharge of pollutants to storm water from hazardous waste through proper material use, waste disposal, and training
- 17. Contaminated Soil Management (BMP WM-07): Contaminated soil is not anticipated. Should contaminated soil be ancountered, notify the RWQCB and the engineer, and prevent or reduce the discharge of pollutants to storm water from contaminated soil and highly acidic or alkaline soils by conducting pre-construction surveys, inspecting excavations regularly, and remediating contaminated soil promptly.
- 18. Concrete Waste Management (BMP WM-08): Whenever possible, concrete washout shall occur offsite. When it must occur onsite, an orea must be designated, and employees and subcontractors must be trained in its use. If onsite, a concrete washout must be at least 50 feet from storm drains, apen ditches or water bodies. No runoff is allowed from this site. Washout must go into a temporary pit where the concrete can set, be broken up and
- 19. Sanitary / Septic Waster Management (BMP WM-09): Sanitary / septic facilities shall be placed in convenient locations, at least 50 feet from any drainage path. They shall be inspected regularly. Contractor shall arrange for regular waste collection. Untreated raw wastewater shall never be discharged or buried. Portable sanitary facilities must be secured
- 20. Structure Construction and Painting: Contractor shall prevent or reduce the discharge of pollutants to storm water by enclosing or covering or berming building materials storage areas, using good housekeeping practices, using safer alternative products where possible, and training employees and subcontractors.

STORM WATER POLLUTION PREVENTION PLAN (SWPPP) EAGLE LODGE BASE AREA MAMMOTH LAKES, MONO COUNTY, CALIFORNIA





#### SWPPP INDEX

SHEET 1 - COVER AND NOTES SHEET 2 - SWPPP PLAN

ENGINEER OF RECORD TRIAD/HOLMES ASSOCIATES P.O. BOX 1570 MAMMOTH LAKES, CA 93546

SURVEYOR TRIAD /HOLMES ASSOCIATES P.O. BOX 1570

MAMMOTH LAKES, CA 93546 760-934-7588

GEOTECHNICAL ENGINEER

SIERRA GEOTECHNICAL SERVICES P.O. BOX 5024

MAMMOTH LAKES, CA 93546

760-934-3992

PROPERTY LOCATION

WEST END OF MERIDIAN BOULEVARD MONO COUNTY MAMMOTH LAKES CA 93546

RECORD OWNER

MAMMOTH MOUNTAIN SKI ARFA ATTN. TOM HODGES
P.O. BOX 24
MAMMOTH LAKES, CA 93546 760-934-2571 EXT. 3243

маммотн

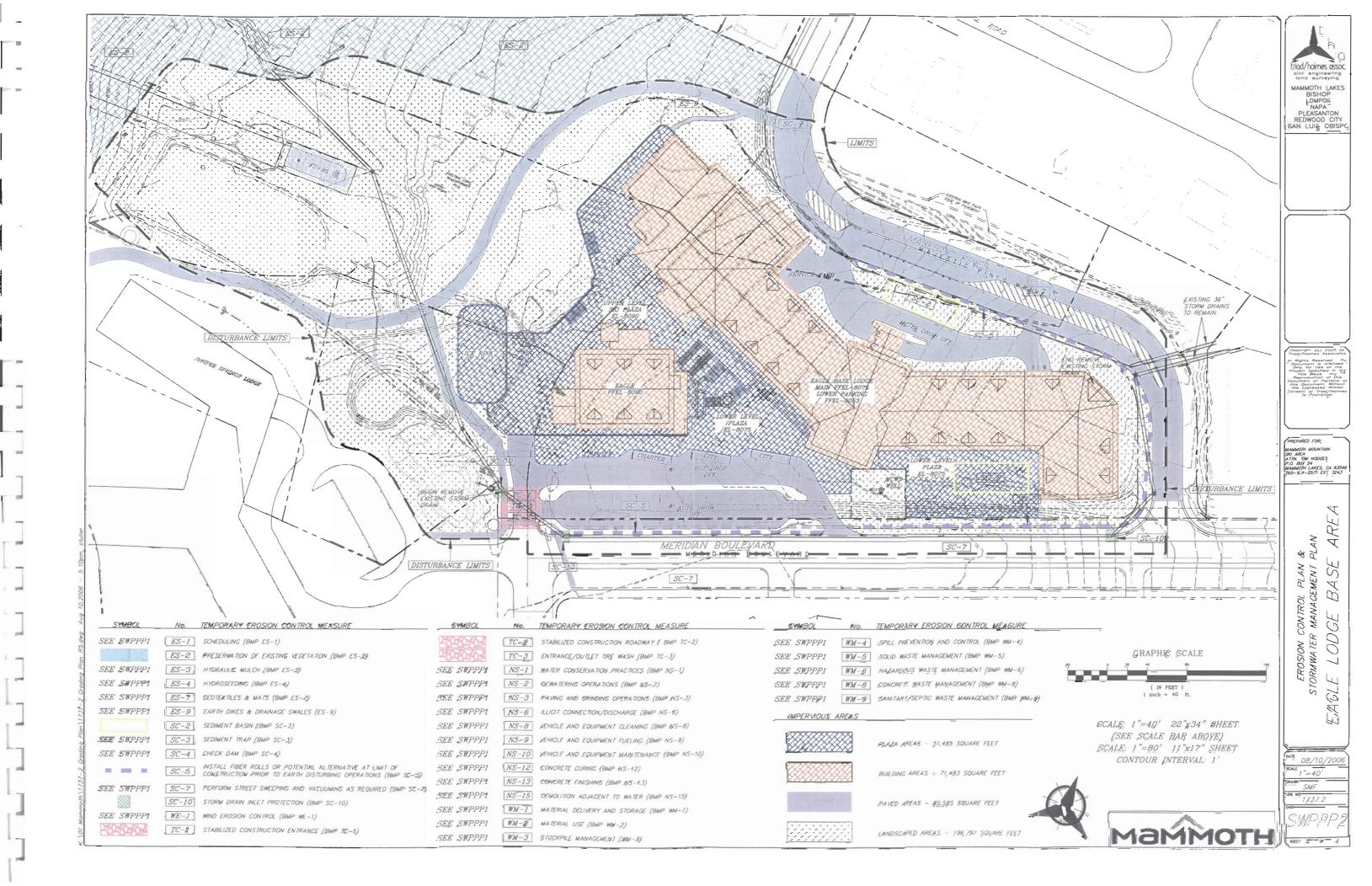
triad/holmes assoc MAMMOTH LAKES BISHOP LOMPOC NAPA PLEASANTON REDWOOD CITY SAN LUIS OBISP

PREPARED FOR: TH MOUNTAR .U. BUX 24 MAMMOTH LAKES, CA 93540 160–934–2571 EXT. 3243

NES AND WIROL MEASURES 4 SE AREA NO TE BA CONTROL EROSION ODGE EROSION INTERIM 7

08/10/2006

≷ J


 $\mathcal{C}$ SENERAL

V

 $\square$ 

1"=40' SMF 1737.2

SWPPP



#### **Attachment C**

#### **BMP Consideration Checklist – Eagle Lodge**

## CONSTRUCTION SITE BMPs CONSIDERATION CHECKLIST

|            | EROSION CONTROL BMPs                   |                           |                  |                         |                                                                                       |  |
|------------|----------------------------------------|---------------------------|------------------|-------------------------|---------------------------------------------------------------------------------------|--|
| BMP<br>No. | ВМР                                    | CONSIDERED<br>FOR PROJECT | CHECK IF<br>USED | CHECK IF<br>NOT<br>USED | IF NOT USED, STATE REASON                                                             |  |
| ES-1       | Scheduling                             | ☑                         | ☑                |                         |                                                                                       |  |
| ES-2       | Preservation of<br>Existing Vegetation | <b>V</b>                  | Ø                |                         |                                                                                       |  |
| ES-3       | Hydraulic Mulch                        | <b>4</b>                  | ☑                |                         |                                                                                       |  |
| ES-4       | Hydroseeding                           | ☑                         | V                |                         |                                                                                       |  |
| ES-5       | Soil Binders                           | ☑                         |                  | V                       | Water will be used in lieu of Soil Binders                                            |  |
| ES-6       | Straw Mulch                            | ☑                         |                  | Ø                       | This product is typically avoided in our area due to potential to be carried by wind  |  |
| ES-7       | Geotextiles & Mats                     | <b>7</b>                  | ☑                |                         |                                                                                       |  |
| ES-8       | Wood Mulching                          | Ø                         |                  |                         | This product will not be used due to potential to introduce unwanted species          |  |
| ES-9       | Earth Dikes &<br>Drainage Swales       | <b>7</b>                  | Ø                |                         |                                                                                       |  |
| ES-10      | Velocity Dissipation<br>Devices        | Ø                         |                  | Ø                       | This project does not have any storm drain outlets that would produce high velocities |  |
| ES-11      | Slope Drains                           | Ø                         |                  | Ø                       | This project does not have steep sloped areas                                         |  |

## CONSTRUCTION SITE BMPs CONSIDERATION CHECKLIST

|            | SEDIMENT CONTROL BMPs                    |                           |                  |                         |                                                                                                          |  |
|------------|------------------------------------------|---------------------------|------------------|-------------------------|----------------------------------------------------------------------------------------------------------|--|
| BMP<br>No. | ВМР                                      | CONSIDERED<br>FOR PROJECT | CHECK IF<br>USED | CHECK IF<br>NOT<br>USED | IF NOT USED, STATE REASON                                                                                |  |
| SC-1       | Silt Fence                               | <b>7</b>                  |                  | Ø                       | This project is located in view shed and we are generally directed to avoid this product in lieu of SC-5 |  |
| SC-2       | Sediment Basin                           |                           | V                |                         |                                                                                                          |  |
| SC-3       | Sediment Trap                            | Ø                         | Ø                |                         |                                                                                                          |  |
| SC-4       | Check Dam                                |                           | V                |                         |                                                                                                          |  |
| SC-5       | Fiber Rolls                              |                           | V                |                         |                                                                                                          |  |
| SC-6       | Gravel Bag Berm                          | Ø                         |                  | $\overline{\checkmark}$ | Will be avoided in lieu of Fiber Rolls                                                                   |  |
| SC-7       | Street Sweeping and Vacuuming            | Ø                         | Ø                |                         |                                                                                                          |  |
| SC-8       | Sand Bag Barrier                         | Ø                         |                  | V                       | Sand Bag Barriers have more potential of harm than good                                                  |  |
| SC-9       | Straw Bale Barrier                       |                           |                  | V                       | Has been noted by RWQCB personnel to us that this is not preferred BMP                                   |  |
| SC-10      | Storm Drain Inlet<br>Protection          | $\square$                 | Ø                |                         |                                                                                                          |  |
|            | WIND EROSION CONTROL BMPs                |                           |                  |                         |                                                                                                          |  |
| WE-1       | Wind Erosion Control                     |                           | V                |                         |                                                                                                          |  |
|            | TRACKING CONTROL BMPs                    |                           |                  |                         |                                                                                                          |  |
| TC-1       | Stabilized Construction<br>Entrance/Exit | $\checkmark$              | $\square$        |                         |                                                                                                          |  |
| TC-2       | Stabilized Construction Roadway          | <b>7</b>                  | Ø                |                         |                                                                                                          |  |
| TC-3       | Entrance/Outlet Tire<br>Wash             | ☑                         | Ø                |                         |                                                                                                          |  |

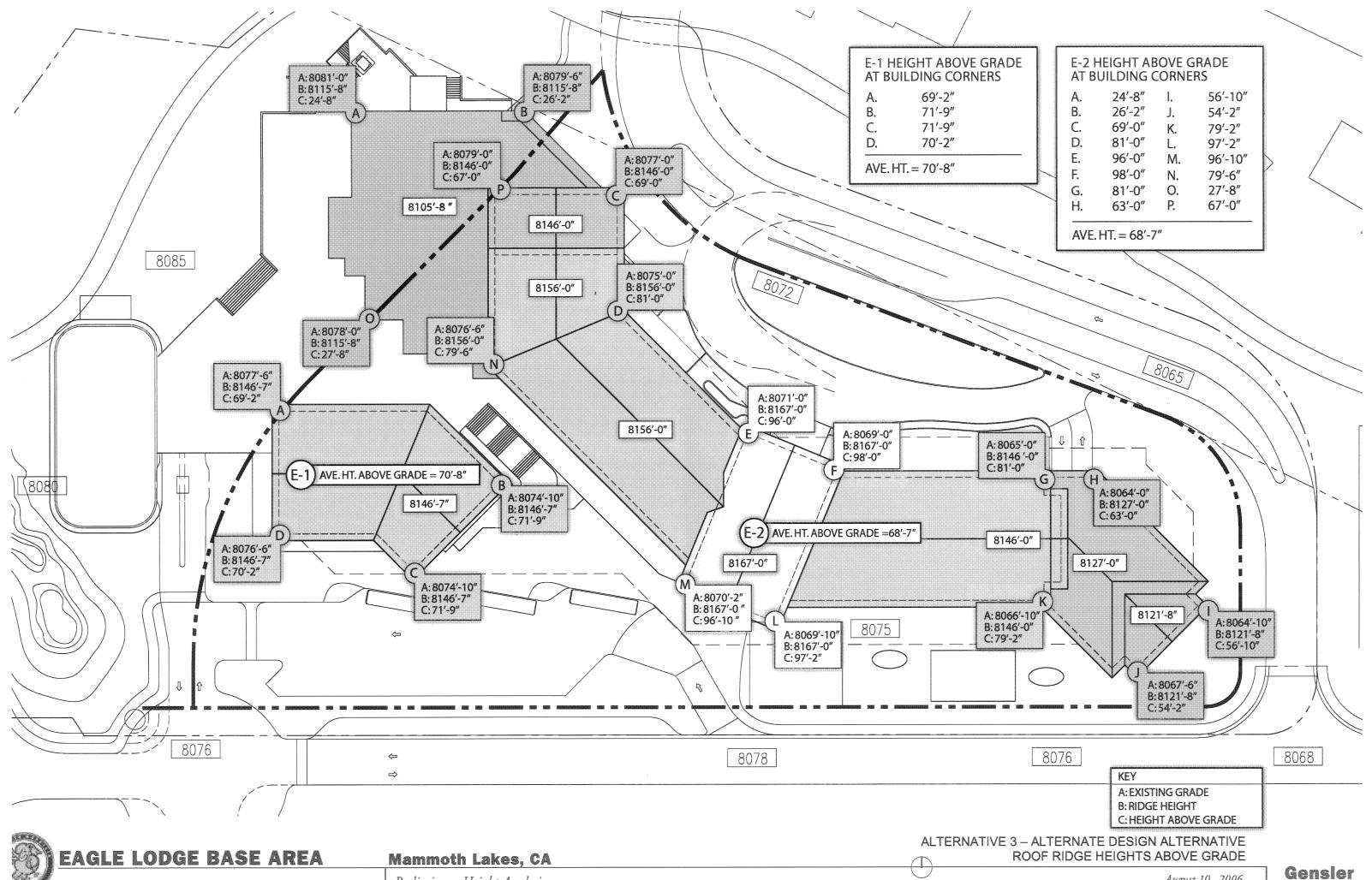
## CONSTRUCTION SITE BMPs CONSIDERATION CHECKLIST

|            | NON-STORM WATER MANAGEMENT BMPs             |                           |                  |                         |                                                                      |
|------------|---------------------------------------------|---------------------------|------------------|-------------------------|----------------------------------------------------------------------|
| BMP<br>No. | ВМР                                         | CONSIDERED<br>FOR PROJECT | CHECK IF<br>USED | CHECK IF<br>NOT<br>USED | IF NOT USED, STATE REASON                                            |
| NS-1       | Water Conservation<br>Practices             |                           | Ø                |                         |                                                                      |
| NS-2       | Dewatering Operations                       | $\square$                 |                  |                         |                                                                      |
| NS-3       | Paving and Grinding<br>Operations           | ☑                         | ✓                |                         |                                                                      |
| NS-4       | Temporary Stream<br>Crossing                |                           |                  | $\nabla$                | There will be no temporary stream crossings                          |
| NS-5       | Clear Water Diversion                       | $\square$                 |                  |                         | There will be no clear water diversions                              |
| NS-6       | Illicit Connection/<br>Discharge            | $\square$                 | Ø                |                         |                                                                      |
| NS-7       | Potable<br>Water/Irrigation                 |                           |                  |                         | There will be no Potable water / irrigation discharges for this work |
| NS-8       | Vehicle and Equipment Cleaning              | $\square$                 | V                |                         |                                                                      |
| NS-9       | Vehicle and Equipment Fueling               | V                         | ☑                |                         |                                                                      |
| NS-10      | Vehicle and Equipment Maintenance           |                           |                  | ·                       |                                                                      |
| NS-11      | Pile Driving Operations                     |                           |                  | Ø                       | There will be no pile driving operations                             |
| NS-12      | Concrete Curing                             | Ø                         | V                |                         |                                                                      |
| NS-13      | Concrete Finishing                          | $\square$                 | V                |                         |                                                                      |
| NS-14      | Material and<br>Equipment Use Over<br>Water | Ø                         |                  | Ø                       | There will not be material usage or equipment usage over water       |
| NS-15      | Demolition Adjacent to Water                |                           |                  |                         |                                                                      |
| NS-16      | Temporary Batch<br>Plants                   | Ø                         |                  | Ø                       | There will not be a temporary batch plant on site                    |

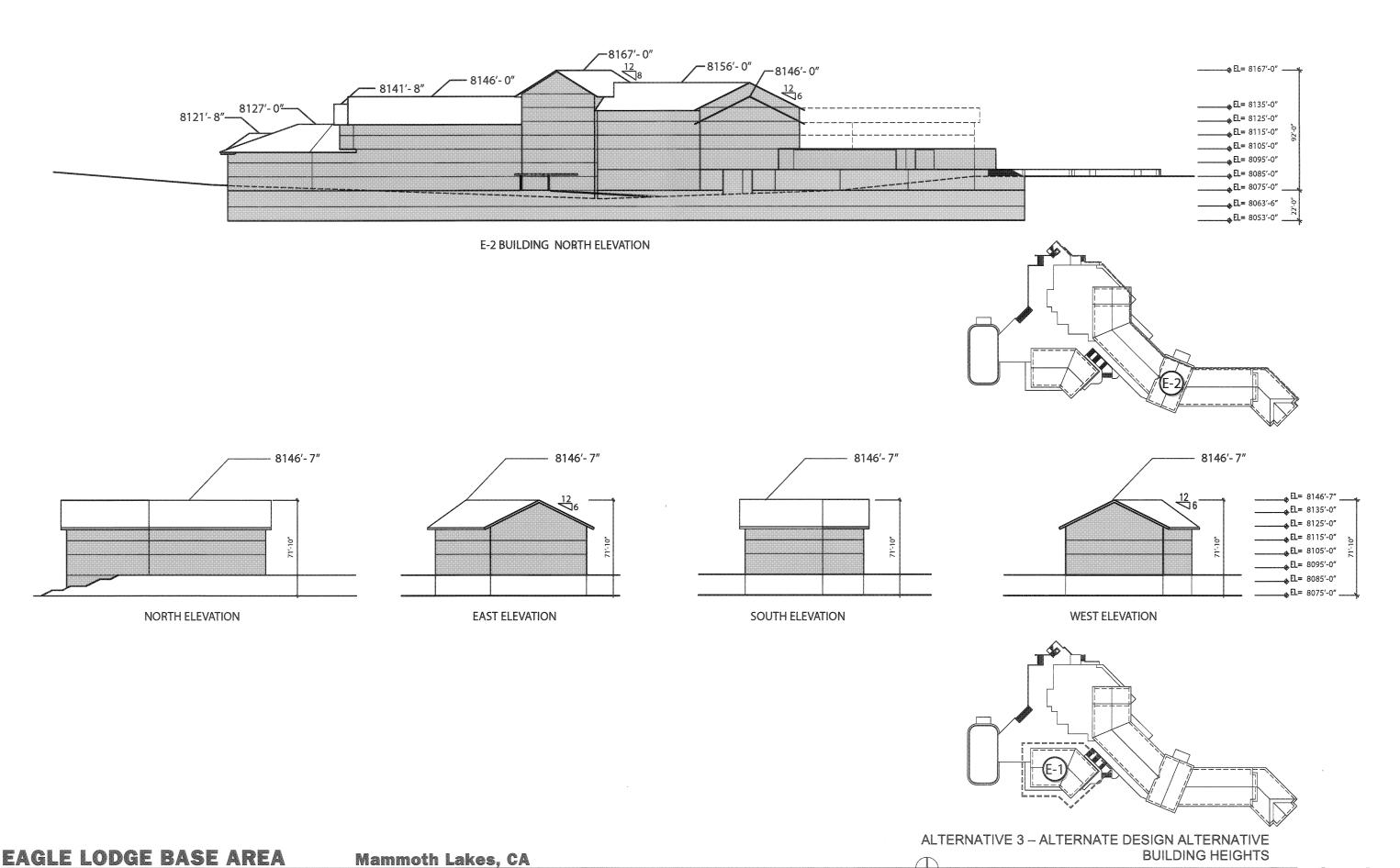
## CONSTRUCTION SITE BMPs CONSIDERATION CHECKLIST

| WASTE MANAGEMENT AND MATERIALS POLLUTION CONTROL BMPs |                                     |                           |                  |                         |                                                                      |
|-------------------------------------------------------|-------------------------------------|---------------------------|------------------|-------------------------|----------------------------------------------------------------------|
| BMP<br>No.                                            | ВМР                                 | CONSIDERED<br>FOR PROJECT | CHECK IF<br>USED | CHECK IF<br>NOT<br>USED | IF NOT USED,<br>STATE REASON                                         |
| WM-1                                                  | Material Delivery and Storage       |                           | V                |                         |                                                                      |
| WM-2                                                  | Material Use                        | $\square$                 | Ø                |                         |                                                                      |
| WM-3                                                  | Stockpile<br>Management             | $\square$                 |                  |                         |                                                                      |
| WM-4                                                  | Spill Prevention and<br>Control     | $\square$                 |                  |                         |                                                                      |
| WM-5                                                  | Solid Waste<br>Management           |                           |                  |                         |                                                                      |
| WM-6                                                  | Hazardous Waste<br>Management       | $\square$                 |                  |                         |                                                                      |
| WM-7                                                  | Contaminated Soil<br>Management     | $\square$                 |                  | $\overline{\mathbf{V}}$ | There are no known contaminated soils on site                        |
| WM-8                                                  | Concrete Waste<br>Management        |                           | $\nabla$         |                         |                                                                      |
| WM-9                                                  | Sanitary/Septic Waste<br>Management | <b>7</b>                  | ☑                |                         |                                                                      |
| WM-10                                                 | Liquid Waste<br>Management          | $\square$                 |                  | V                       | Project will not produce Liquid Waste of the type identified in WM10 |

## **Attachment G**


## Program for Maintenance, Inspection, and Repair of Construction Site BMPs

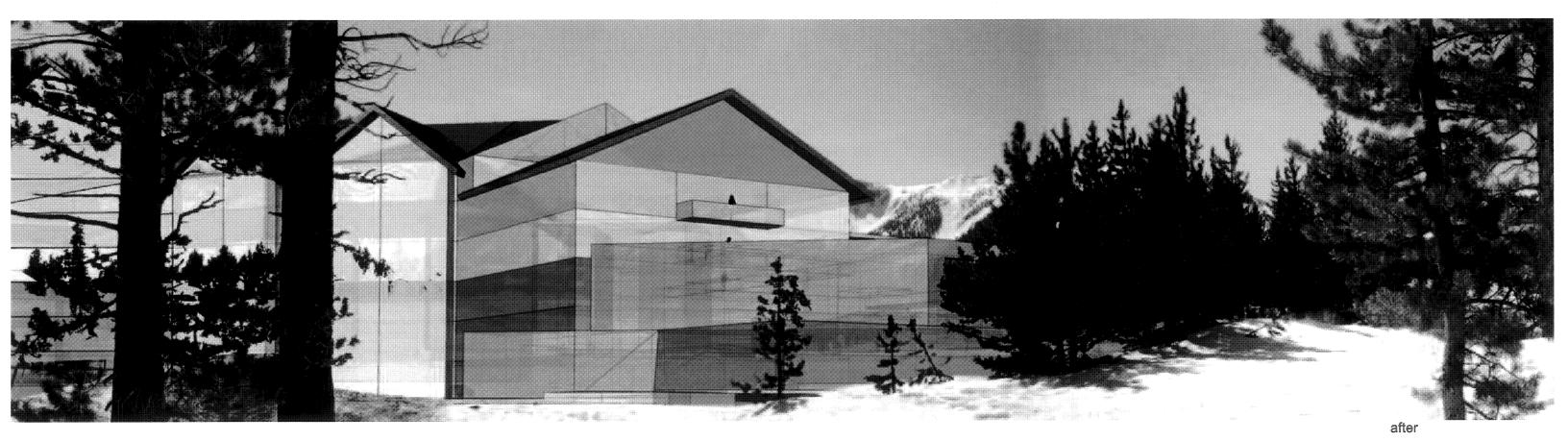
| The contractor shall use the following guidelines for maintenance, inspection, and repair of BMPs identified in the SWPPP |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| BEST MANAGEMENT PRACTICES (BMPs)                                                                                          | INSPECTION FREQUENCY (all controls)                                                                                                                                           | MAINTENANCE/REPAIR PROGRAM (also see attachment Q)                                                                                                                                                                                                                                                             |  |  |  |
| a to a second                                                                                                             | TEMPORARY EROSION CONTR                                                                                                                                                       | OL BMPs                                                                                                                                                                                                                                                                                                        |  |  |  |
| ES-1 - Scheduling                                                                                                         | Continuous                                                                                                                                                                    | ■ Coordinate work                                                                                                                                                                                                                                                                                              |  |  |  |
| ES-2 - Preservation of Existing<br>Vegetation                                                                             | Bi- weekly during dry season<br>and weekly during wet                                                                                                                         | <ul> <li>Inspect existing vegetation and any<br/>barrier fence replace as needed</li> </ul>                                                                                                                                                                                                                    |  |  |  |
| ES-3 Hydraulic Mulch<br>ES-4 Hydroseeding<br>ES-7 Geotextiles & Mats                                                      | Bi- weekly during dry season and weekly during wet Prior to forecast rain event Every 24 hr during rain event After rain event                                                | Areas where erosion is evident shall be repaired and BMPs re-applied as soon as possible. Care shall be taken to minimize damage to protected areas. Where seed fails to germinate, area must be re-seeded.                                                                                                    |  |  |  |
| ES-9 – Earth Dikes & Drainage<br>Swales                                                                                   | <ul> <li>Bi- weekly during dry season and weekly during wet</li> <li>Prior to forecast rain event</li> <li>Every 24 hr during rain event</li> <li>After rain event</li> </ul> | <ul> <li>Inspect ditches swales and berms for washouts. Replace lost or damaged linings as needed</li> <li>Inspect channel linings, beds of ditches and swales. Remove debris and sediment and repair linings as needed.</li> <li>Temporary conveyances should be completely removed as soon as the</li> </ul> |  |  |  |
|                                                                                                                           |                                                                                                                                                                               | surrounding drainage area has been<br>stabilized or at the completion of<br>construction.                                                                                                                                                                                                                      |  |  |  |


|                                                                     | of BMPs identified in the S                                                                                                               |                                                                                                                                                                                                                                                |  |  |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| BEST MANAGEMENT                                                     | INSPECTION FREQUENCY                                                                                                                      | MAINTENANCE/REPAIR PROGRAM                                                                                                                                                                                                                     |  |  |
| PRACTICES (BMPs)                                                    | (all controls)                                                                                                                            | (also see attachment Q)                                                                                                                                                                                                                        |  |  |
|                                                                     | TEMPORARY SEDIMENT CONT                                                                                                                   |                                                                                                                                                                                                                                                |  |  |
| SC-2 – Sediment Basin<br>SC-3 – Sediment Trap                       | Bi- weekly during dry season and weekly during wet                                                                                        | <ul> <li>Inspect banks for seepage and structura soundness, repair as needed</li> </ul>                                                                                                                                                        |  |  |
|                                                                     | <ul> <li>Prior to forecast rain event</li> <li>Every 24 hr during rain event</li> <li>After rain event</li> </ul>                         | <ul> <li>Inspect inlet and outlet structure and<br/>spillway for any erosion, damage or<br/>obstructions. Repair damage and<br/>remove obstructions as needed.</li> </ul>                                                                      |  |  |
|                                                                     |                                                                                                                                           | Inspect for standing water, corrective<br>measures should be taken if BMP does<br>not dewater completely in 72 hours.                                                                                                                          |  |  |
|                                                                     |                                                                                                                                           | <ul> <li>Remove sediment load and vegetation<br/>and repair damaged BMP per<br/>Attachment Q for each BMP.</li> </ul>                                                                                                                          |  |  |
|                                                                     |                                                                                                                                           | ■ Remove BMP when no longer needed                                                                                                                                                                                                             |  |  |
|                                                                     |                                                                                                                                           | BMPs that require dewatering shall be<br>continuously attended while dewatering<br>takes place. Dewatering BMPs shall be<br>implemented at all times during<br>dewatering activities.                                                          |  |  |
| SC-4 - Check Dam<br>SC-5 - Fiber Rolls<br>SC-10 - Storm Drain Inlet | Bi- weekly during dry season and weekly during wet     Prior to forecast rain event                                                       | Remove sediment load and repair<br>damaged BMP per Attachment Q for<br>each BMP.                                                                                                                                                               |  |  |
| Protection                                                          | <ul><li>Every 24 hr during rain event</li><li>After rain event</li></ul>                                                                  | ■ Remove BMP when no longer needed                                                                                                                                                                                                             |  |  |
| SC-7 - Street Sweeping                                              | Daily during construction activities                                                                                                      | Inspect site access points, sweep as needed                                                                                                                                                                                                    |  |  |
|                                                                     | WIND EROSION CONTROL                                                                                                                      | BMPs                                                                                                                                                                                                                                           |  |  |
| WE-1 - Wind Erosion Control                                         | Daily during construction activities     Bi-weekly when project not under construction                                                    | <ul> <li>Apply adequate water to contol dust without causing soil erosion per Attachment Q for WE-1</li> <li>During non construction periods, if dust becomes a problem, soil palliatives should be considered for disturbed areas.</li> </ul> |  |  |
|                                                                     | TRACKING CONTROL BN                                                                                                                       |                                                                                                                                                                                                                                                |  |  |
| TC-1 – Stabilized Construction<br>Entrance / Exit                   | Weekly or sooner depending<br>on weather and usage during<br>construction activities     Bi-weekly when project not<br>under construction | <ul> <li>Clean or replace rock as needed to<br/>eliminate excessive soil accumulation,<br/>see Attachment Q for TC-1</li> </ul>                                                                                                                |  |  |
| TC-2 – Stabilized Construction<br>Roadway                           | Weekly or sooner depending<br>on weather and usage during<br>construction activities                                                      | <ul> <li>This will be installed, if it is determined necessary during construction</li> <li>Maintain as needed per Attachment Q for</li> </ul>                                                                                                 |  |  |
|                                                                     | Bi-weekly when project not under construction                                                                                             | TC-2                                                                                                                                                                                                                                           |  |  |

| The contractor shall u                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                | aintenance, inspection, and repair                                                                                                                                                                                                                                                     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| of BMPs identified in the SWPPP                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| BEST MANAGEMENT                                                                                                                                                                                                                                                                                                                                 | INSPECTION FREQUENCY                                                                                                                                                                                                                                                                                                           | MAINTENANCE/REPAIR PROGRAM                                                                                                                                                                                                                                                             |  |  |  |  |  |
| PRACTICES (BMPs)                                                                                                                                                                                                                                                                                                                                | (all controls)                                                                                                                                                                                                                                                                                                                 | (also see attachment Q)                                                                                                                                                                                                                                                                |  |  |  |  |  |
| TC-3 – Entrance/Outlet Tire Wash                                                                                                                                                                                                                                                                                                                | Weekly or sooner depending on weather and usage during construction activities (if installed)     Bi-weekly when project not under construction (if installed)                                                                                                                                                                 | <ul> <li>This will be installed, if it is determined necessary during construction</li> <li>Clean as needed to eliminate excessive soil accumulation see Attachment Q for TC-3</li> </ul>                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                 | under construction (if installed)                                                                                                                                                                                                                                                                                              | ENT DUD-                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                 | NON-STORM WATER MANAGEM                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| NS-1 – Water Conservation NS-2 – Dewatering Operations NS-3 – Paving and Grinding Operations NS-6 – Illicit Connection / Discharge NS-8 – Vehicle and Equipment Cleaning NS-9 – Vehicle and Equipment Fueling NS-10 – Vehicle and Equipment Maintenance NS-12 – Concrete Curing NS-13 – Concrete Finishing NS-15 – Demolition Adjacent to Water | <ul> <li>Inspect and verify that activity based BMPs are in place prior to the commencement of associated activities</li> <li>Weekly or sooner depending on weather and usage during construction activities</li> <li>Inspect BMPs subject to nonstormwater discharges daily while non-stormwater discharges occur.</li> </ul> | <ul> <li>Check Attachment Q for the requirements for each NS BMP</li> <li>No construction materials or equipment shall be left on site during periods of no construction activity with the exception of materials for use in implementing BMPs</li> </ul>                              |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                 | AGEMENT AND MATERIALS POLL                                                                                                                                                                                                                                                                                                     | LITION CONTROL BMPs                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| WM-1 – Material Delivery & Storage WM-2 – Material Use WM-3 – Stockpile Management WM-4 – Spill Prevention and Control WM-5 – Solid Waste Management WM-6 – Hazardous Waste Management WM-8 – Concrete Waste Management WM-9 – Sanitary / Septic Waste Management                                                                               | Weekly or sooner depending<br>on weather and usage during<br>construction activities                                                                                                                                                                                                                                           | Implement and maintain these BMPs in accordance with the information provided by Attachment Q for each WM BMP     No construction materials or equipment shall be left on site during periods of no construction activity with the exception of materials for use in implementing BMPs |  |  |  |  |  |

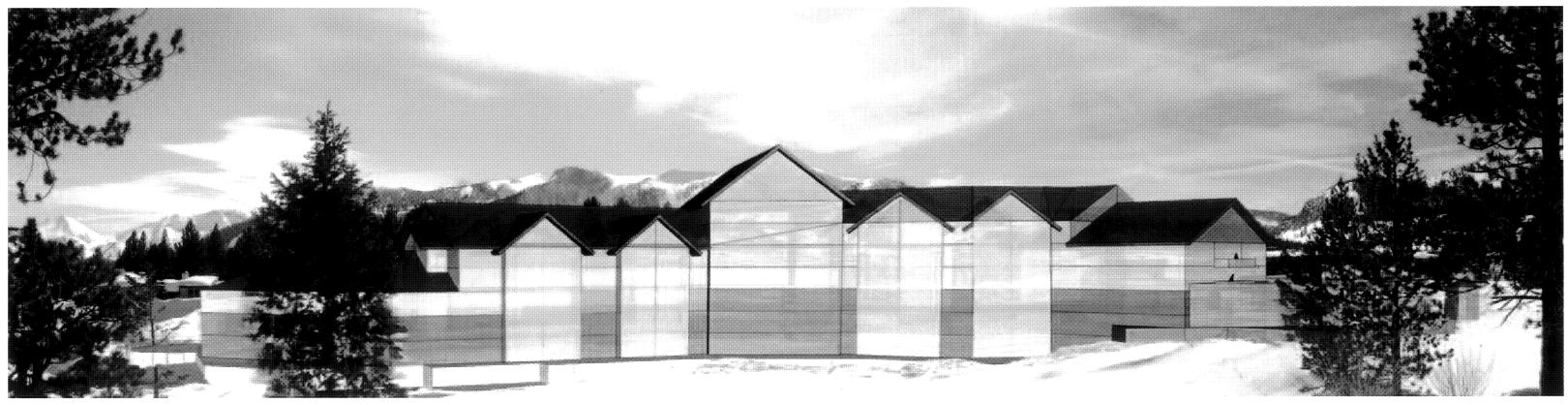
# APPENDIX I SITE PLAN, HEIGHT ANALYSIS, VISUAL SIMULATION, AND DETAILED SHADE/SHADOW ANALYSIS FOR ALTERNATE DESIGN ALTERNATIVE




Annuct 10 2006



Gensler





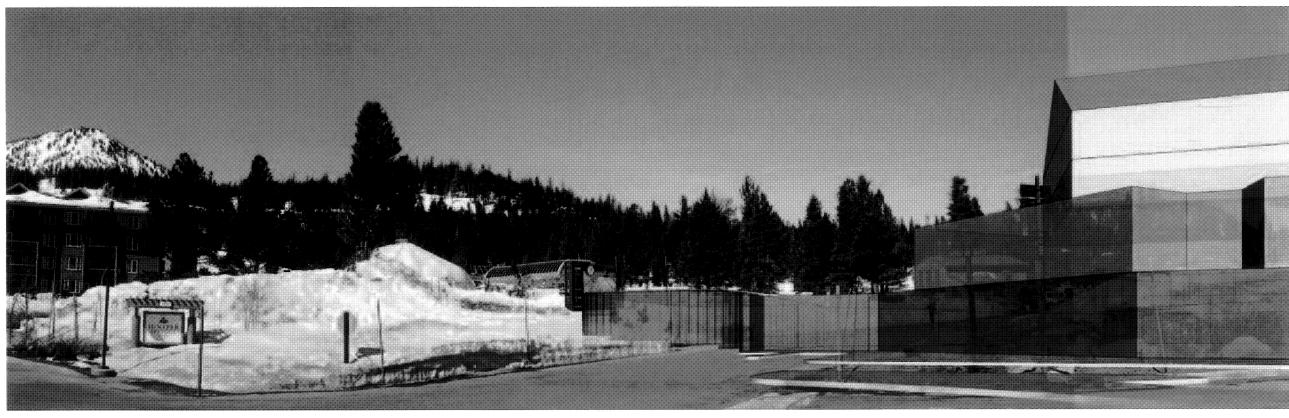





before



after






ore after



before



after



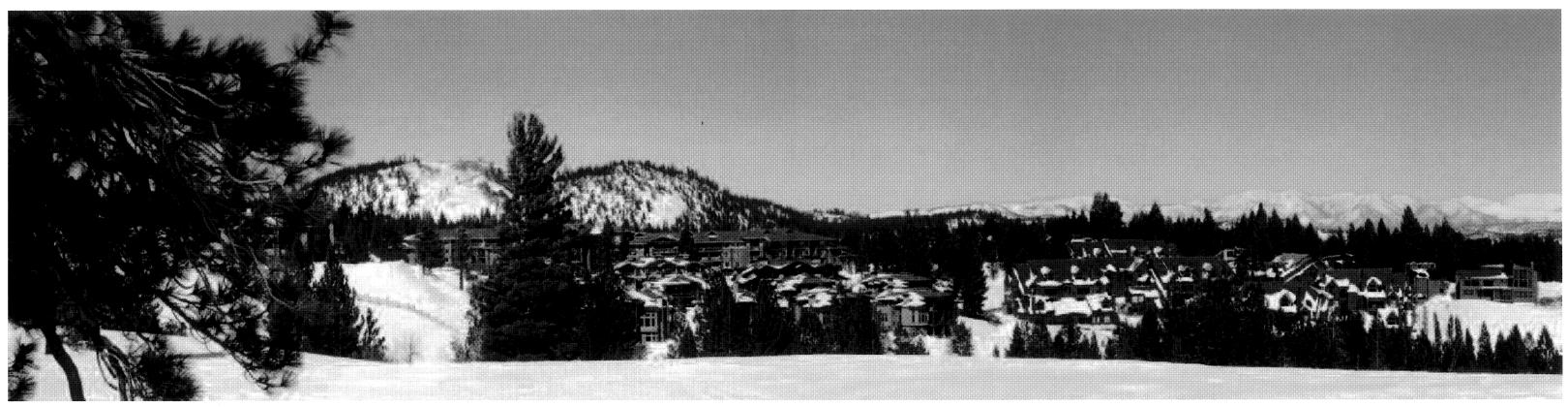


before



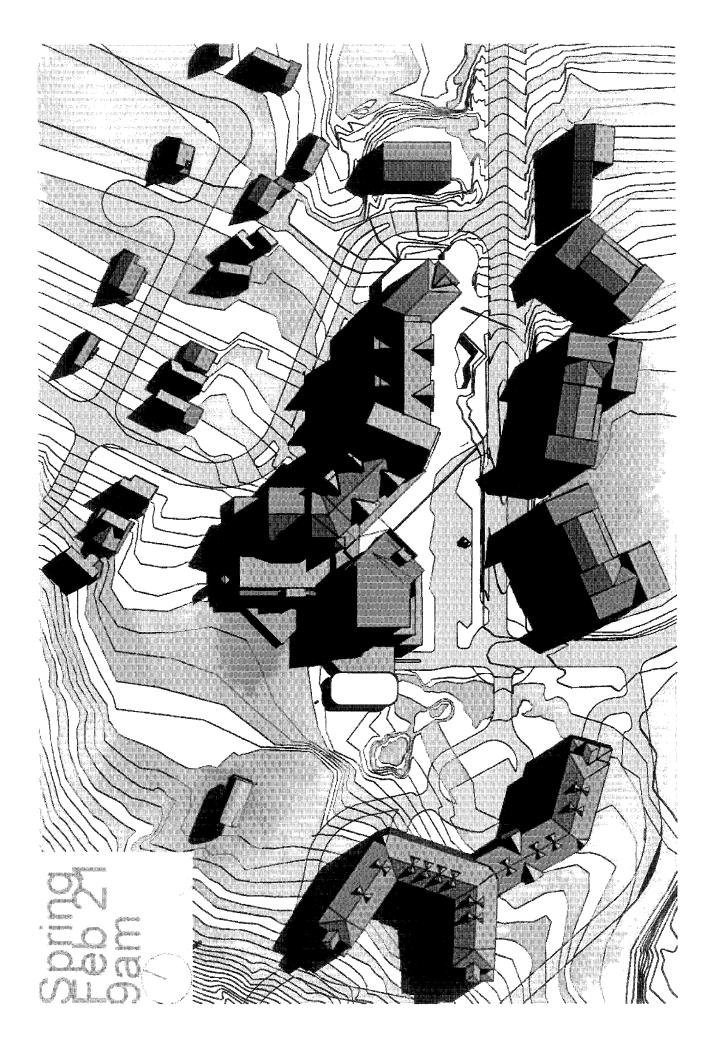
before

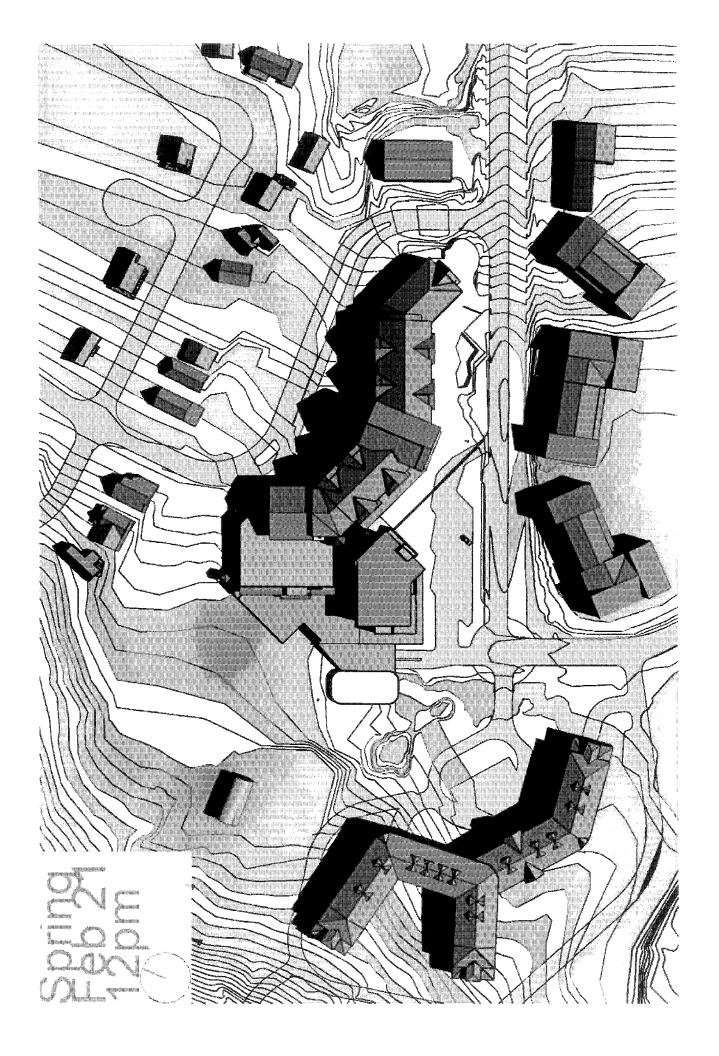


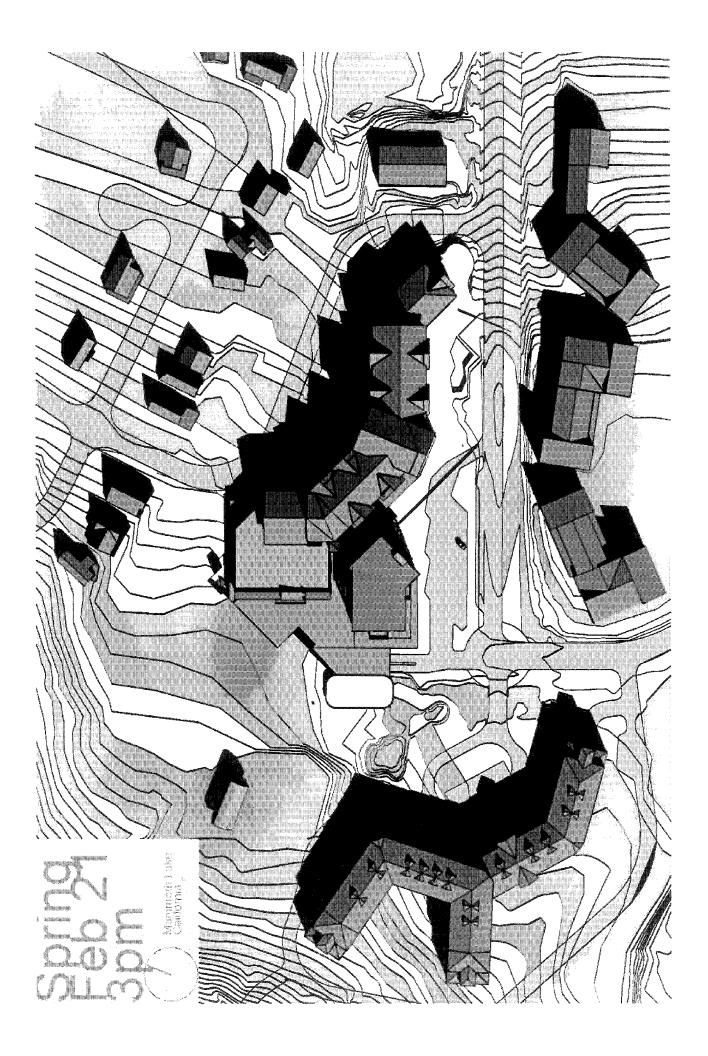

after

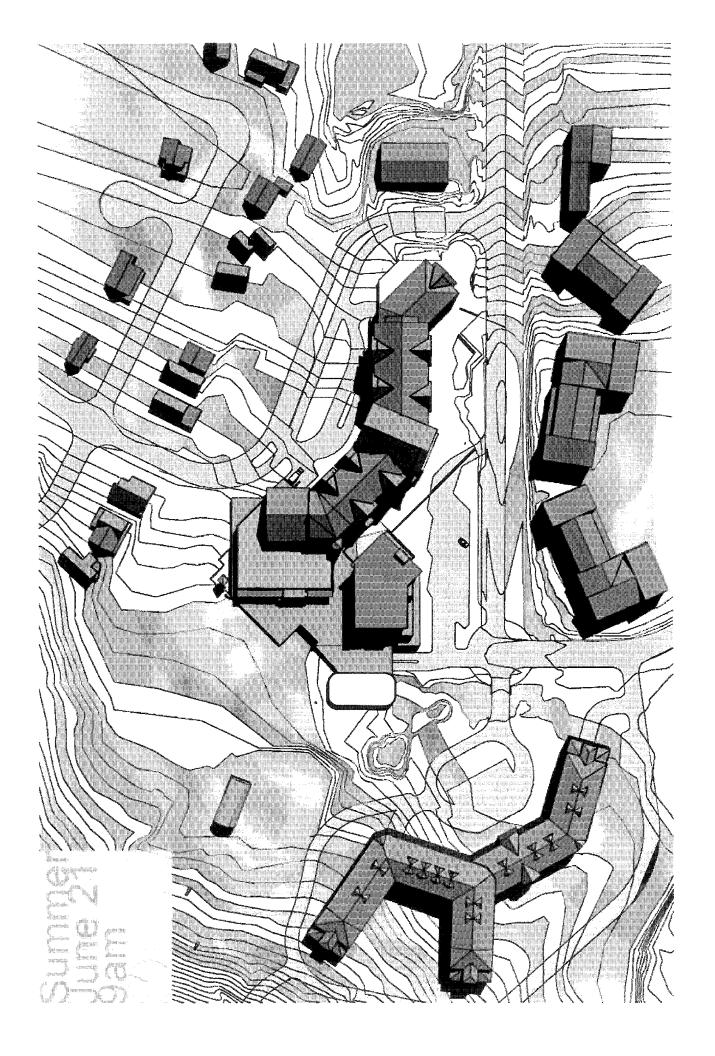


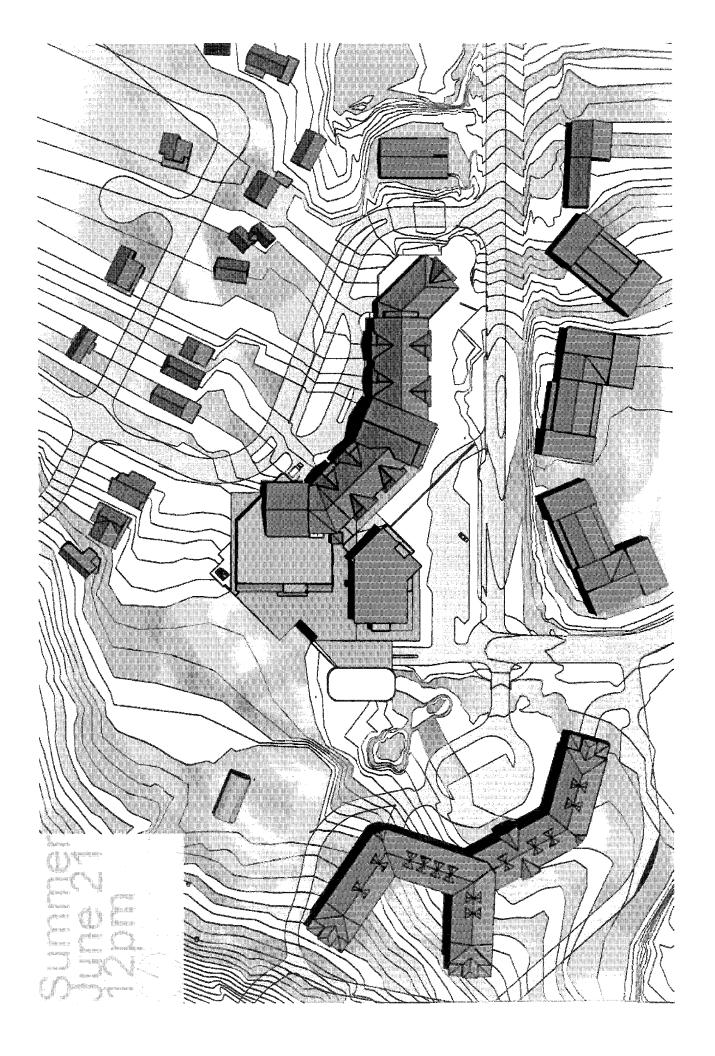
before

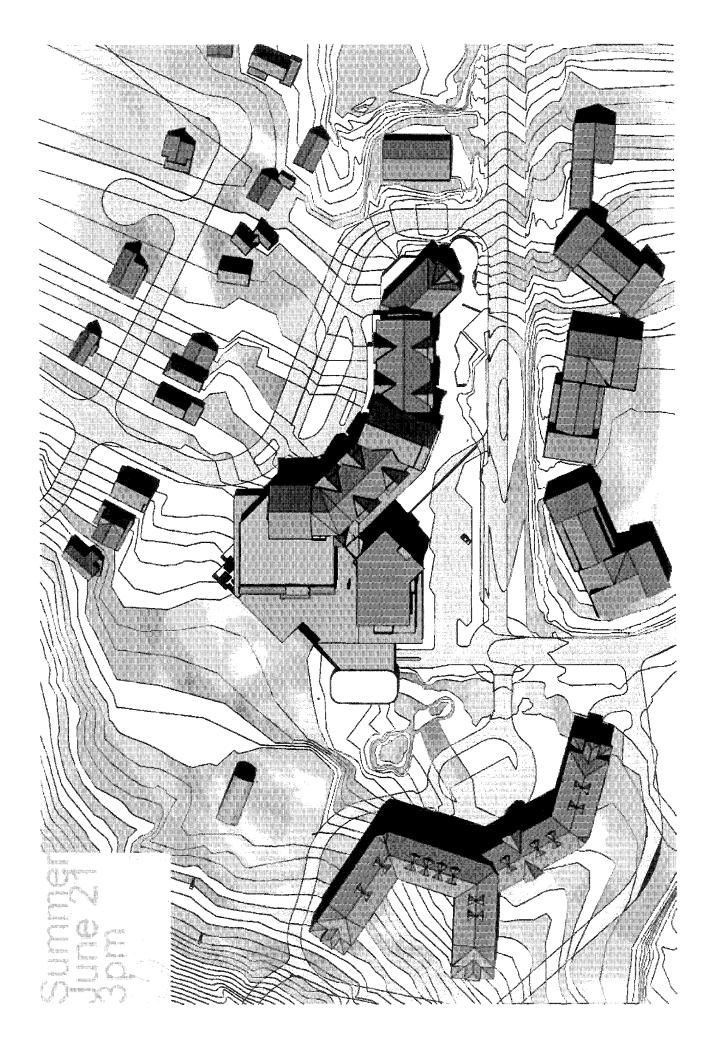


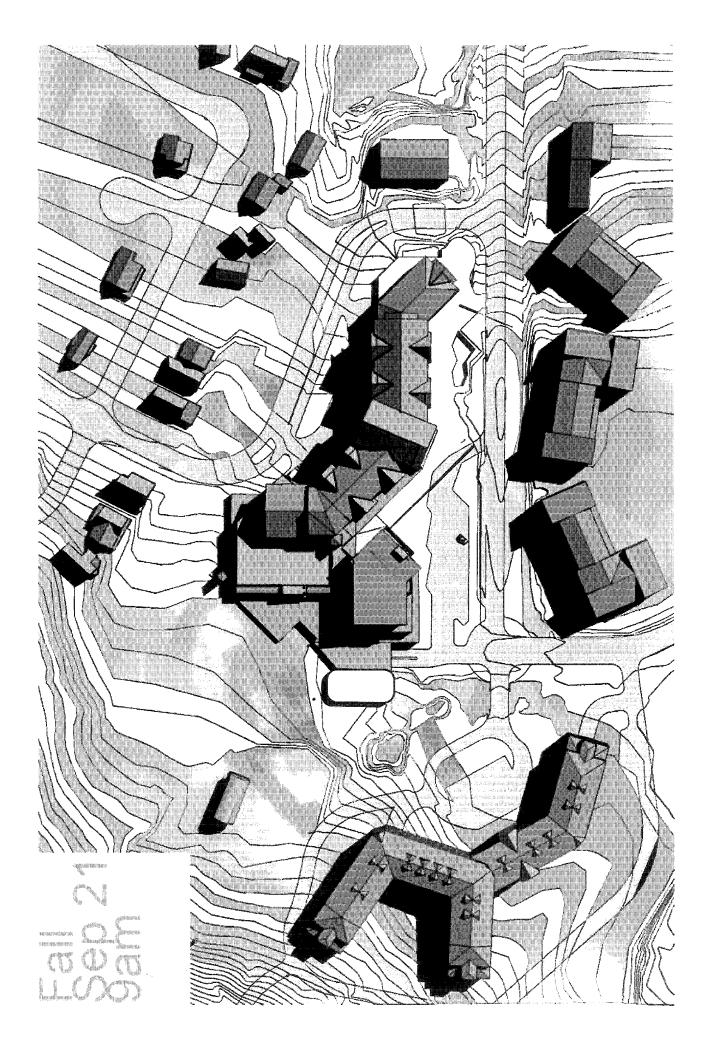


after

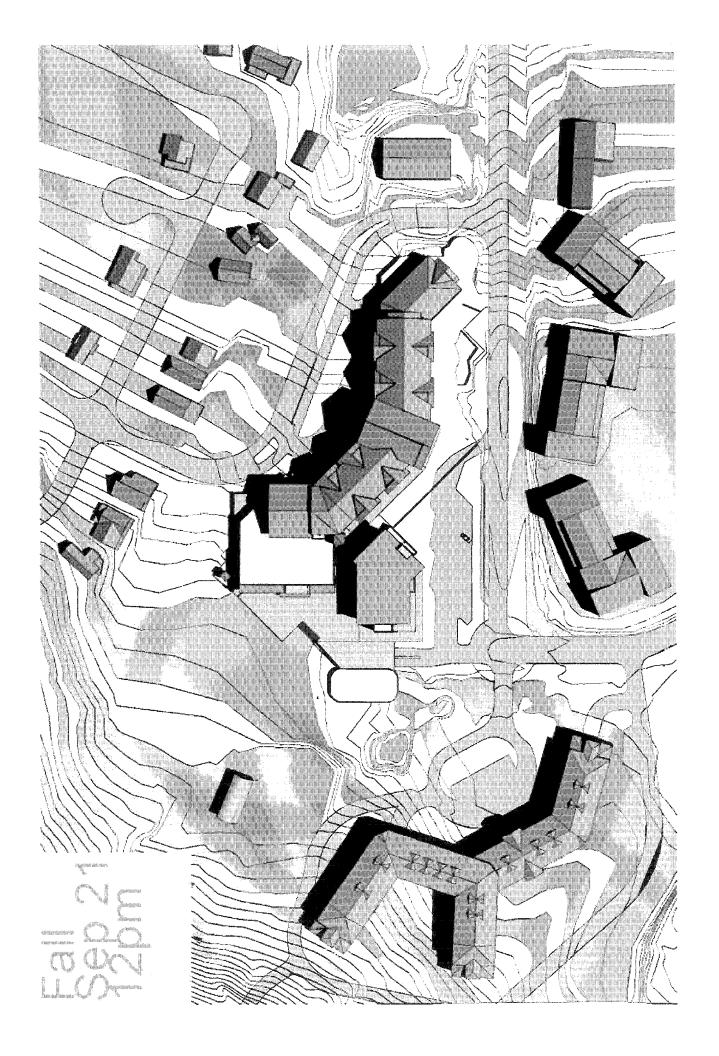


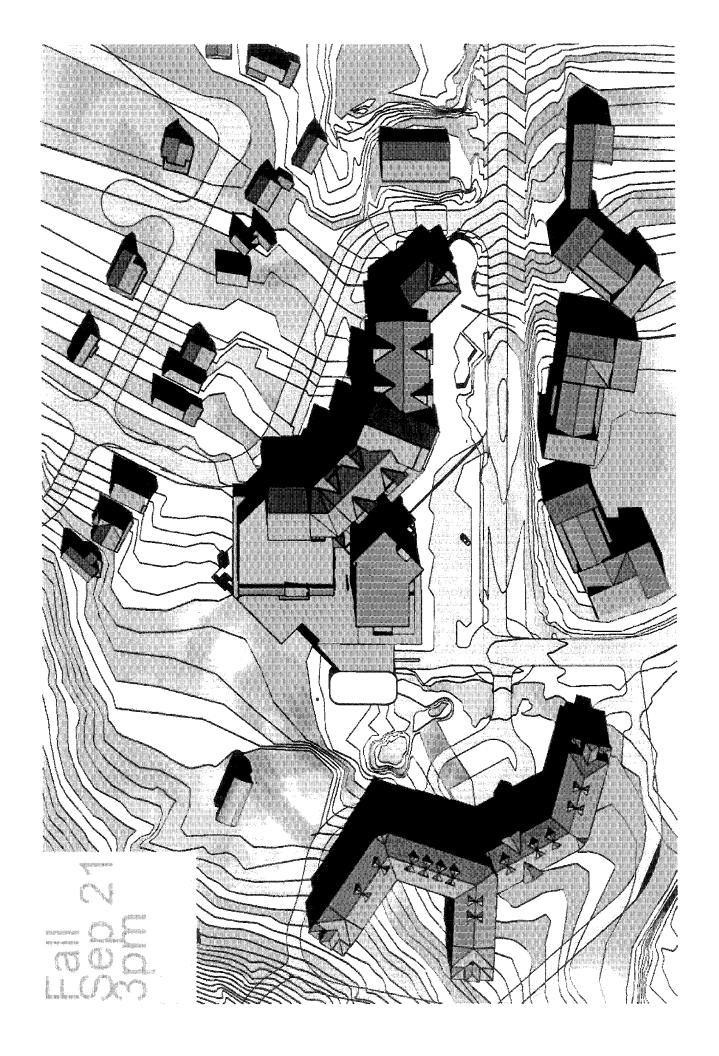


before



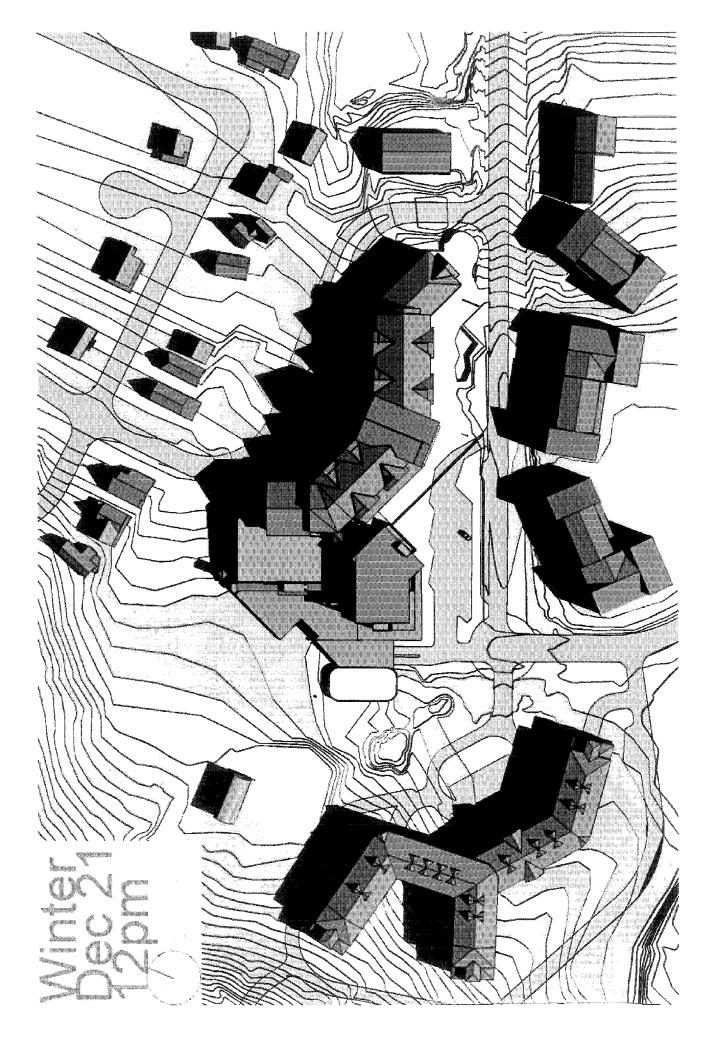


















#### PCR SANTA MONICA

233 WILSHIRE BOULEVARD, SUITE 130 SANTA MONICA, CALIFORNIA 90401 TEL 310.451.4488 FAX 310.451.5279

#### **PCR IRVINE**

ONE VENTURE, SUITE 150 IRVINE, CALIFORNIA 92618 TEL 949.753.7001 FAX 949.753.7002

#### PCR PASADENA

300 North Lake, Suite 1000 PASADENA, CALIFORNIA 92618 TEL 626.204.6178 FAX 626.204.6171